!!$ !!$ !!$ MLD2P4 version 2.0 !!$ MultiLevel Domain Decomposition Parallel Preconditioners Package !!$ based on PSBLAS (Parallel Sparse BLAS version 3.0) !!$ !!$ (C) Copyright 2008,2009,2010 !!$ !!$ Salvatore Filippone University of Rome Tor Vergata !!$ Alfredo Buttari CNRS-IRIT, Toulouse !!$ Pasqua D'Ambra ICAR-CNR, Naples !!$ Daniela di Serafino Second University of Naples !!$ !!$ Redistribution and use in source and binary forms, with or without !!$ modification, are permitted provided that the following conditions !!$ are met: !!$ 1. Redistributions of source code must retain the above copyright !!$ notice, this list of conditions and the following disclaimer. !!$ 2. Redistributions in binary form must reproduce the above copyright !!$ notice, this list of conditions, and the following disclaimer in the !!$ documentation and/or other materials provided with the distribution. !!$ 3. The name of the MLD2P4 group or the names of its contributors may !!$ not be used to endorse or promote products derived from this !!$ software without specific written permission. !!$ !!$ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS !!$ ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED !!$ TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR !!$ PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE MLD2P4 GROUP OR ITS CONTRIBUTORS !!$ BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR !!$ CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF !!$ SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS !!$ INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN !!$ CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) !!$ ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE !!$ POSSIBILITY OF SUCH DAMAGE. !!$ !!$ ! File: mld_silut_fact.f90 ! ! Subroutine: mld_silut_fact ! Version: real ! Contains: mld_silut_factint, ilut_copyin, ilut_fact, ilut_copyout ! ! This routine computes the ILU(k,t) factorization of the diagonal blocks ! of a distributed matrix. This factorization is used to build the 'base ! preconditioner' (block-Jacobi preconditioner/solver, Additive Schwarz ! preconditioner) corresponding to a certain level of a multilevel preconditioner. ! ! Details on the above factorization can be found in ! Y. Saad, Iterative Methods for Sparse Linear Systems, Second Edition, ! SIAM, 2003, Chapter 10. ! ! The local matrix is stored into a and blck, as specified in the description ! of the arguments below. The storage format for both the L and U factors is ! CSR. The diagonal of the U factor is stored separately (actually, the ! inverse of the diagonal entries is stored; this is then managed in the ! solve stage associated to the ILU(k,t) factorization). ! ! ! Arguments: ! fill_in - integer, input. ! The fill-in parameter k in ILU(k,t). ! thres - real, input. ! The threshold t, i.e. the drop tolerance, in ILU(k,t). ! a - type(psb_sspmat_type), input. ! The sparse matrix structure containing the local matrix. ! Note that if the 'base' Additive Schwarz preconditioner ! has overlap greater than 0 and the matrix has not been reordered ! (see mld_fact_bld), then a contains only the 'original' local part ! of the distributed matrix, i.e. the rows of the matrix held ! by the calling process according to the initial data distribution. ! l - type(psb_sspmat_type), input/output. ! The L factor in the incomplete factorization. ! Note: its allocation is managed by the calling routine mld_ilu_bld, ! hence it cannot be only intent(out). ! u - type(psb_sspmat_type), input/output. ! The U factor (except its diagonal) in the incomplete factorization. ! Note: its allocation is managed by the calling routine mld_ilu_bld, ! hence it cannot be only intent(out). ! d - real(psb_spk_), dimension(:), input/output. ! The inverse of the diagonal entries of the U factor in the incomplete ! factorization. ! Note: its allocation is managed by the calling routine mld_ilu_bld, ! hence it cannot be only intent(out). ! info - integer, output. ! Error code. ! blck - type(psb_sspmat_type), input, optional, target. ! The sparse matrix structure containing the remote rows of the ! distributed matrix, that have been retrieved by mld_as_bld ! to build an Additive Schwarz base preconditioner with overlap ! greater than 0. If the overlap is 0 or the matrix has been reordered ! (see mld_fact_bld), then blck does not contain any row. ! subroutine mld_silut_fact(fill_in,thres,a,l,u,d,info,blck) use psb_sparse_mod use mld_s_inner_mod!, mld_protect_name => mld_silut_fact implicit none ! Arguments integer, intent(in) :: fill_in real(psb_spk_), intent(in) :: thres integer, intent(out) :: info type(psb_sspmat_type),intent(in) :: a type(psb_sspmat_type),intent(inout) :: l,u real(psb_spk_), intent(inout) :: d(:) type(psb_sspmat_type),intent(in), optional, target :: blck ! Local Variables integer :: l1, l2, m, err_act type(psb_sspmat_type), pointer :: blck_ type(psb_s_csr_sparse_mat) :: ll, uu character(len=20) :: name, ch_err name='mld_silut_fact' info = psb_success_ call psb_erractionsave(err_act) if (fill_in < 0) then info=psb_err_input_asize_invalid_i_ call psb_errpush(info,name,i_err=(/1,fill_in,0,0,0/)) goto 9999 end if ! ! Point to / allocate memory for the incomplete factorization ! if (present(blck)) then blck_ => blck else allocate(blck_,stat=info) if (info == psb_success_) call blck_%csall(0,0,info,1) if (info /= psb_success_) then info=psb_err_from_subroutine_ ch_err='csall' call psb_errpush(info,name,a_err=ch_err) goto 9999 end if endif m = a%get_nrows() + blck_%get_nrows() if ((m /= l%get_nrows()).or.(m /= u%get_nrows()).or.& & (m > size(d)) ) then write(0,*) 'Wrong allocation status for L,D,U? ',& & l%get_nrows(),size(d),u%get_nrows() info = -1 return end if call l%mv_to(ll) call u%mv_to(uu) ! ! Compute the ILU(k,t) factorization ! call mld_silut_factint(fill_in,thres,a,blck_,& & d,ll%val,ll%ja,ll%irp,uu%val,uu%ja,uu%irp,l1,l2,info) if (info /= psb_success_) then info=psb_err_from_subroutine_ ch_err='mld_silut_factint' call psb_errpush(info,name,a_err=ch_err) goto 9999 end if ! ! Store information on the L and U sparse matrices ! call l%mv_from(ll) call l%set_triangle() call l%set_unit() call l%set_lower() call u%mv_from(uu) call u%set_triangle() call u%set_unit() call u%set_upper() ! ! Nullify pointer / deallocate memory ! if (present(blck)) then blck_ => null() else call blck_%free() deallocate(blck_,stat=info) if(info.ne.0) then info=psb_err_from_subroutine_ ch_err='psb_sp_free' call psb_errpush(info,name,a_err=ch_err) goto 9999 end if endif call psb_erractionrestore(err_act) return 9999 continue call psb_erractionrestore(err_act) if (err_act.eq.psb_act_abort_) then call psb_error() return end if return contains ! ! Subroutine: mld_silut_factint ! Version: real ! Note: internal subroutine of mld_silut_fact ! ! This routine computes the ILU(k,t) factorization of the diagonal blocks of a ! distributed matrix. This factorization is used to build the 'base ! preconditioner' (block-Jacobi preconditioner/solver, Additive Schwarz ! preconditioner) corresponding to a certain level of a multilevel preconditioner. ! ! The local matrix to be factorized is stored into a and b, as specified in the ! description of the arguments below. The storage format for both the L and U ! factors is CSR. The diagonal of the U factor is stored separately (actually, ! the inverse of the diagonal entries is stored; this is then managed in the ! solve stage associated to