!!$ !!$ !!$ MLD2P4 version 2.0 !!$ MultiLevel Domain Decomposition Parallel Preconditioners Package !!$ based on PSBLAS (Parallel Sparse BLAS version 3.0) !!$ !!$ (C) Copyright 2008,2009,2010 !!$ !!$ Salvatore Filippone University of Rome Tor Vergata !!$ Alfredo Buttari CNRS-IRIT, Toulouse !!$ Pasqua D'Ambra ICAR-CNR, Naples !!$ Daniela di Serafino Second University of Naples !!$ !!$ Redistribution and use in source and binary forms, with or without !!$ modification, are permitted provided that the following conditions !!$ are met: !!$ 1. Redistributions of source code must retain the above copyright !!$ notice, this list of conditions and the following disclaimer. !!$ 2. Redistributions in binary form must reproduce the above copyright !!$ notice, this list of conditions, and the following disclaimer in the !!$ documentation and/or other materials provided with the distribution. !!$ 3. The name of the MLD2P4 group or the names of its contributors may !!$ not be used to endorse or promote products derived from this !!$ software without specific written permission. !!$ !!$ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS !!$ ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED !!$ TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR !!$ PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE MLD2P4 GROUP OR ITS CONTRIBUTORS !!$ BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR !!$ CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF !!$ SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS !!$ INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN !!$ CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) !!$ ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE !!$ POSSIBILITY OF SUCH DAMAGE. !!$ !!$ ! File: mld_smlprec_aply.f90 ! ! Subroutine: mld_smlprec_aply ! Version: real ! ! This routine computes ! ! Y = beta*Y + alpha*op(M^(-1))*X, ! where ! - M is a multilevel domain decomposition (Schwarz) preconditioner associated ! to a certain matrix A and stored in p, ! - op(M^(-1)) is M^(-1) or its transpose, according to the value of trans, ! - X and Y are vectors, ! - alpha and beta are scalars. ! ! For each level we have as many submatrices as processes (except for the coarsest ! level where we might have a replicated index space) and each process takes care ! of one submatrix. ! ! A multilevel preconditioner is regarded as an array of 'one-level' data structures, ! each containing the part of the preconditioner associated to a certain level ! (for more details see the description of mld_Tonelev_type in mld_prec_type.f90). ! For each level ilev, the 'base preconditioner' K(ilev) is stored in ! p%precv(ilev)%prec ! and is associated to a matrix A(ilev), obtained by 'tranferring' the original ! matrix A (i.e. the matrix to be preconditioned) to the level ilev, through smoothed ! aggregation. ! ! The levels are numbered in increasing order starting from the finest one, i.e. ! level 1 is the finest level and A(1) is the matrix A. ! ! For a general description of (parallel) multilevel preconditioners see ! - B.F. Smith, P.E. Bjorstad & W.D. Gropp, ! Domain decomposition: parallel multilevel methods for elliptic partial ! differential equations, ! Cambridge University Press, 1996. ! - K. Stuben, ! Algebraic Multigrid (AMG): An Introduction with Applications, ! GMD Report N. 70, 1999. ! ! ! Arguments: ! alpha - real(psb_spk_), input. ! The scalar alpha. ! p - type(mld_sprec_type), input. ! The multilevel preconditioner data structure containing the ! local part of the preconditioner to be applied. ! Note that nlev = size(p%precv) = number