MLD2P4
User’s and Reference Guide

A guide for the Multi-Level Domain Decomposition
Parallel Preconditioners Package based on PSBLAS

Pasqua D’Ambra
ICAR-CNR, Naples, Italy

Daniela di Serafino
Second University of Naples, Italy

Salvatore Filippone
University of Rome “Tor Vergata”, Italy

Software version: 1.0
June 24, 2008

Abstract

MLD2P4 (MuLTI-LEVEL DOMAIN DECOMPOSITION PARALLEL PRE-
CONDITIONERS PACKAGE BASED ON PSBLAS) is a package of parallel
algebraic multi-level preconditioners. It implements various versions of
one-level additive and of multi-level additive and hybrid Schwarz algo-
rithms. In the multi-level case, a purely algebraic approach is applied
to generate coarse-level corrections, so that no geometric background is
needed concerning the matrix to be preconditioned. The matrix is re-
quired to be square, real or complex, with a symmetric sparsity pattern

MLD2P4 has been designed to provide scalable and easy-to-use pre-
conditioners in the context of the PSBLAS (Parallel Sparse Basic Linear
Algebra Subprograms) computational framework and can be used in con-
juction with the Krylov solvers available in this framework. MLD2P4
enables the user to easily specify different aspects of a generic algebraic
multilevel Schwarz preconditioner, thus allowing to search for the “best”
preconditioner for the problem at hand. The package has been designed
employing object-oriented techniques, using Fortran 95 and MPI, with
interfaces to additional external libraries such as UMFPACK, SuperLLU
and SuperLU_Dist, that can be exploited in building multi-level precon-
ditioners.

This guide provides a brief description of the functionalities and the
user interface of MLD2P4.

i

Contents

1 General Overview 1
2 Notational Conventions 3
3 Code Distribution 4
4 Configuring and Building MLD2P4 5
5 Getting Started 6
5.1 Examples 7
6 User Interface 11
6.1 Subroutine mld_precinito 11
6.2 Subroutine mld_precset oL 12
6.3 Subroutine mld_precbld 0oL 17
6.4 Subroutine mld_precaply 18
6.5 Subroutine mld_precfree 18
6.6 Subroutine mld_precdescr 19

7 Error Handling 20

1 General Overview 1

1 General Overview

The MULTI-LEVEL DOMAIN DECOMPOSITION PARALLEL PRECONDITIONERS
PACKAGE BASED ON PSBLAS (MLD2P4) provides multi-level Schwarz pre-
conditioners [?], to be used in the iterative solutions of sparse linear systems:

Az = b, (1)

where A is a square, real or complex, sparse matrix with a symmetric sparsity
pattern. These preconditioners have the following general features:

e both additive and hybrid multilevel variants, i.e. multiplicative among the
levels and additive inside a level, are implemented; the basic additive
Schwarz preconditioners are obtained by considering only one level;

e a purely algebraic approach is used to generate a sequence of coarse-level
corrections to a basic preconditioner, without explicitly using any infor-
mation on the geometry of the original problem (e.g. the discretization
of a PDE). The smoothed aggregation technique is applied as algebraic
coarsening strategy [?, 7.

The package is written in Fortran 95, following an object-oriented approach
through the exploitation of features such as abstract data type creation, func-
tional overloading and dynamic memory management, while providing a smooth
path towards the integration in legacy application codes. The parallel imple-
mentation is based on a Single Program Multiple Data (SPMD) paradigm for
distributed-memory architectures. Single and double precision implementations
of MLLD2P4 are available for both the real and the complex case, that can be
used through a single interface. SALVATORE, funziona tutto?