the ILU(k,t) factorization). ! ! ! Arguments: ! fill_in - integer, input. ! The fill-in parameter k in ILU(k,t). ! thres - real, input. ! The threshold t, i.e. the drop tolerance, in ILU(k,t). ! m - integer, output. ! The total number of rows of the local matrix to be factorized, ! i.e. ma+mb. ! a - type(psb_sspmat_type), input. ! The sparse matrix structure containing the local matrix. ! Note that, if the 'base' Additive Schwarz preconditioner ! has overlap greater than 0 and the matrix has not been reordered ! (see mld_fact_bld), then a contains only the 'original' local part ! of the distributed matrix, i.e. the rows of the matrix held ! by the calling process according to the initial data distribution. ! b - type(psb_sspmat_type), input. ! The sparse matrix structure containing the remote rows of the ! distributed matrix, that have been retrieved by mld_as_bld ! to build an Additive Schwarz base preconditioner with overlap ! greater than 0. If the overlap is 0 or the matrix has been reordered ! (see mld_fact_bld), then b does not contain any row. ! d - real(psb_spk_), dimension(:), output. ! The inverse of the diagonal entries of the U factor in the incomplete ! factorization. ! lval - real(psb_spk_), dimension(:), input/output. ! The L factor in the incomplete factorization. ! lia1 - integer, dimension(:), input/output. ! The column indices of the nonzero entries of the L factor, ! according to the CSR storage format. ! lirp - integer, dimension(:), input/output. ! The indices identifying the first nonzero entry of each row ! of the L factor in lval, according to the CSR storage format. ! uval - real(psb_spk_), dimension(:), input/output. ! The U factor in the incomplete factorization. ! The entries of U are stored according to the CSR format. ! uja - integer, dimension(:), input/output. ! The column indices of the nonzero entries of the U factor, ! according to the CSR storage format. ! uirp - integer, dimension(:), input/output. ! The indices identifying the first nonzero entry of each row ! of the U factor in uval, according to the CSR storage format. ! l1 - integer, output ! The number of nonzero entries in lval. ! l2 - integer, output ! The number of nonzero entries in uval. ! info - integer, output. ! Error code. ! subroutine mld_silut_factint(fill_in,thres,a,b,& & d,lval,lja,lirp,uval,uja,uirp,l1,l2,info) use psb_sparse_mod implicit none ! Arguments integer, intent(in) :: fill_in real(psb_spk_), intent(in) :: thres type(psb_sspmat_type),intent(in) :: a,b integer,intent(inout) :: l1,l2,info integer, allocatable, intent(inout) :: lja(:),lirp(:),uja(:),uirp(:) real(psb_spk_), allocatable, intent(inout) :: lval(:),uval(:) real(psb_spk_), intent(inout) :: d(:) ! Local Variables integer :: i, ktrw,err_act,nidx,nlw,nup,jmaxup, ma, mb, m real(psb_spk_) :: nrmi integer, allocatable :: idxs(:) real(psb_spk_), allocatable :: row(:) type(psb_int_heap) :: heap type(psb_s_coo_sparse_mat) :: trw character(len=20), parameter :: name='mld_silut_factint' character(len=20) :: ch_err if (psb_get_errstatus() /= 0) return info = psb_success_ call psb_erractionsave(err_act) ma = a%get_nrows() mb = b%get_nrows() m = ma+mb ! ! Allocate a temporary buffer for the ilut_copyin function ! call trw%allocate(0,0,1) if (info == psb_success_) call psb_ensure_size(m+1,lirp,info) if (info == psb_success_) call psb_ensure_size(m+1,uirp,info) if (info /= psb_success_) then info=psb_err_from_subroutine_ call psb_errpush(info,name,a_err='psb_sp_all') goto 9999 end if l1=0 l2=0 lirp(1) = 1 uirp(1) = 1 ! ! Allocate memory to hold the entries of a row ! allocate(row(m),stat=info) if (info /= psb_success_) then info=psb_err_from_subroutine_ call psb_errpush(info,name,a_err='Allocate') goto 