of levels. ! p%precv(ilev)%prec - type(psb_sbaseprec_type) ! The 'base preconditioner' for the current level ! p%precv(ilev)%ac - type(psb_sspmat_type) ! The local part of the matrix A(ilev). ! p%precv(ilev)%desc_ac - type(psb_desc_type). ! The communication descriptor associated to the sparse ! matrix A(ilev) ! p%precv(ilev)%map - type(psb_inter_desc_type) ! Stores the linear operators mapping level (ilev-1) ! to (ilev) and vice versa. These are the restriction ! and prolongation operators described in the sequel. ! p%precv(ilev)%iprcparm - integer, dimension(:), allocatable. ! The integer parameters defining the multilevel ! strategy ! p%precv(ilev)%rprcparm - real(psb_spk_), dimension(:), allocatable. ! The real parameters defining the multilevel strategy ! p%precv(ilev)%mlia - integer, dimension(:), allocatable. ! The aggregation map (ilev-1) --> (ilev). ! p%precv(ilev)%nlaggr - integer, dimension(:), allocatable. ! The number of aggregates (rows of A(ilev)) on the ! various processes. ! p%precv(ilev)%base_a - type(psb_sspmat_type), pointer. ! Pointer (really a pointer!) to the base matrix of ! the current level, i.e. the local part of A(ilev); ! so we have a unified treatment of residuals. We ! need this to avoid passing explicitly the matrix ! A(ilev) to the routine which applies the ! preconditioner. ! p%precv(ilev)%base_desc - type(psb_desc_type), pointer. ! Pointer to the communication descriptor associated ! to the sparse matrix pointed by base_a. ! ! x - real(psb_spk_), dimension(:), input. ! The local part of the vector X. ! beta - real(psb_spk_), input. ! The scalar beta. ! y - real(psb_spk_), dimension(:), input/output. ! The local part of the vector Y. ! desc_data - type(psb_desc_type), input. ! The communication descriptor associated to the matrix to be ! preconditioned. ! trans - character, optional. ! If trans='N','n' then op(M^(-1)) = M^(-1); ! if trans='T','t' then op(M^(-1)) = M^(-T) (transpose of M^(-1)). ! work - real(psb_spk_), dimension (:), optional, target. ! Workspace. Its size must be at least 4*psb_cd_get_local_cols(desc_data). ! info - integer, output. ! Error code. ! ! Note that when the LU factorization of the matrix A(ilev) is computed instead of ! the ILU one, by using UMFPACK or SuperLU, the corresponding L and U factors ! are stored in data structures provided by UMFPACK or SuperLU and pointed by ! p%precv(ilev)%prec%iprcparm(mld_umf_ptr) or p%precv(ilev)%prec%iprcparm(mld_slu_ptr), ! respectively. ! ! This routine is formulated in a recursive way, so it is very compact. ! In the original code the recursive formulation was explicitly unrolled. ! The description of the various alternatives is given below in the explicit ! formulation, hopefully it will be clear enough when related to the ! recursive formulation. ! ! This routine computes ! Y = beta*Y + alpha*op(M^(-1))*X, ! where ! - M is a multilevel domain decomposition (Schwarz) preconditioner ! associated to a certain matrix A and stored in p, ! - op(M^(-1)) is M^(-1) or its transpose, according to the value of trans, ! - X and Y are vectors, ! - alpha and beta are scalars. ! ! For each level we have as many submatrices as processes (except for the coarsest ! level where we might have a replicated index space) and each process takes care ! of one submatrix. ! ! The multilevel preconditioner is regarded as an array of 'one-level' data structures, ! each containing the part of the preconditioner associated to a certain level ! (for more details see the description of mld_Tonelev_type in mld_prec_type.f90). ! For each level ilev, the 'base preconditioner' K(ilev) is