!!$ !!$ !!$ MLD2P4 version 2.0 !!$ MultiLevel Domain Decomposition Parallel Preconditioners Package !!$ based on PSBLAS (Parallel Sparse BLAS version 3.0) !!$ !!$ (C) Copyright 2008,2009,2010 !!$ !!$ Salvatore Filippone University of Rome Tor Vergata !!$ Alfredo Buttari CNRS-IRIT, Toulouse !!$ Pasqua D'Ambra ICAR-CNR, Naples !!$ Daniela di Serafino Second University of Naples !!$ !!$ Redistribution and use in source and binary forms, with or without !!$ modification, are permitted provided that the following conditions !!$ are met: !!$ 1. Redistributions of source code must retain the above copyright !!$ notice, this list of conditions and the following disclaimer. !!$ 2. Redistributions in binary form must reproduce the above copyright !!$ notice, this list of conditions, and the following disclaimer in the !!$ documentation and/or other materials provided with the distribution. !!$ 3. The name of the MLD2P4 group or the names of its contributors may !!$ not be used to endorse or promote products derived from this !!$ software without specific written permission. !!$ !!$ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS !!$ ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED !!$ TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR !!$ PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE MLD2P4 GROUP OR ITS CONTRIBUTORS !!$ BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR !!$ CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF !!$ SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS !!$ INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN !!$ CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) !!$ ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE !!$ POSSIBILITY OF SUCH DAMAGE. !!$ !!$ ! File: mld_dsp_renum.f90 ! ! Subroutine: mld_dsp_renum ! Version: real ! Contains: gps_reduction ! ! This routine reorders the rows and the columns of the local part of a sparse ! distributed matrix, according to one of the following criteria: ! 1. the numbering of the global column indices, ! 2. the Gibbs-Poole-Stockmeyer (GPS) band reduction algorithm. ! NOTE: the GPS algorithm is disabled for the time being (see mld_prec_type.f90). ! ! The matrix to be reordered is stored into a and blck, as specified in the ! description of the arguments below. ! ! If required by the user (p%iprcparm(mld_sub_ren_) /= 0), the routine is ! used by mld_fact_bld in building the block-Jacobi and Additive Schwarz ! 'base preconditioners' corresponding to any level of a multilevel ! preconditioner. ! ! ! Arguments: ! a - type(psb_dspmat_type), input. ! The sparse matrix structure containing the 'original' local ! part of the matrix to be reordered, i.e. the rows of the matrix ! held by the calling process according to the initial data ! distribution. ! blck - type(psb_dspmat_type), input. ! The sparse matrix structure containing the remote rows of the ! matrix to be reordered, that have been retrieved by mld_as_bld ! to build an Additive Schwarz base preconditioner with overlap ! greater than 0.If the overlap is 0, then blck does not contain ! any row. ! p - type(mld_dbaseprec_type), input/output. ! The base preconditioner data structure containing the local ! part of the base preconditioner to be built. In input it ! contains information on the type of reordering to be applied ! and on the matrix to be reordered. In output it contains ! information on the reordering applied. ! atmp - type(psb_dspmat_type), output. ! The sparse matrix structure containing the whole local reordered ! matrix. ! info - integer, output. ! Error code. ! subroutine mld_dsp_renum(a,blck,p,atmp,info) use psb_sparse_mod use mld_inner_mod, mld_protect_name => mld_dsp_renum implicit none ! Arguments type(psb_d_sparse_mat), intent(in) :: a,blck type(psb_d_sparse_mat), intent(out) :: atmp type(mld_dbaseprec_type), intent(inout) :: p integer, intent(out) :: info ! Local variables character(len=20) :: name, ch_err integer :: nztota, nztotb, nztmp, nzt2, nnr, i,k, ma, mb integer, allocatable :: itmp(:), itmp2(:) integer :: ictxt,np,me, err_act type(psb_d_coo_sparse_mat) :: cootmp, cootmp2 type(psb_d_csr_sparse_mat) :: csrtmp real(psb_dpk_) :: t3,t4 if (psb_get_errstatus().ne.0) return info=psb_success_ name='mld_dsp_renum' call psb_erractionsave(err_act) ictxt=psb_cd_get_context(p%desc_data) call psb_info(ictxt, me, np) ! ! NOTE: the matrix to be reordered is converted into the COO format. ! If necessary it is converted from the COO to the CSR format. ! The output matrix is in COO format. ! ! ! Convert a into the COO format and extend it up to a%m+blck%m rows ! by adding null rows. The converted extended matrix is stored in atmp. ! nztota=a%get_nzeros() nztotb=blck%get_nzeros() ma = a%get_nrows() mb = blck%get_nrows() if (p%iprcparm(mld_sub_ren_) == mld_renum_glb_) then ! ! Remember: we have switched IA1=COLS and IA2=ROWS. ! Now identify the set of distinct local column indices. ! nnr = psb_cd_get_local_rows(p%desc_data) allocate(p%perm(nnr),p%invperm(nnr),itmp2(nnr),stat=info) if (info /= psb_success_) then call psb_errpush(psb_err_from_subroutine_,name,a_err='Allocate') goto 9999 end if do i=1, nnr itmp2(i) = i end do call psb_loc_to_glob(itmp2(1:nnr),p%desc_data,info,iact='I') ! ! Compute reordering. We want new(i) = old(perm(i)). ! call psb_msort(itmp2(1:nnr),ix=p%perm) ! ! Compute the inverse of the permutation stored in perm ! do k=1, nnr p%invperm(p%perm(k)) = k enddo t3 = psb_wtime() else if (p%iprcparm(mld_sub_ren_) == mld_renum_gps_) then ! ! This is a renumbering with Gibbs-Poole-Stockmeyer ! band reduction. Switched off for now. To be fixed, ! gps_reduction should get p%perm. ! ! ! Convert atmp into the CSR format ! call a%cscnv(atmp,info,type='coo',dupl=psb_dupl_add_) call psb_rwextd(ma+mb,atmp,info,blck) call atmp%mv_to(csrtmp) nztmp = csrtmp%get_nzeros() ! ! Realloc the permutation arrays ! call psb_realloc(csrtmp%get_nrows(),p%perm,info) if(info /= psb_success_) then info=psb_err_from_subroutine_ ch_err='psb_realloc' call psb_errpush(info,name,a_err=ch_err) goto 9999 end if call psb_realloc(csrtmp%get_nrows(),p%invperm,info) if(info /= psb_success_) then info=psb_err_from_subroutine_ ch_err='psb_realloc' call psb_errpush(info,name,a_err=ch_err) goto 9999 end if allocate(itmp(max(8,csrtmp%get_nrows()+2,nztmp+2)),stat=info) if (info /= psb_success_) then call psb_errpush(psb_err_from_subroutine_,name,a_err='Allocate') goto 9999 end if itmp(1:8) = 0 ! ! Renumber rows and columns according to the GPS algorithm ! call gps_reduction(csrtmp%get_nrows(),csrtmp%irp,csrtmp%ja,p%perm,p%invperm,info) if(info /= psb_success_) then info=psb_err_from_subroutine_ ch_err='gps_reduction' call psb_errpush(info,name,a_err=ch_err) goto 9999 end if ! ! Compute the inverse permutation ! do k=1, csrtmp%get_nrows() p%invperm(p%perm(k)) = k enddo t3 = psb_wtime() end if ! ! Rebuild atmp with the new numbering (COO format) ! call a%cp_to(cootmp) nztmp=cootmp%get_nzeros() do i=1,nztmp cootmp%ia(i) = p%perm(cootmp%ia(i)) cootmp%ja(i) = p%invperm(cootmp%ja(i)) end do call blck%cp_to(cootmp2) nzt2 = cootmp2%get_nzeros() call