9999 end if row(:) = szero ! ! Cycle over the matrix rows ! do i = 1, m ! ! At each iteration of the loop we keep in a heap the column indices ! affected by the factorization. The heap is initialized and filled ! in the ilut_copyin function, and updated during the elimination, in ! the ilut_fact routine. The heap is ideal because at each step we need ! the lowest index, but we also need to insert new items, and the heap ! allows to do both in log time. ! d(i) = szero if (i<=ma) then call ilut_copyin(i,ma,a,i,1,m,nlw,nup,jmaxup,nrmi,row,heap,ktrw,trw,info) else call ilut_copyin(i-ma,mb,b,i,1,m,nlw,nup,jmaxup,nrmi,row,heap,ktrw,trw,info) endif ! ! Do an elimination step on current row ! if (info == psb_success_) call ilut_fact(thres,i,nrmi,row,heap,& & d,uja,uirp,uval,nidx,idxs,info) ! ! Copy the row into lval/d(i)/uval ! if (info == psb_success_) call ilut_copyout(fill_in,thres,i,m,nlw,nup,jmaxup,nrmi,row,nidx,idxs,& & l1,l2,lja,lirp,lval,d,uja,uirp,uval,info) if (info /= psb_success_) then info=psb_err_internal_error_ call psb_errpush(info,name,a_err='Copy/factor loop') goto 9999 end if end do ! ! And we're done, so deallocate the memory ! deallocate(row,idxs,stat=info) if (info /= psb_success_) then info=psb_err_from_subroutine_ call psb_errpush(info,name,a_err='Deallocate') goto 9999 end if if (info == psb_success_) call trw%free() if (info /= psb_success_) then info=psb_err_from_subroutine_ ch_err='psb_sp_free' call psb_errpush(info,name,a_err=ch_err) goto 9999 end if call psb_erractionrestore(err_act) return 9999 continue call psb_erractionrestore(err_act) if (err_act.eq.psb_act_abort_) then call psb_error() return end if return end subroutine mld_silut_factint ! ! Subroutine: ilut_copyin ! Version: real ! Note: internal subroutine of mld_silut_fact ! ! This routine performs the following tasks: ! - copying a row of a sparse matrix A, stored in the sparse matrix structure a, ! into the array row; ! - storing into a heap the column indices of the nonzero entries of the copied ! row; ! - computing the column index of the first entry with maximum absolute value ! in the part of the row belonging to the upper triangle; ! - computing the 2-norm of the row. ! The output array row is such that it contains a full row of A, i.e. it contains ! also the zero entries of the row. This is useful for the elimination step ! performed by ilut_fact after the call to ilut_copyin (see mld_ilut_factint). ! ! If the sparse matrix is in CSR format, a 'straight' copy is performed; ! otherwise psb_sp_getblk is used to extract a block of rows, which is then ! copied, row by row, into the array row, through successive calls to ! ilut_copyin. ! ! This routine is used by mld_silut_factint in the computation of the ILU(k,t) ! factorization of a local sparse matrix. ! ! ! Arguments: ! i - integer, input. ! The local index of the row to be extracted from the ! sparse matrix structure a. ! m - integer, input. ! The number of rows of the local matrix stored into a. ! a - type(psb_sspmat_type), input. ! The sparse matrix structure containing the row to be ! copied. ! jd - integer, input. ! The column index of the diagonal entry of the row to be ! copied. ! jmin - integer, input. ! The minimum valid column index. ! jmax - integer, input. ! The maximum valid column index. ! The output matrix will contain a clipped copy taken from ! a(1:m,jmin:jmax). ! nlw - integer, output. ! The number of nonzero entries in the part of the row ! belonging to the lower triangle of the matrix. ! nup - integer, output. ! The number of nonzero entries in the part of the row ! belonging to the upper triangle of the matrix. ! jmaxup - integer, output. ! The column index of the first entry with maximum absolute ! value