stored in ! p%precv(ilev)%prec ! and is associated to a matrix A(ilev), obtained by 'tranferring' the original ! matrix A (i.e. the matrix to be preconditioned) to the level ilev, through smoothed ! aggregation. ! The levels are numbered in increasing order starting from the finest one, i.e. ! level 1 is the finest level and A(1) is the matrix A. ! ! ! Additive multilevel ! This is additive both within the levels and among levels. ! ! For details on the additive multilevel Schwarz preconditioner, see ! Algorithm 3.1.1 in the book: ! B.F. Smith, P.E. Bjorstad & W.D. Gropp, ! Domain decomposition: parallel multilevel methods for elliptic partial ! differential equations, Cambridge University Press, 1996. ! ! (P(ilev) denotes the smoothed prolongator from level ilev to level ! ilev-1, while PT(ilev) denotes its transpose, i.e. the corresponding ! restriction operator from level ilev-1 to level ilev). ! ! 0. Transfer the outer vector Xest to x(1) (inner X at level 1) ! ! 1. If ilev > 1 Transfer x(ilev-1) to the current level: ! x(ilev) = PT(ilev)*x(ilev-1) ! ! 2. Apply the base preconditioner at the current level: ! ! The sum over the subdomains is carried out in the ! ! application of K(ilev) ! y(ilev) = (K(ilev)^(-1))*x(ilev) ! ! 3. If ilev < nlevel ! a. Call recursively itself ! b. Transfer y(ilev+1) to the current level: ! y(ilev) = y(ilev) + P(ilev+1)*y(ilev+1) ! ! 4. if ilev == 1 Transfer the inner y to the external: ! Yext = beta*Yext + alpha*y(1) ! ! ! ! Hybrid multiplicative---pre-smoothing ! ! The preconditioner M is hybrid in the sense that it is multiplicative through the ! levels and additive inside a level. ! ! For details on the pre-smoothed hybrid multiplicative multilevel Schwarz ! preconditioner, see Algorithm 3.2.1 in the book: ! B.F. Smith, P.E. Bjorstad & W.D. Gropp, ! Domain decomposition: parallel multilevel methods for elliptic partial ! differential equations, Cambridge University Press, 1996. ! ! ! 0. Transfer the outer vector Xest to x(1) (inner X at level 1) ! ! 1. If ilev >1 Transfer x(ilev-1) to the current level: ! x(ilev) = PT(ilev)*x(ilev-1) ! ! 2. Apply the base preconditioner at the current level: ! ! The sum over the subdomains is carried out in the ! ! application of K(ilev). ! y(ilev) = (K(ilev)^(-1))*x(ilev) ! ! 3. If ilev < nlevel ! a. Compute the residual: ! r(ilev) = x(ilev) - A(ilev)*y(ilev) ! b. Call recursively itself passing ! r(ilev) for transfer to the next level ! (r(ilev) matches x(ilev-1) in step 1) ! c. Transfer y(ilev+1) to the current level: ! y(ilev) = y(ilev) + P(ilev+1)*y(ilev+1) ! ! 4. if ilev == 1 Transfer the inner y to the external: ! Yext = beta*Yext + alpha*y(1) ! ! ! ! Hybrid multiplicative, post-smoothing variant ! ! 0. Transfer the outer vector Xest to x(1) (inner X at level 1) ! ! 1. If ilev > 1 Transfer x(ilev-1) to the current level: ! x(ilev) = PT(ilev)*x(ilev-1) ! ! 2. If ilev < nlev ! a. Call recursively itself passing ! x(ilev) for transfer to the next level ! b. Transfer y(ilev+1) to the current level: ! y(ilev) = P(ilev+1)*y(ilev+1) ! c. Compute the residual: ! x(ilev) = x(ilev) - A(ilev)*y(ilev) ! d. Apply the base preconditioner to the residual at the current level: ! ! The sum over the subdomains is carried out in the ! ! application of K(ilev) ! y(ilev) = y(ilev) + (K(ilev)^(-1))*x(ilev) ! Else ! Apply the base preconditioner to the residual at the current level: ! ! The sum over the subdomains is carried out in the ! ! application of K(ilev) ! y(ilev) = (K(ilev)^(-1))*x(ilev) ! ! 