Next: About this document ...
Up: userhtml
Previous: License
Contents
-
- 1
-
M. Brezina, P. Vanek,
A Black-Box Iterative Solver Based on a Two-Level Schwarz Method,
Computing, 63, 1999, 233-263.
- 2
-
A. Buttari, P. D'Ambra, D. di Serafino, S. Filippone,
Extending PSBLAS to Build Parallel Schwarz Preconditioners,
in , J. Dongarra, K. Madsen, J. Wasniewski, editors,
Proceedings of PARA 04 Workshop on State of the Art
in Scientific Computing, Lecture Notes in Computer Science,
Springer, 2005, 593-602.
- 3
-
A. Buttari, P. D'Ambra, D. di Serafino, S. Filippone,
2LEV-D2P4: a package of high-performance preconditioners
for scientific and engineering applications,
Applicable Algebra in Engineering, Communications and Computing,
18, 3, 2007, 223-239.
- 4
- P. D'Ambra, S. Filippone, D. di Serafino,
On the Development of PSBLAS-based Parallel Two-level Schwarz Preconditioners,
Applied Numerical Mathematics, Elsevier Science,
57, 11-12, 2007, 1181-1196.
- 5
-
X. C. Cai, M. Sarkis,
A Restricted Additive Schwarz Preconditioner for General Sparse Linear Systems,
SIAM Journal on Scientific Computing, 21, 2, 1999, 792-797.
- 6
-
X. C. Cai, O. B. Widlund,
Domain Decomposition Algorithms for Indefinite Elliptic Problems,
SIAM Journal on Scientific and Statistical Computing, 13, 1, 1992, 243-258.
- 7
-
T. Chan and T. Mathew,
Domain Decomposition Algorithms,
in A. Iserles, editor, Acta Numerica 1994, 61-143.
Cambridge University Press.
- 8
-
P. D'Ambra, D. di Serafino, S. Filippone,
MLD2P4: a Package of Parallel Multilevel
Algebraic Domain Decomposition Preconditioners
in Fortran 95, ACM Trans. Math. Softw., 37(3), 2010.
- 9
-
T.A. Davis,
Algorithm 832: UMFPACK - an Unsymmetric-pattern Multifrontal
Method with a Column Pre-ordering Strategy,
ACM Transactions on Mathematical Software, 30, 2004, 196-199.
(See also http://www.cise.ufl.edu/ davis/)
- 10
-
P.R. Amestoy, C. Ashcraft, O. Boiteau, A. Buttari, J. L'Excellent, C. Weisbecker
Improving multifrontal methods by means of block low-rank representations,
SIAM SISC, volume 37, number 3, pages A1452-A1474.
(See also http://mumps.enseeiht.fr)
- 11
-
J.W. Demmel, S.C. Eisenstat, J.R. Gilbert, X.S. Li and J.W.H. Liu,
A supernodal approach to sparse partial pivoting,
SIAM Journal on Matrix Analysis and Applications, 20, 3, 1999, 720-755.
- 12
-
J. J. Dongarra, J. Du Croz, I. S. Duff, S. Hammarling,
A set of Level 3 Basic Linear Algebra Subprograms,
ACM Transactions on Mathematical Software, 16, 1990, 1-17.
- 13
-
J. J. Dongarra, J. Du Croz, S. Hammarling, R. J. Hanson,
An extended set of FORTRAN Basic Linear Algebra Subprograms,
ACM Transactions on Mathematical Software, 14, 1988, 1-17.
- 14
-
J. J. Dongarra and R. C. Whaley,
A User's Guide to the BLACS v. 1.1,
Lapack Working Note 94, Tech. Rep. UT-CS-95-281, University of
Tennessee, March 1995 (updated May 1997).
- 15
-
E. Efstathiou, J. G. Gander,
Why Restricted Additive Schwarz Converges Faster than Additive Schwarz,
BIT Numerical Mathematics, 43, 2003, 945-959.
- 16
-
S. Filippone, A. Buttari,
PSBLAS-3.0 User's Guide. A Reference Guide for the Parallel Sparse BLAS Library, 2012,
available from http://www.ce.uniroma2.it/psblas/.
- 17
-
Salvatore Filippone and Alfredo Buttari.
Object-Oriented Techniques for Sparse Matrix Computations in Fortran
2003.
ACM Trans. on Math Software, 38(4), 2012.
- 18
-
S. Filippone, M. Colajanni,
PSBLAS: A Library for Parallel Linear Algebra
Computation on Sparse Matrices,
ACM Transactions on Mathematical Software, 26, 4, 2000, 527-550.
- 19
-
W. Gropp, S. Huss-Lederman, A. Lumsdaine, E. Lusk, B. Nitzberg, W. Saphir, M. Snir,
MPI: The Complete Reference. Volume 2 - The MPI-2 Extensions,
MIT Press, 1998.
- 20
-
C. L. Lawson, R. J. Hanson, D. Kincaid, F. T. Krogh,
Basic Linear Algebra Subprograms for FORTRAN usage,
ACM Transactions on Mathematical Software, 5, 1979, 308-323.
- 21
-
X. S. Li, J. W. Demmel, SuperLU_DIST: A Scalable Distributed-memory
Sparse Direct Solver for Unsymmetric Linear Systems,
ACM Transactions on Mathematical Software, 29, 2, 2003, 110-140.
- 22
-
Y. Saad,
Iterative methods for sparse linear systems, 2nd edition,
SIAM, 2003
- 23
-
B. Smith, P. Bjorstad, W. Gropp,
Domain Decomposition: Parallel Multilevel Methods for Elliptic
Partial Differential Equations,
Cambridge University Press, 1996.
- 24
-
M. Snir, S. Otto, S. Huss-Lederman, D. Walker, J. Dongarra,
MPI: The Complete Reference. Volume 1 - The MPI Core, second edition,
MIT Press, 1998.
- 25
-
K. Stüben,
An Introduction to Algebraic Multigrid,
in A. Schüller, U. Trottenberg, C. Oosterlee, Multigrid,
Academic Press, 2001.
- 26
-
R. S. Tuminaro, C. Tong,
Parallel Smoothed Aggregation Multigrid: Aggregation Strategies on Massively Parallel Machines,
in J. Donnelley, editor, Proceedings of SuperComputing 2000, Dallas, 2000.
- 27
-
P. Vanek, J. Mandel and M. Brezina,
Algebraic Multigrid by Smoothed Aggregation for Second and Fourth Order Elliptic Problems,
Computing, 56, 1996, 179-196.