in the part of the row belonging to the upper triangle ! nrmi - real(psb_spk_), output. ! The 2-norm of the current row. ! row - real(psb_spk_), dimension(:), input/output. ! In input it is the null vector (see mld_ilut_factint and ! ilut_copyout). In output it contains the row extracted ! from the matrix A. It actually contains a full row, i.e. ! it contains also the zero entries of the row. ! rowlevs - integer, dimension(:), input/output. ! In input rowlevs(k) = -(m+1) for k=1,...,m. In output ! rowlevs(k) = 0 for 1 <= k <= jmax and A(i,k) /= 0, for ! future use in ilut_fact. ! heap - type(psb_int_heap), input/output. ! The heap containing the column indices of the nonzero ! entries in the array row. ! Note: this argument is intent(inout) and not only intent(out) ! to retain its allocation, done by psb_init_heap inside this ! routine. ! ktrw - integer, input/output. ! The index identifying the last entry taken from the ! staging buffer trw. See below. ! trw - type(psb_sspmat_type), input/output. ! A staging buffer. If the matrix A is not in CSR format, we use ! the psb_sp_getblk routine and store its output in trw; when we ! need to call psb_sp_getblk we do it for a block of rows, and then ! we consume them from trw in successive calls to this routine, ! until we empty the buffer. Thus we will make a call to psb_sp_getblk ! every nrb calls to copyin. If A is in CSR format it is unused. ! subroutine ilut_copyin(i,m,a,jd,jmin,jmax,nlw,nup,jmaxup,nrmi,row,heap,ktrw,trw,info) use psb_sparse_mod implicit none type(psb_sspmat_type), intent(in) :: a type(psb_s_coo_sparse_mat), intent(inout) :: trw integer, intent(in) :: i, m,jmin,jmax,jd integer, intent(inout) :: ktrw,nlw,nup,jmaxup,info real(psb_spk_), intent(inout) :: nrmi,row(:) type(psb_int_heap), intent(inout) :: heap integer :: k,j,irb,kin,nz integer, parameter :: nrb=40 real(psb_spk_) :: dmaxup real(psb_spk_), external :: dnrm2 character(len=20), parameter :: name='mld_silut_factint' if (psb_get_errstatus() /= 0) return info = psb_success_ call psb_erractionsave(err_act) call psb_init_heap(heap,info) if (info /= psb_success_) then info=psb_err_from_subroutine_ call psb_errpush(info,name,a_err='psb_init_heap') goto 9999 end if ! ! nrmi is the norm of the current sparse row (for the time being, ! we use the 2-norm). ! NOTE: the 2-norm below includes also elements that are outside ! [jmin:jmax] strictly. Is this really important? TO BE CHECKED. ! nlw = 0 nup = 0 jmaxup = 0 dmaxup = szero nrmi = szero select type (aa=> a%a) type is (psb_s_csr_sparse_mat) ! ! Take a fast shortcut if the matrix is stored in CSR format ! do j = aa%irp(i), aa%irp(i+1) - 1 k = aa%ja(j) if ((jmin<=k).and.(k<=jmax)) then row(k) = aa%val(j) call psb_insert_heap(k,heap,info) if (info /= psb_success_) exit end if if (kjd) then nup = nup + 1 if (abs(row(k))>dmaxup) then jmaxup = k dmaxup = abs(row(k)) end if end if end do if (info /= psb_success_) then info=psb_err_from_subroutine_ call psb_errpush(info,name,a_err='psb_insert_heap') goto 9999 end if nz = aa%irp(i+1) - aa%irp(i) nrmi = dnrm2(nz,aa%val(aa%irp(i)),ione) class default ! ! Otherwise use psb_sp_getblk, slower but able (in principle) of ! handling any format. In this case, a block of rows is extracted ! instead of a single row, for performance reasons, and these ! rows are copied one by one into the array row, through successive ! calls to ilut_copyin. ! if ((mod(i,nrb) == 1).or.(nrb == 1)) then irb = min(m-i+1,nrb) call aa%csget(i,i+irb-1,trw,info) if (info /= psb_success_) then info=psb_err_from_subroutine_ call psb_errpush(info,name,a_err='psb_sp_getblk') goto 9999 end if ktrw=1 end if kin = ktrw nz = trw%get_nzeros() do if (ktrw > nz) exit if (trw%ia(ktrw) > i) exit k = trw%ja(ktrw) if ((jmin<=k).and.