4. if ilev == 1 Transfer the inner Y to the external: ! Yext = beta*Yext + alpha*Y(1) ! ! ! ! Hybrid multiplicative, pre- and post-smoothing (two-side) variant ! ! For details on the symmetrized hybrid multiplicative multilevel Schwarz ! preconditioner, see Algorithm 3.2.2 in the book: ! B.F. Smith, P.E. Bjorstad & W.D. Gropp, ! Domain decomposition: parallel multilevel methods for elliptic partial ! differential equations, Cambridge University Press, 1996. ! ! ! 0. Transfer the outer vector Xest to x(1) (inner X at level 1) ! ! 1. If ilev > 1 Transfer x(ilev-1) to the current level: ! x(ilev) = PT(ilev)*x(ilev-1) ! ! 2. Apply the base preconditioner at the current level: ! ! The sum over the subdomains is carried out in the ! ! application of K(ilev) ! y(ilev) = (K(ilev)^(-1))*x(ilev) ! ! 3. If ilev < nlevel ! a. Compute the residual: ! r(ilev) = x(ilev) - A(ilev)*y(ilev) ! b. Call recursively itself passing ! r(ilev) for transfer to the next level ! (r(ilev) matches x(ilev-1) in step 1) ! c. Transfer y(ilev+1) to the current level: ! y(ilev) = y(ilev) + P(ilev+1)*y(ilev+1) ! d. Compute the residual: ! r(ilev) = x(ilev) - A(ilev)*y(ilev) ! e. Apply the base preconditioner at the current level to the residual: ! ! The sum over the subdomains is carried out in the ! ! application of K(ilev) ! y(ilev) = y(ilev) + (K(ilev)^(-1))*r(ilev) ! ! 5. if ilev == 1 Transfer the inner Y to the external: ! Yext = beta*Yext + alpha*Y(1) ! ! subroutine mld_smlprec_aply(alpha,p,x,beta,y,desc_data,trans,work,info) use psb_base_mod use mld_s_inner_mod, mld_protect_name => mld_smlprec_aply implicit none ! Arguments type(psb_desc_type),intent(in) :: desc_data type(mld_sprec_type), intent(in) :: p real(psb_spk_),intent(in) :: alpha,beta real(psb_spk_),intent(inout) :: x(:) real(psb_spk_),intent(inout) :: y(:) character, intent(in) :: trans real(psb_spk_),target :: work(:) integer, intent(out) :: info ! Local variables integer :: ictxt, np, me, err_act integer :: debug_level, debug_unit, nlev,nc2l,nr2l,level character(len=20) :: name character :: trans_ type psb_mlprec_wrk_type real(psb_spk_), allocatable :: tx(:), ty(:), x2l(:), y2l(:) end type psb_mlprec_wrk_type type(psb_mlprec_wrk_type), allocatable :: mlprec_wrk(:) name='mld_smlprec_aply' info = psb_success_ call psb_erractionsave(err_act) debug_unit = psb_get_debug_unit() debug_level = psb_get_debug_level() ictxt = psb_cd_get_context(desc_data) call psb_info(ictxt, me, np) if (debug_level >= psb_debug_inner_) & & write(debug_unit,*) me,' ',trim(name),& & ' Entry ', size(p%precv) trans_ = psb_toupper(trans) nlev = size(p%precv) allocate(mlprec_wrk(nlev),stat=info) if (info /= psb_success_) then call psb_errpush(psb_err_from_subroutine_,name,& & a_err='Allocate') goto 9999 end if level = 1 nc2l = psb_cd_get_local_cols(p%precv(level)%base_desc) nr2l = psb_cd_get_local_rows(p%precv(level)%base_desc) allocate(mlprec_wrk(level)%x2l(nc2l),mlprec_wrk(level)%y2l(nc2l),& & stat=info) if (info /= psb_success_) then info=psb_err_alloc_request_ call psb_errpush(info,name,i_err=(/size(x)+size(y),0,0,0,0/),& & a_err='real(psb_spk_)') goto 9999 end if mlprec_wrk(level)%x2l(:) = x(:) mlprec_wrk(level)%y2l(:) = szero call inner_ml_aply(level,p,mlprec_wrk,trans_,work,info) if (info /= psb_success_) then call psb_errpush(psb_err_internal_error_,name,& & a_err='Inner prec aply') goto 9999 end if call psb_geaxpby(alpha,mlprec_wrk(level)%y2l,beta,y,& & p%precv(level)%base_desc,info) if (info /= psb_success_) then call psb_errpush(psb_err_internal_error_,name,& & a_err='Error final update') goto 9999 end if call psb_erractionrestore(err_act) return 9999 continue call psb_erractionrestore(err_act) if (err_act.eq.psb_act_abort_) then call psb_error() return