!!$ !!$ !!$ MLD2P4 version 1.1 !!$ MultiLevel Domain Decomposition Parallel Preconditioners Package !!$ based on PSBLAS (Parallel Sparse BLAS version 2.3.1) !!$ !!$ (C) Copyright 2008,2009 !!$ !!$ Salvatore Filippone University of Rome Tor Vergata !!$ Alfredo Buttari CNRS-IRIT, Toulouse !!$ Pasqua D'Ambra ICAR-CNR, Naples !!$ Daniela di Serafino Second University of Naples !!$ !!$ Redistribution and use in source and binary forms, with or without !!$ modification, are permitted provided that the following conditions !!$ are met: !!$ 1. Redistributions of source code must retain the above copyright !!$ notice, this list of conditions and the following disclaimer. !!$ 2. Redistributions in binary form must reproduce the above copyright !!$ notice, this list of conditions, and the following disclaimer in the !!$ documentation and/or other materials provided with the distribution. !!$ 3. The name of the MLD2P4 group or the names of its contributors may !!$ not be used to endorse or promote products derived from this !!$ software without specific written permission. !!$ !!$ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS !!$ ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED !!$ TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR !!$ PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE MLD2P4 GROUP OR ITS CONTRIBUTORS !!$ BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR !!$ CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF !!$ SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS !!$ INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN !!$ CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) !!$ ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE !!$ POSSIBILITY OF SUCH DAMAGE. !!$ !!$ ! File mld_csub_aply.f90 ! ! Subroutine: mld_csub_aply ! Version: complex ! ! This routine computes ! ! Y = beta*Y + alpha*op(K^(-1))*X, ! ! where ! - K is a suitable matrix, as specified below, ! - op(K^(-1)) is K^(-1) or its transpose, according to the value of the ! argument trans, ! - X and Y are vectors, ! - alpha and beta are scalars. ! ! Depending on K, alpha and beta (and on the communication descriptor desc_data ! - see the arguments below), the above computation may correspond to one of ! the following tasks: ! ! 1. Application of a block-Jacobi preconditioner associated to a matrix A ! distributed among the processes. Here K is the preconditioner, op(K^(-1)) ! = K^(-1), alpha = 1 and beta = 0. ! ! 2. Application of block-Jacobi sweeps to compute an approximate solution of ! a linear system ! A*Y = X, ! ! distributed among the processes (note that a single block-Jacobi sweep, ! with null starting guess, corresponds to the application of a block-Jacobi ! preconditioner). Here K^(-1) denotes the iteration matrix of the ! block-Jacobi solver, op(K^(-1)) = K^(-1), alpha = 1 and beta = 0. ! ! 3. Solution, through the LU factorization, of a linear system ! ! A*Y = X, ! ! distributed among the processes. Here K = L*U = A, op(K^(-1)) = K^(-1), ! alpha = 1 and beta = 0. ! ! 4. (Approximate) solution, through the LU or incomplete LU factorization, of ! a linear system ! A*Y = X, ! ! replicated on the processes. Here K = L*U = A or K = L*U ~ A, op(K^(-1)) = ! K^(-1), alpha = 1 and beta = 0. ! ! The block-Jacobi preconditioner or solver and the L and U factors of the LU ! or ILU factorizations have been built by the routine mld_fact_bld and stored ! into the 'base preconditioner' data structure prec. See mld_fact_bld for more ! details. ! ! This routine is used by mld_as_aply, to apply a 'base' block-Jacobi or ! Additive Schwarz (AS) preconditioner at any level of a multilevel preconditioner, ! or a block-Jacobi or LU or ILU solver at the coarsest level of a multilevel ! preconditioner. ! ! Tasks 1, 3 and 4 may be selected when prec%iprcparm(mld_smoother_sweeps_) = 1, ! while task 2 is selected when prec%iprcparm(mld_smoother_sweeps_) > 1. ! Furthermore, tasks 1, 2 and 3 may be performed when the matrix A is distributed ! among the processes (p%precv(ilev)%iprcparm(mld_coarse_mat_) = mld_distr_mat_, ! where p%precv(ilev) is the one-level data structure associated to the level ! ilev at which mld_sub_aply is called), while task 4 may be performed when A ! is replicated on the processes (p%precv(ilev)%iprcparm(mld_coarse_mat_) = ! mld_repl_mat_). Note that the matrix A is distributed among the processes ! at each level of the multilevel preconditioner, except the coarsest one, where ! it may be either distributed or replicated on the processes. Tasks 2, 3 and 4 ! are performed only at the coarsest level. Note also that this routine manages ! implicitly the fact that the matrix is distributed or replicated, i.e. it does not ! make any explicit reference to the value of