(k<=jmax)) then row(k) = trw%val(ktrw) call psb_insert_heap(k,heap,info) if (info /= psb_success_) exit end if if (kjd) then nup = nup + 1 if (abs(row(k))>dmaxup) then jmaxup = k dmaxup = abs(row(k)) end if end if ktrw = ktrw + 1 enddo nz = ktrw - kin nrmi = dnrm2(nz,trw%val(kin),ione) end select call psb_erractionrestore(err_act) return 9999 continue call psb_erractionrestore(err_act) if (err_act.eq.psb_act_abort_) then call psb_error() return end if return end subroutine ilut_copyin ! ! Subroutine: ilut_fact ! Version: real ! Note: internal subroutine of mld_silut_fact ! ! This routine does an elimination step of the ILU(k,t) factorization on a single ! matrix row (see the calling routine mld_ilut_factint). Actually, only the dropping ! rule based on the threshold is applied here. The dropping rule based on the ! fill-in is applied by ilut_copyout. ! ! The routine is used by mld_silut_factint in the computation of the ILU(k,t) ! factorization of a local sparse matrix. ! ! ! Arguments ! thres - real, input. ! The threshold t, i.e. the drop tolerance, in ILU(k,t). ! i - integer, input. ! The local index of the row to which the factorization is applied. ! nrmi - real(psb_spk_), input. ! The 2-norm of the row to which the elimination step has to be ! applied. ! row - real(psb_spk_), dimension(:), input/output. ! In input it contains the row to which the elimination step ! has to be applied. In output it contains the row after the ! elimination step. It actually contains a full row, i.e. ! it contains also the zero entries of the row. ! heap - type(psb_int_heap), input/output. ! The heap containing the column indices of the nonzero entries ! in the processed row. In input it contains the indices concerning ! the row before the elimination step, while in output it contains ! the previous indices plus the ones corresponding to transformed ! entries in the 'upper part' that have not been dropped. ! d - real(psb_spk_), input. ! The inverse of the diagonal entries of the part of the U factor ! above the current row (see ilut_copyout). ! uja - integer, dimension(:), input. ! The column indices of the nonzero entries of the part of the U ! factor above the current row, stored in uval row by row (see ! ilut_copyout, called by mld_silut_factint), according to the CSR ! storage format. ! uirp - integer, dimension(:), input. ! The indices identifying the first nonzero entry of each row of ! the U factor above the current row, stored in uval row by row ! (see ilut_copyout, called by mld_silut_factint), according to ! the CSR storage format. ! uval - real(psb_spk_), dimension(:), input. ! The entries of the U factor above the current row (except the ! diagonal ones), stored according to the CSR format. ! nidx - integer, output. ! The number of entries of the array row that have been ! examined during the elimination step. This will be used ! by the routine ilut_copyout. ! idxs - integer, dimension(:), allocatable, input/output. ! The indices of the entries of the array row that have been ! examined during the elimination step.This will be used by ! by the routine ilut_copyout. ! Note: this argument is intent(inout) and not only intent(out) ! to retain its allocation, done by this routine. ! subroutine ilut_fact(thres,i,nrmi,row,heap,d,uja,uirp,uval,nidx,idxs,info) use psb_sparse_mod implicit none ! Arguments type(psb_int_heap), intent(inout) :: heap integer, intent(in) :: i integer, intent(inout) :: nidx,info real(psb_spk_), intent(in) :: thres,nrmi integer, allocatable, intent(inout) :: idxs(:) integer, intent(inout) :: uja(:),uirp(:) real(psb_spk_), intent(inout) :: row(:), uval(:),d(:) ! Local Variables integer :: k,j,jj,lastk,iret real(psb_spk_) :: rwk