MLD2P4 has been designed to implement scalable and easy-to-use multilevel
preconditioners in the context of the PSBLAS (Parallel Sparse BLAS) computa-
tional framework [10]. PSBLAS is a library originally developed to address the
parallel implementation of iterative solvers for sparse linear system, by provid-
ing basic linear algebra operators and data management facilities for distributed
sparse matrices; it also includes parallel Krylov solvers, built on the top of the
basic PSBLAS kernels. The preconditioners available in MLD2P4 can be used
with these Krylov solvers. The choice of PSBLAS has been mainly motivated by
the need of having a portable and efficient software infrastructure implementing
“de facto” standard parallel sparse linear algebra kernels, to pursue goals such
as performance, portability, modularity ed extensibility in the development of
the preconditioner package. On the other hand, the implementation of MLD2P4
has led to some revisions and extentions of the PSBLAS kernels, leading to the
recent PSBLAS 2.0 version [?]. The inter-process comunication required by
MLD2P4 is encapsulated into the PSBLAS routines, except few cases where
MPI [17] is explicitly called. Therefore, MLD2P4 can be run on any parallel
machine where PSBLAS and MPI implementations are available.

MLD2P4 has a layered and modular software architecture where three main
layers can be identified. The lower layer consists of the PSBLAS kernels, the
middle one implements the construction and application phases of the precon-
ditioners, and the upper one provides a uniform and easy-to-use interface to
all the preconditioners. This architecture allows for different levels of use of
the package: few black-box routines at the upper layer allow non-expert users

1 General Overview 2

to easily build any preconditioner available in MLD2P4 and to apply it within
a PSBLAS Krylov solver. On the other hand, the routines of the middle and
lower layer can be used and extended by expert users to build new versions
of multi-level Schwarz preconditioners. We provide here a description of the
upper-layer routines, but not of the medium-layer ones.

This guide is organized as follows:organizzazione della guida

1 General Overview 3

2 Notational Conventions

- caratteri tipografici usati nella guida (vedi guida ML recente e guida Aztec)
- convenzioni sui nomi di routine (differenza nei nomi tra high-level e medium-
level), strutture dati, moduli, costanti, etc. (vedi guida psblas)

- versione reale e complessa, singola e doppia precisione

1 General Overview 4

3 Code Distribution

The MLD2P4 is freely distributable under the following copyright terms:

MLD2P4 version 1.0
MultiLevel Domain Decomposition Parallel Preconditioners Package
based on PSBLAS (Parallel Sparse BLAS version 2.3)

(C) Copyright 2008

Salvatore Filippone University of Rome Tor Vergata
Alfredo Buttari University of Rome Tor Vergata
Pasqua D’Ambra ICAR-CNR, Naples

Daniela di Serafino Second University of Naples

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions, and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. The name of the MLD2P4 group or the names of its contributors may
not be used to endorse or promote products derived from this
software without specific written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS

¢‘AS IS’’ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE MLD2P4 GROUP OR ITS CONTRIBUTORS
BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

1 General Overview 5

4 Configuring and Building MLD2P4

- uso di GNU autoconf e automake

- software di base necessario (MPI, BLACS, BLAS, PSBLAS, UMFPACK 7 -
specificare versioni)

- software opzionale (SuperLU, SuperLUdist - specificare versioni e opzioni di
configure)

- sistemi operativi e compilatori su cui MLD2P4 e’ stato costruito con successo
- sono previste opzioni di configurazione per il debugging o per il profiling?

- albero delle directory generato al momento dell’installazione

1 General Overview 6

5 Getting Started

We describe the basics for building and applying MLD2P4 one-level and multi-
level Schwarz preconditioners with the Krylov solvers included in PSBLAS [].
The following steps are required:

1. Declare the preconditioner data structure. It is a derived data type, mld_-
rprec_type, where z may be s, d, ¢ or z, according to the basic data
type of the sparse matrix (s = real single precision; d = real double pre-
cision; ¢ = complex single precision; z = complex double precision). This
data structure is accessed by the user only through the MLD2P4 routines,
following an object-oriented approach.

2. Allocate and initialize the preconditioner data structure, according to a
preconditioner type chosen by the user. This is performed by the routine
mld_precinit, which also sets defaults for each preconditioner type se-
lected by the user. The defaults associated to each preconditioner type
are listed in Table 1, where the strings used by m1d_precinit to identify
the preconditioner types are also given.