p%precv(ilev)%iprcparm(mld_coarse_mat_). ! ! Arguments: ! ! alpha - complex(psb_spk_), input. ! The scalar alpha. ! prec - type(mld_cbaseprec_type), input. ! The 'base preconditioner' data structure containing the local ! part of the preconditioner or solver. ! x - complex(psb_spk_), dimension(:), input. ! The local part of the vector X. ! beta - complex(psb_spk_), input. ! The scalar beta. ! y - complex(psb_spk_), dimension(:), input/output. ! The local part of the vector Y. ! desc_data - type(psb_desc_type), input. ! The communication descriptor associated to the matrix to be ! preconditioned or 'inverted'. ! trans - character(len=1), input. ! If trans='N','n' then op(K^(-1)) = K^(-1); ! if trans='T','t' then op(K^(-1)) = K^(-T) (transpose of K^(-1)). ! if trans='C','c' then op(K^(-1)) = K^(-C) (transpose conjugate of K^(-1)). ! If prec%iprcparm(mld_smoother_sweeps_) > 1, the value of trans provided ! in input is ignored. ! work - complex(psb_spk_), dimension (:), target. ! Workspace. Its size must be at least 4*psb_cd_get_local_cols(desc_data). ! info - integer, output. ! Error code. ! subroutine mld_csub_aply(alpha,prec,x,beta,y,desc_data,trans,work,info) use psb_sparse_mod use mld_inner_mod, mld_protect_name => mld_csub_aply implicit none ! Arguments type(psb_desc_type), intent(in) :: desc_data type(mld_cbaseprec_type), intent(in) :: prec complex(psb_spk_),intent(in) :: x(:) complex(psb_spk_),intent(inout) :: y(:) complex(psb_spk_),intent(in) :: alpha,beta character(len=1), intent(in) :: trans complex(psb_spk_),target, intent(inout) :: work(:) integer, intent(out) :: info ! Local variables integer :: n_row,n_col complex(psb_spk_), pointer :: ww(:), aux(:), tx(:),ty(:) integer :: ictxt,np,me,i, err_act character(len=20) :: name character :: trans_ name='mld_csub_aply' info = psb_success_ call psb_erractionsave(err_act) ictxt=psb_cd_get_context(desc_data) call psb_info(ictxt, me, np) trans_ = psb_toupper(trans) select case(trans_) case('N') case('T','C') case default call psb_errpush(psb_err_iarg_invalid_i_,name) goto 9999 end select n_row = psb_cd_get_local_rows(desc_data) n_col = psb_cd_get_local_cols(desc_data) if (n_col <= size(work)) then ww => work(1:n_col) if ((4*n_col+n_col) <= size(work)) then aux => work(n_col+1:) else allocate(aux(4*n_col),stat=info) if (info /= psb_success_) then info=psb_err_alloc_request_ call psb_errpush(info,name,i_err=(/4*n_col,0,0,0,0/),& & a_err='complex(psb_spk_)') goto 9999 end if endif else allocate(ww(n_col),aux(4*n_col),stat=info) if (info /= psb_success_) then info=psb_err_alloc_request_ call psb_errpush(info,name,i_err=(/5*n_col,0,0,0,0/),& & a_err='complex(psb_spk_)') goto 9999 end if endif if (prec%iprcparm(mld_smoother_sweeps_) == 1) then call mld_sub_solve(alpha,prec,x,beta,y,desc_data,trans_,aux,info) if (info /= psb_success_) then call psb_errpush(psb_err_internal_error_,name,a_err='Error in sub_aply Jacobi Sweeps = 1') goto 9999 endif else if (prec%iprcparm(mld_smoother_sweeps_) > 1) then ! ! ! Apply prec%iprcparm(mld_smoother_sweeps_) sweeps of a block-Jacobi solver ! to compute an approximate solution of a linear system. ! if (size(prec%av) < mld_ap_nd_) then info = psb_err_from_subroutine_non_ goto 9999 endif allocate(tx(n_col),ty(n_col),stat=info) if (info /= psb_success_) then info=psb_err_alloc_request_ call psb_errpush(info,name,i_err=(/2*n_col,0,0,0,0/),& & a_err='complex(psb_spk_)') goto 9999 end if tx = czero ty = czero do i=1, prec%iprcparm(mld_smoother_sweeps_) ! ! Compute Y(j+1) = D^(-1)*(X-ND*Y(j)), where D and ND are the ! block diagonal part and the remaining part of the local matrix ! and Y(j) is the approximate solution at sweep j. ! ty(1:n_row) = x(1:n_row) call psb_spmm(-cone,prec%av(mld_ap_nd_),tx,cone,ty,& & prec%desc_data,info,work=aux,trans=trans_) if (info /= psb_success_) exit call mld_sub_solve(cone,prec,ty,czero,tx,desc_data,trans_,aux,info) if (info /= psb_success_) exit end do if (info == psb_success_) call psb_geaxpby(alpha,tx,beta,y,desc_data,info) if (info /= psb_success_) then info=psb_err_internal_error_ call psb_errpush(info,name,a_err='subsolve with Jacobi sweeps > 1') goto 9999 end if deallocate(tx,ty,stat=info) if (info /= psb_success_) then info=psb_err_internal_error_ call psb_errpush(info,name,a_err='final cleanup with Jacobi sweeps > 1') goto 9999 end if else info = psb_err_iarg_neg_ call psb_errpush(info,name,& & i_err=(/2,prec%iprcparm(mld_smoother_sweeps_),0,0,0/)) goto 9999 endif if (n_col <= size(work)) then if ((4*n_col+n_col) <= size(work)) then else deallocate(aux) endif else deallocate(ww,aux) endif call psb_erractionrestore(err_act) return 9999 continue call psb_erractionrestore(err_act) if (err_act.eq.psb_act_abort_) then call psb_error() return end if return end subroutine mld_csub_aply