info = psb_success_ call psb_ensure_size(200,idxs,info) if (info /= psb_success_) return nidx = 0 lastk = -1 ! ! Do while there are indices to be processed ! do call psb_heap_get_first(k,heap,iret) if (iret < 0) exit ! ! An index may have been put on the heap more than once. ! if (k == lastk) cycle lastk = k lowert: if (k nidx) exit if (idxs(idxp) >= i) exit widx = idxs(idxp) witem = row(widx) ! ! Dropping rule based on the 2-norm ! if (abs(witem) < thres*nrmi) cycle nz = nz + 1 xw(nz) = witem xwid(nz) = widx call psb_insert_heap(witem,widx,heap,info) if (info /= psb_success_) then info=psb_err_from_subroutine_ call psb_errpush(info,name,a_err='psb_insert_heap') goto 9999 end if end do ! ! Now we have to take out the first nlw+fill_in entries ! if (nz <= nlw+fill_in) then ! ! Just copy everything from xw, and it is already ordered ! else nz = nlw+fill_in do k=1,nz call psb_heap_get_first(witem,widx,heap,info) if (info /= psb_success_) then info=psb_err_from_subroutine_ call psb_errpush(info,name,a_err='psb_heap_get_first') goto 9999 end if xw(k) = witem xwid(k) = widx end do end if ! ! Now put things back into ascending column order ! call psb_msort(xwid(1:nz),indx(1:nz),dir=psb_sort_up_) ! ! Copy out the lower part of the row ! do k=1,nz l1 = l1 + 1 if (size(lval) < l1) then ! ! Figure out a good reallocation size! ! isz = (max((l1/i)*m,int(1.2*l1),l1+100)) call psb_realloc(isz,lval,info) if (info == psb_success_) call psb_realloc(isz,lja,info) if (info /= psb_success_) then info=psb_err_from_subroutine_ call psb_errpush(info,name,a_err='Allocate') goto 9999 end if end if lja(l1) = xwid(k) lval(l1) = xw(indx(k)) end do ! ! Make sure idxp points to the diagonal entry ! if (idxp <= size(idxs)) then if (idxs(idxp) < i) then do idxp = idxp + 1 if (idxp > nidx) exit if (idxs(idxp) >= i) exit end do end if end if if (idxp > size(idxs)) then !!$ write(0,*) 'Warning: missing diagonal element in the row ' else if (idxs(idxp) > i) then !!$ write(0,*) 'Warning: missing diagonal element in the row ' else if (idxs(idxp) /= i) then !!$ write(0,*) 'Warning: impossible error: diagonal has vanished' else ! ! Copy the diagonal entry ! widx = idxs(idxp) witem = row(widx) d(i) = witem if (abs(d(i)) < s_epstol) then ! ! Too small pivot: unstable factorization ! info = psb_err_pivot_too_small_ int_err(1) = i write(ch_err,'(g20.10)') d(i) call psb_errpush(info,name,i_err=int_err,a_err=ch_err) goto 9999 else ! ! Compute 1/pivot ! d(i) = sone/d(i) end if end if end if ! ! Now the upper part ! call psb_init_heap(heap,info,dir=psb_asort_down_) if (info /= psb_success_) then info=psb_err_from_subroutine_ call psb_errpush(info,name,a_err='psb_init_heap') goto 9999 end if nz = 0 do idxp = idxp + 1 if (idxp > nidx) exit widx = idxs(idxp) if (widx <= i) then !!$ write(0,*) 'Warning: lower triangle in upper copy',widx,i,idxp,idxs(idxp) cycle end if if (widx > m) then !!$ write(0,*) 'Warning: impossible value',widx,i,idxp,idxs(idxp) cycle end if witem = row(widx) ! ! Dropping rule based on the 2-norm. But keep the jmaxup-th entry anyway. ! if ((widx /= jmaxup) .and. (abs(witem) < thres*nrmi)) then cycle end if nz = nz + 1 xw(nz) = witem xwid(nz) = widx call psb_insert_heap(witem,widx,heap,info) if (info /= psb_success_) then info=psb_err_from_subroutine_ call psb_errpush(info,name,a_err='psb_insert_heap') goto 9999 end if end do ! ! Now we have to take out the first nup-fill_in entries. But make sure ! we include entry jmaxup. ! if (nz <= nup+fill_in) then ! ! Just copy everything from xw ! fndmaxup=.true. else fndmaxup = .false. nz = nup+fill_in do k=1,nz call psb_heap_get_first(witem,widx,heap,info) xw(k) = witem xwid(k) = widx if (widx == jmaxup) fndmaxup=.true. end do end if if ((i