end if return contains recursive subroutine inner_ml_aply(level,p,mlprec_wrk,trans,work,info) implicit none ! Arguments integer :: level type(mld_sprec_type), intent(in) :: p type(psb_mlprec_wrk_type), intent(inout) :: mlprec_wrk(:) character, intent(in) :: trans real(psb_spk_),target :: work(:) integer, intent(out) :: info ! Local variables integer :: ictxt,np,me,i, nr2l,nc2l,err_act integer :: debug_level, debug_unit integer :: nlev, ilev, sweeps character(len=20) :: name name = 'inner_ml_aply' info = psb_success_ call psb_erractionsave(err_act) debug_unit = psb_get_debug_unit() debug_level = psb_get_debug_level() nlev = size(p%precv) if ((level < 1) .or. (level > nlev)) then call psb_errpush(psb_err_internal_error_,name,& & a_err='wrong call level to inner_ml') goto 9999 end if ictxt = psb_cd_get_context(p%precv(level)%base_desc) call psb_info(ictxt, me, np) if (level > 1) then nc2l = psb_cd_get_local_cols(p%precv(level)%base_desc) nr2l = psb_cd_get_local_rows(p%precv(level)%base_desc) allocate(mlprec_wrk(level)%x2l(nc2l),mlprec_wrk(level)%y2l(nc2l),& & stat=info) if (info /= psb_success_) then info=psb_err_alloc_request_ call psb_errpush(info,name,i_err=(/2*nc2l,0,0,0,0/),& & a_err='real(psb_spk_)') goto 9999 end if end if select case(p%precv(level)%parms%ml_type) case(mld_no_ml_) ! ! No preconditioning, should not really get here ! call psb_errpush(psb_err_internal_error_,name,& & a_err='mld_no_ml_ in mlprc_aply?') goto 9999 case(mld_add_ml_) ! ! Additive multilevel ! if (level > 1) then ! Apply the restriction call psb_map_X2Y(sone,mlprec_wrk(level-1)%x2l,& & szero,mlprec_wrk(level)%x2l,& & p%precv(level)%map,info,work=work) if (info /= psb_success_) then call psb_errpush(psb_err_internal_error_,name,& & a_err='Error during restriction') goto 9999 end if end if sweeps = p%precv(level)%parms%sweeps call p%precv(level)%sm%apply(sone,& & mlprec_wrk(level)%x2l,szero,mlprec_wrk(level)%y2l,& & p%precv(level)%base_desc, trans,& & sweeps,work,info) if (info /= psb_success_) goto 9999 if (level < nlev) then call inner_ml_aply(level+1,p,mlprec_wrk,trans,work,info) if (info /= psb_success_) goto 9999 ! ! Apply the prolongator ! call psb_map_Y2X(sone,mlprec_wrk(level+1)%y2l,& & sone,mlprec_wrk(level)%y2l,& & p%precv(level+1)%map,info,work=work) if (info /= psb_success_) goto 9999 end if case(mld_mult_ml_) ! ! Multiplicative multilevel (multiplicative among the levels, additive inside ! each level) ! ! Pre/post-smoothing versions. ! Note that the transpose switches pre <-> post. ! select case(p%precv(level)%parms%smoother_pos) case(mld_post_smooth_) select case (trans_) case('N') if (level > 1) then ! Apply the restriction call psb_map_X2Y(sone,mlprec_wrk(level-1)%x2l,& & szero,mlprec_wrk(level)%x2l,& & p%precv(level)%map,info,work=work) if (info /= psb_success_) then call psb_errpush(psb_err_internal_error_,name,& & a_err='Error during restriction') goto 9999 end if end if ! This is one step of post-smoothing if (level < nlev) then call inner_ml_aply(level+1,p,mlprec_wrk,trans,work,info) if (info /= psb_success_) goto 9999 ! ! Apply the prolongator ! call psb_map_Y2X(sone,mlprec_wrk(level+1)%y2l,& & szero,mlprec_wrk(level)%y2l,& & p%precv(level+1)%map,info,work=work) if (info /= psb_success_) goto 9999 ! ! Compute the residual ! call psb_spmm(-sone,p%precv(level)%base_a,mlprec_wrk(level)%y2l,& & sone,mlprec_wrk(level)%x2l,p%precv(level)%base_desc,info,& & work=work,trans=trans) if (info /= psb_success_) goto 9999 sweeps = p%precv(level)%parms%sweeps_post call p%precv(level)%sm%apply(sone,& & mlprec_wrk(level)%x2l,sone,mlprec_wrk(level)%y2l,& & p%precv(level)%base_desc, trans,& & sweeps,work,info) else