3. Modify the selected preconditioner type, by properly setting preconditioner
parameters. This is performed by the routine mld_precset. This routine
must be called only if the user wants to modify the default values of the
parameters associated to the selected preconditioner type, to obtain a
variant of the preconditioner. Examples of use of m1d_precset is given in
Section 5.1; a complete list of all the preconditioner parameters and their
allowed and default values is provided in Section 6, Tables 2-5.

4. Build the preconditioner for a given matriz. This is performed by the
routine mld_precbld.

5. Apply the preconditioner at each iteration of a Krylov solver. This is per-
formed by the routine mld_precaply. When using the PSBLAS Krylov
solvers, this step is completely transparent to the user, since m1d_precaply
is called by the PSBLAS routine implementing the Krylov solver (psb_krylov).

6. Free the preconditioner data structure. This is performed by the routine
mld_precfree. This step is complementary to step 1 and should be per-
formed when the preconditioner is no more used.

A detailed description of the above routines is given in Section 6.

Note that the Fortran 95 module m1d_prec_mod must be used in the pro-
gram calling the MLD2P4 routines. Furthermore, to apply MLD2P4 with the
Krylov solvers from PSBLAS, the module psb_krylov_mod must be used too.
DOBBIAMO SPECIFICARE QUALCHE ALTRO MODULO, AD
ESEMPIO psb_base_mod? Examples showing the basic use of MLD2P4 are
reported in Section 5.1.

Remark. The coarsest-level solver used by the default two-level preconditioner
has been chosen by taking into account that, on parallel machines, it often leads
to the smallest execution time when applied to linear systems coming from finite-
difference discretizations of basic elliptic PDE problems, considered as standard
tests for multi-level Schwarz preconditioners [3, 2]. However, this solver does not

1 General Overview 7

correspond to the smallest number of iterations of the preconditioned Krylov
method, which is usually obtained by applying a direct solver, e.g. based on the
LU factorization, at the coarsest level (see Section 6 for coarsest-level solvers
available in MLD2P4).

Type String Default preconditioner
No preconditioner | *NOPREC’ | (Considered only to use the PSBLAS Krylov
solvers with no preconditioner.)

Diagonal ’DIAG’ —

Block Jacobi "BJAC’ Block Jacobi with ILU(0) on the local
blocks.

Additive Schwarz | ’AS’ Restricted Additive Schwarz (RAS), with
overlap 1 and ILU(0) on the local blocks.

Multilevel "ML’ Multi-level hybrid preconditioner (additive

on the same level and multiplicative through
the levels), with post-smoothing only. Num-
ber of levels: 2; post-smoother: RAS with
overlap 1 and with ILU(0) on the local
blocks; coarsest matrix: distributed among
the processors; (approximate) coarse-level
solver: 4 sweeps of the block-Jacobi solver,
with the UMFPACK LU factorization on
the blocks (double precision versions) or
XXXXXXXXX (single precision versions)

Table 1: Preconditioner types, corresponding strings and default choices.

5.1 Examples

The code reported in Figure 1 shows how to set and apply the default multi-
level preconditioner available in the real double precision version of MLD2P4
(see Table 1). This preconditioner is chosen by simply specifying *ML’ as second
argument of m1d_precinit (a call to m1d_precset is not needed) and is applied
with the BICGSTAB solver provided by PSBLAS. The setup and application
of the default multi-level preconditioners for the real single precision and the
complex, single and double precision, versions are obtained with straightforward
modifications of the example.

The part of the code concerning the reading and assembling of the sparse
matrix and the right-hand side vector, performed through the PSBLAS routines
for sparse matrix and vector management, is not reported here for brevity; the
statements concerning the deallocation of the PSBLAS data structure are ne-
glected too. The complete code can be found in the example program file
example_ml.f90 in the directory XXXXXX (COMPLETARE. DIRE CHE
I FILE IN REALTA’ SONO DUE, UNO CON LA GENERAZIONE
DELLA MATRICE ED UNO CON LA LETTURA). Note that the mod-
ules psb_base_mod and psb_util_mod at the beginning of the code are required
by PSBLAS. O psb_base_mod E’ RICHIESTO ANCHE DA MLD2P4?) For
details on the use of the PSBLAS routines, see the PSBLAS User’s Guide [].