psb_ensure_size(nztmp+nzt2,cootmp%ia,info) call psb_ensure_size(nztmp+nzt2,cootmp%ja,info) call psb_ensure_size(nztmp+nzt2,cootmp%val,info) do i=1,nzt2 cootmp%ia(nztmp+i) = p%perm(cootmp2%ia(i)) cootmp%ja(nztmp+i) = p%invperm(cootmp2%ja(i)) cootmp%val(nztmp+i) = (cootmp2%val(i)) end do call cootmp2%free() call cootmp%set_nzeros(nztmp+nzt2) call cootmp%set_dupl(psb_dupl_add_) call cootmp%fix(info) call atmp%mv_from(cootmp) if (info /= psb_success_) then call psb_errpush(psb_err_from_subroutine_,name,a_err='psb_fixcoo') goto 9999 end if t4 = psb_wtime() call psb_erractionrestore(err_act) return 9999 continue call psb_erractionrestore(err_act) if (err_act.eq.psb_act_abort_) then call psb_error() return end if return contains ! ! Subroutine: gps_reduction ! Note: internal subroutine of mld_dsp_renum ! ! Compute a renumbering of the row and column indices of a sparse matrix ! according to the Gibbs-Poole-Stockmeyer band reduction algorithm. The ! matrix is stored in CSR format. ! ! This routine has been obtained by adapting ACM TOMS Algorithm 582. ! ! ! Arguments: ! m - integer, ... ! The number of rows of the matrix to which the renumbering ! is applied. ! ia - integer, dimension(:), ... ! The indices identifying the first nonzero entry of each row ! of the matrix, according to the CSR storage format. ! ja - integer, dimension(:), ... ! The column indices of the nonzero entries of the matrix, ! according to the CSR storage format. ! perm - integer, dimension(:), ... ! The row/column index permutation corresponding to the ! renumbering. ! iperm - integer, dimension(:),... ! The inverse of the row/column permutation stored in perm. ! info - integer, output. ! Error code ! subroutine gps_reduction(m,ia,ja,perm,iperm,info) ! Arguments integer :: m integer,dimension(:) :: ia,ja,perm,iperm integer, intent(out) :: info ! Local variables integer :: i,j,dgConn,Npnt integer :: n,idpth,ideg,ibw2,ipf2 integer,dimension(:,:),allocatable::NDstk integer,dimension(:),allocatable::iOld,renum,ndeg,lvl,lvls1,lvls2,ccstor character(len=20) :: name if(psb_get_errstatus().ne.0) return info=psb_success_ name='gps_reduction' call psb_erractionsave(err_act) ! Compute the maximum connectivity degree npnt = m dgConn=0 do i=1,m dgconn = max(dgconn,(ia(i+1)-ia(i))) enddo ! The maximum connectivity value is dgConn n=Npnt ! Max number of rows iDeg=dgConn ! Max connectivity ! iDpth= ! Number of level (initialization not needed) allocate(NDstk(Npnt,dgConn),stat=info) if (info /= psb_success_) then info=psb_err_alloc_dealloc_ call psb_errpush(info,name) goto 9999 endif allocate(iOld(Npnt),renum(Npnt+1),ndeg(Npnt),lvl(Npnt),lvls1(Npnt),& &lvls2(Npnt),ccstor(Npnt),stat=info) if (info /= psb_success_) then info=psb_err_alloc_dealloc_ call psb_errpush(info,name) goto 9999 endif ! Prepare the matrix graph Ndstk(:,:)=0 do i=1,Npnt k=0 do j = ia(i),ia(i+1) - 1 if ((1<=ja(j)).and.( ja( j ) /= i ).and.(ja(j)<=npnt)) then k = k+1 Ndstk(i,k)=ja(j) endif enddo ndeg(i)=k enddo ! Numbering do i=1,Npnt iOld(i)=i enddo ! Call gps_reduce call psb_gps_reduce(Ndstk,Npnt,iOld,renum,ndeg,lvl,lvls1, lvls2,ccstor,& & ibw2,ipf2,n,idpth,ideg) ! Build permutation vector perm(1:Npnt)=renum(1:Npnt) !Build inverse permutation vector do i=1,Npnt iperm(perm(i))=i enddo ! Deallocate memory deallocate(NDstk,iOld,renum,ndeg,lvl,lvls1,lvls2,ccstor) call psb_erractionrestore(err_act) return 9999 continue call psb_erractionrestore(err_act) if (err_act.eq.psb_act_abort_) then call psb_error() return end if return end subroutine gps_reduction end subroutine mld_dsp_renum