sweeps = p%precv(level)%parms%sweeps call p%precv(level)%sm%apply(sone,& & mlprec_wrk(level)%x2l,szero,mlprec_wrk(level)%y2l,& & p%precv(level)%base_desc, trans,& & sweeps,work,info) end if case('T','C') ! Post-smoothing transpose is pre-smoothing if (level > 1) then ! Apply the restriction call psb_map_X2Y(sone,mlprec_wrk(level-1)%x2l,& & szero,mlprec_wrk(level)%x2l,& & p%precv(level)%map,info,work=work) if (info /= psb_success_) then call psb_errpush(psb_err_internal_error_,name,& & a_err='Error during restriction') goto 9999 end if end if ! ! Apply the base preconditioner ! if (level < nlev) then sweeps = p%precv(level)%parms%sweeps_post else sweeps = p%precv(level)%parms%sweeps end if call p%precv(level)%sm%apply(sone,& & mlprec_wrk(level)%x2l,szero,mlprec_wrk(level)%y2l,& & p%precv(level)%base_desc, trans,& & sweeps,work,info) if (info /= psb_success_) goto 9999 ! ! Compute the residual (at all levels but the coarsest one) ! if (level < nlev) then call psb_spmm(-sone,p%precv(level)%base_a,& & mlprec_wrk(level)%y2l,sone,mlprec_wrk(level)%x2l,& & p%precv(level)%base_desc,info,work=work,trans=trans) if (info /= psb_success_) goto 9999 call inner_ml_aply(level+1,p,mlprec_wrk,trans,work,info) if (info /= psb_success_) goto 9999 call psb_map_Y2X(sone,mlprec_wrk(level+1)%y2l,& & sone,mlprec_wrk(level)%y2l,& & p%precv(level+1)%map,info,work=work) if (info /= psb_success_) goto 9999 end if case default info = psb_err_internal_error_ call psb_errpush(info,name,a_err='invalid trans') goto 9999 end select case(mld_pre_smooth_) select case (trans_) case('N') ! One step of pre-smoothing if (level > 1) then ! Apply the restriction call psb_map_X2Y(sone,mlprec_wrk(level-1)%x2l,& & szero,mlprec_wrk(level)%x2l,& & p%precv(level)%map,info,work=work) if (info /= psb_success_) then call psb_errpush(psb_err_internal_error_,name,& & a_err='Error during restriction') goto 9999 end if end if ! ! Apply the base preconditioner ! if (level < nlev) then sweeps = p%precv(level)%parms%sweeps_pre else sweeps = p%precv(level)%parms%sweeps end if call p%precv(level)%sm%apply(sone,& & mlprec_wrk(level)%x2l,szero,mlprec_wrk(level)%y2l,& & p%precv(level)%base_desc, trans,& & sweeps,work,info) if (info /= psb_success_) goto 9999 ! ! Compute the residual (at all levels but the coarsest one) ! if (level < nlev) then call psb_spmm(-sone,p%precv(level)%base_a,& & mlprec_wrk(level)%y2l,sone,mlprec_wrk(level)%x2l,& & p%precv(level)%base_desc,info,work=work,trans=trans) if (info /= psb_success_) goto 9999 call inner_ml_aply(level+1,p,mlprec_wrk,trans,work,info) if (info /= psb_success_) goto 9999 call psb_map_Y2X(sone,mlprec_wrk(level+1)%y2l,& & sone,mlprec_wrk(level)%y2l,& & p%precv(level+1)%map,info,work=work) if (info /= psb_success_) goto 9999 end if case('T','C') ! pre-smooth transpose is post-smoothing if (level > 1) then ! Apply the restriction call psb_map_X2Y(sone,mlprec_wrk(level-1)%x2l,& & szero,mlprec_wrk(level)%x2l,& & p%precv(level)%map,info,work=work) if (info /= psb_success_) then call psb_errpush(psb_err_internal_error_,name,& & a_err='Error during restriction') goto 9999 end if end if if (level < nlev) then call inner_ml_aply(level+1,p,mlprec_wrk,trans,work,info) if (info /= psb_success_) goto 9999 ! ! Apply the prolongator ! call psb_map_Y2X(sone,mlprec_wrk(level+1)%y2l,& & szero,mlprec_wrk(level)%y2l,& & p%precv(level+1)%map,info,work=work) if (info /= psb_success_) goto 9999 ! ! Compute the residual ! call psb_spmm(-sone,p%precv(level)%base_a,mlprec_wrk(level)%y2l,& & sone,mlprec_wrk(level)%x2l,p%precv(level)%base_desc,info,& & work=work,trans=trans) if (info /= psb_success_) goto 9999 sweeps = p%precv(level)%parms%sweeps_pre call p%precv(level)%sm%apply(sone,& & mlprec_wrk(level)%x2l,sone,mlprec_wrk(level)%y2l,& & p%precv(level)%base_desc, trans,& & sweeps,work,info) else sweeps = p%precv(level)%parms%sweeps call p%precv(level)%sm%apply(sone,& & mlprec_wrk(level)%x2l,szero,mlprec_wrk(level)%y2l,& & p%precv(level)%base_desc, trans,& & sweeps,work,info) end if case default info = psb_err_internal_error_ call psb_errpush(info,name,a_err='invalid trans') goto 9999 end select case(mld_twoside_smooth_) nc2l = psb_cd_get_local_cols(p%precv(level)%base_desc) nr2l = psb_cd_get_local_rows(p%precv(level)%base_desc) allocate(mlprec_wrk(level)%ty(nc2l), mlprec_wrk(level)%tx(nc2l), stat=info) if (info /= psb_success_) then info=psb_err_alloc_request_ call psb_errpush(info,name,i_err=(/2*nc2l,0,0,0,0/),& & a_err='real(psb_spk_)') goto 9999 end if if (level > 1) then ! Apply the restriction call psb_map_X2Y(sone,mlprec_wrk(level-1)%ty,& & szero,mlprec_wrk(level)%x2l,& & p%precv(level)%map,info,work=work) if (info /= psb_success_) then call psb_errpush(psb_err_internal_error_,name,& & a_err='Error during restriction') goto 9999 end if end if call psb_geaxpby(sone,mlprec_wrk(level)%x2l,szero,& & mlprec_wrk(level)%tx,& & p%precv(level)%base_desc,info) ! ! Apply the base preconditioner ! if (level < nlev) then if (trans == 'N') then sweeps = p%precv(level)%parms%sweeps_pre else sweeps = p%precv(level)%parms%sweeps_post end if else sweeps = p%precv(level)%parms%sweeps end if if (info == psb_success_) call p%precv(level)%sm%apply(sone,& & mlprec_wrk(level)%x2l,szero,mlprec_wrk(level)%y2l,& & p%precv(level)%base_desc, trans,& & sweeps,work,info) ! ! Compute the residual (at all levels but the coarsest one) ! and call recursively ! if(level < nlev) then mlprec_wrk(level)%ty = mlprec_wrk(level)%x2l if (info == psb_success_) call psb_spmm(-sone,p%precv(level)%base_a,& & mlprec_wrk(level)%y2l,sone,mlprec_wrk(level)%ty,& & p%precv(level)%base_desc,info,work=work,trans=trans) call inner_ml_aply(level+1,p,mlprec_wrk,trans,work,info) ! ! Apply the prolongator ! call psb_map_Y2X(sone,mlprec_wrk(level+1)%y2l,& & sone,mlprec_wrk(level)%y2l,& & p%precv(level+1)%map,info,work=work) if (info /= psb_success_ ) then call psb_errpush(psb_err_internal_error_,name,& & a_err='Error during restriction') goto 9999 end if ! ! Compute the residual ! call psb_spmm(-sone,p%precv(level)%base_a,mlprec_wrk(level)%y2l,& & sone,mlprec_wrk(level)%tx,p%precv(level)%base_desc,info,& & work=work,trans=trans) ! ! Apply the base preconditioner ! if (trans == 'N') then sweeps = p%precv(level)%parms%sweeps_post else sweeps = p%precv(level)%parms%sweeps_pre end if if (info == psb_success_) call p%precv(level)%sm%apply(sone,& & mlprec_wrk(level)%tx,sone,mlprec_wrk(level)%y2l,& & p%precv(level)%base_desc, trans,& & sweeps,work,info) if (info /= psb_success_) then call psb_errpush(psb_err_internal_error_,name,& & a_err='Error: residual/baseprec_aply') goto 9999 end if endif case default info = psb_err_from_subroutine_ai_ call psb_errpush(info,name,a_err='invalid smooth_pos',& & i_Err=(/p%precv(level)%parms%smoother_pos,0,0,0,0/)) goto 9999 end select case default info = psb_err_from_subroutine_ai_ call psb_errpush(info,name,a_err='invalid mltype',& & i_Err=(/p%precv(level)%parms%ml_type,0,0,0,0/)) goto 9999 end select call psb_erractionrestore(err_act) return 9999 continue call psb_erractionrestore(err_act) if (err_act.eq.psb_act_abort_) then call psb_error() return end if return end subroutine inner_ml_aply end subroutine mld_smlprec_aply