1 General Overview 8

LE FIGURE SONO DECENTRATE, NONOSTANTE IL CEN-
TER. CI VUOLE UNA MINIPAGE?

Different versions of multilevel preconditioner can be obtained by changing
the default values of the preconditioner parameters. The code reported in Fig-
ure 2 shows how to set a three-level hybrid Schwarz preconditioner, which uses
block Jacobi with ILU(0) on the local blocks as post-smoother, a coarsest ma-
trix replicated on the processors, and the LU factorization from UMFPACK as
coarse-level solver. The number of levels is specified by using mld_precinit;
the other preconditioner parameters are set by calling mld_precset. Note that
the type of multilevel framework (i.e. multiplicative among the levels with post-
smoothing only) is not specified since it is the default set by m1d_precinit. Fig-
ure 3 shows how to set a three-level additive Schwarz preconditioner, which ap-
plies RAS,; with overlap 1 and ILU(0) on the blocks, as pre- and post-smoother,
and five block-Jacobi sweeps, with the UMFPACK LU factorization on the
blocks, as distributed coarsest-level solver. Again, mld_precset is used only
to set non-default values of the parameters (see Tables ??-7?). In both cases,
the construction and the application of the preconditioner are carried out as
for the default multi-level preconditioner. The code fragments shown in in
Figures 2-77 are included in the example program file example_ml.£90. LO
STESSO PROGRAMMA CONTIENE I TRE ESEMPI, CON UN
SWITCH TRA L’UNO E I’ALTRO O FACCIAMO 3 PROGRAMMI
DISTINTI? NON RICORDO CHE COSA ABBIAMO DECISO.

Finally, Figure 4 shows the setup of a one-level additive Schwarz precondi-
tioner, i.e. RAS with overlap 2. The corresponding code, including also the ap-
plication of the preconditioner is in the example program file example_1lev.f90.

Remark. Any PSBLAS-based program using the basic preconditioners imple-
mented in PSBLAS 2.0, i.e. the diagonal and block-Jacobi ones, can use the
diagonal and block-Jacobi preconditioners implemented in MLD2P4 without
any change in the code. The PSBLAS-based program must be only recompiled
and linked to the MLD2P4 library.

1 General Overview 9

use psb_base_mod
use psb_util_mod
use mld_prec_mod
use psb_krylov_mod

! sparse matrix
type (psb_dspmat_type) :: A
! sparse matrix descriptor

type (psb_desc_type) :: desc_A
! preconditioner

type (mld_dprec_type) :: P

! initialize the parallel environment
call psb_init(ictxt)
call psb_info(ictxt,iam,np)

! read and assemble the matrix A and the right-hand
! side b using PSBLAS routines for sparse matrix /
! vector management

! initialize the default multi-level preconditioner,
! i.e. two-level hybrid Schwarz, using RAS (with
! overlap 1 and ILU(O) on the blocks) as post-smoother
! and 4 block-Jacobi sweeps (with UMFPACK LU on the
! blocks) as distributed coarse-level solver
call mld_precinit(P,’ML’,info)

! build the preconditioner
call psb_precbld(A,P,desc_A,info)

! set the solver parameters and the initial guess

! solve Ax=b with preconditioned BiCGSTAB
call psb_krylov(’BICGSTAB’,A,P,b,x,tol,desc_A,info)

! deallocate the preconditioner
call mld_precfree(P,info)

! deallocate other data structures

! exit the parallel environment
call psb_exit(ictxt)

stop

Figure 1: Setup and application of the default multi-level Schwarz precondi-
tioner.

General Overview 10

set a three-level hybrid Schwarz preconditioner,
which uses block Jacobi (with ILU(O) on the blocks)
as post-smoother, a coarsest matrix replicated on the
processors, and the LU factorization from UMFPACK

as coarse-level solver

call mld_precinit(P,’ML’,info,nlev=3)
call_mld_precset(P,mld_smoother_type_, ’BJAC’,info)
call mld_precset(P,mld_coarse_mat, ’REPL’)

call mld_precset(P,mld_coarse_solve, ’UMF’)

Figure 2: Setup of a hybrid three-level Schwarz preconditioner.

set a three-level additive Schwarz preconditionmer,
which uses RAS (with overlap 1 and ILU(O) on the blocks)
as pre- and post-smoother, and 5 block-Jacobi sweeps
(with UMFPACK LU on the blocks) as distributed
coarsest-level solver

call mld_precinit(P,’ML’,info,nlev=3)

call mld_precset(P,mld_ml_type_,’ADD’,info)
call_mld_precset (P,mld_smoother_pos_, ’TWOSIDE’,info)
call mld_precset(P,mld_coarse_sweeps_,5)

Figure 3: Setup of an additive three-level Schwarz preconditioner.

set RAS with overlap 2 and ILU(O) on the local blocks
call mld_precinit(P,’AS’,info)
call mld_precset(P,mld_sub_ovr_,2,info)

Figure 4: Setup of a one-level Schwarz preconditioner.

1 General Overview 11

6 User Interface

The basic user interface of MLD2P4 consists of six routines. The four routines
mld_precinit, mld_precset, mld_precbld and mld_precaply encapsulate all
the functionalities for the setup and application of any one-level and multi-
level preconditioner implemented in the package. The routine mld_precfree
deallocates the preconditioner data structure, while ml1d_precdescr prints a
description of the preconditioner setup by the user.

For each routine, the same user interface is overloaded with respect to the
real /complex case and the single/double precision; arguments with appropriate
data types must be passed to the routine, i.e.

e the sparse matrix data structure, containing the matrix to be precondi-
tioned, must be of type mld_zspmat_type with = s for real single pre-
cision, £ = d for real double precision, z = ¢ for complex single precision,
2z = z for complex double precision;

e the preconditioner data structure must be of type mld_zprec_type, with
r = s, d, c, z, according to the sparse matrix data structure;

e the arrays containing the vectors v and w involved in the preconditioner
application w = M v must be of type type (kind_parameter), with type
= real, complex and kind_parameter = kind(1.), kind(1.d0), accord-
ing to the sparse matrix and preconditioner data structure; note that
the PSBLAS module provides the constants psb_spk_ = kind(1.) and
psb_dpk_ = kind (1.d0);

e real parameters defining the preconditioner must be declared according to
the precision of the previous data structures (see Section 6.2).

A description of each routine is given in the remainder of this section.

6.1 Subroutine mld_precinit

mld_precinit(p,ptype,info)
mld_precinit(p,ptype,info,nlev)

This routine allocates and initializes the preconditioner data structure, accord-
ing to the preconditioner type chosen by the user.

Arguments

P type(mld_zprec_type), intent(inout). CONTROLLARE SE

DEVE ESSERE INOUT O SOLO OUT

The preconditioner data structure. Note that z must be chosen according
to the real/complex, single/double precision version of MLD2P4 under use.

ptype character(len=*), intent(in).

The type of preconditioner. Its values are specified in Table 1.
info integer, intent(out).

Error code. See Section 7 for details.
nlev integer, optional, intent(in).

The number of levels of the multilevel preconditioner. If nlev is not present
and ptype="ML’/’ml’, then nlev=2 is assumed. Otherwise, nlev is ignored.

1 General Overview 12

6.2 Subroutine mld_precset

mld_precset(p,what,val,info)

This routine sets the parameters defining the preconditioner. More precisely,
the parameter identified by what is assigned the value contained in val.

Arguments

%

what

val

info

type(mld_zprec_type), intent(inout).

The preconditioner data structure. Note that x must be chosen according
to the real/complex, single/double precision version of MLD2P4 under use.
integer, intent(in).

The number identifying the parameter to be set. A mnemonic constant has
been associated to each of these numbers, as reported in Tables 2-5.
integer or character(len=x) or real(kind(1.)) or real(kind(1.d0)),
intent (in).

The value of the parameter to be set. The list of allowed values and the
corresponding data types is given in Table 77.

integer, intent(out).

Error code. See Section 7 for details.

A variety of (one-level and multi-level) preconditioner can be obtained by a
suitable setting of the preconditioner parameters. These parameters can be
logically divided into four groups, i.e. parameters defining

1. the type of multi-level preconditioner;

2. the one-level preconditioner to be used as smoother;

w

. the aggregation algorithm;

4. the coarse-space correction at the coarsest level.

A list of the parameters that can be set, along with their allowed and default
values, is given in Tables 2-5. CORREGGERE LA ROUTINE E LA DOC
INTERNA - ilev NON E’ PIU’ ACCESSIBILE ALL’UTENTE.

13

1 General Overview

*Touo131pu02aid [oAs]-1j N Jo adA) oy} Suruyep siojoureIed :g o[qe],

SON
-TITYL vd OSYHHAIA d (HHODYHd

HILOd V HddISOMI ODSTdddAdYd HAISOML:
Jatpyoows-isod /-o1d ‘1oyjoows-ysod ISOd.
‘roroows-o1d :Ioyjoows oY) jo uonisod, | asTu‘‘g AYd. | (x=usT)Ieqoerxeyd | ~sod Isyiroows pIUW
"THAHT
-ILININ TAd OLIGINV. TTAN 291d ou
HYIFINI ~ edAydead pmr @ VHO
‘MS TIN ALNVISOD HINON dUVId SV
-INVO ouonipuoodrd [aAdf-Imu oy} jo OV
(1o300WS "9°'T) JOUOTIPUOIRIA [9AS[-OUO DISB(SV. OVIA, | (x=ueT)Ieaoereyd | ~edLa~Isyjoows pru
([oao] & opIs
-UI 9AT}IPPE SAeM[R S[OA] 93} Suowre oA1yedr[dr} JTI0IN
-[NW 10 SATYIPPR :YIOMOUIRIJ [9Ad[-I}NUI o1seq | TN, AdQV. | (x=usT)Ixezoereyd “odAy Tw pTw
SIUDWULOD 9nofap Tea adfiy vyp Jeym

14

1 General Overview

*(19300TS) IOUOTITPUO0AIA [9AS[-0TO JTSR(ST} SUTUYOP SIvjeTIeIRd ¢ O[RT,

VLVIODOS
SV VONIYLS HLNVLSOD VONVIA

MS TIN
OdLHNVYIVd WJINON HYUYVIIINVO

“uex—qusTpTuW
“yseIylTqns pTuU

TUTTITI qnsTpIu
“eATOSTqUS TpPTW

“Toxd qunsTpruU
~I9sexTqnsTpTW

MS THN 0<
OdLHNVYVd HINON HYUHVIIINVD [| qumu Aue | I183s93ur IA0TQUS PTW
spuawoo | ynfop Tea | adfiy vyop Jeym

15

1 General Overview

“WHLIOS[R UOTIRFaISSR oY) SUtUyep sIvjeowrIed f 9[qe],

wIou Xewr p[u e 4 I,NAJd
"NOdSITHdOD VONIYLS VONVIN

~Ste"a88e pru
“yseaya a88e pru
“puty_a88e pru
~8Te"188e pTuU

SIUUWUWL0I

ynofop

TeA

adfiy vyop

qeym

16

1 General Overview

‘[9AS] 189SILO0D 97} JB UOIJI2I1I0D 90eds-9sIe0d oY} SUrUPep SIejoUeIe G 9[qe],

MS TIN ‘NVEVd HINON VOIAIAON

80/90/91
-¢T TIVINE INOIZVAYASSO IddA
80/90/91
-5T TIVINA INOIZVAYASSO IdAA

“yseIyl osSIR0D PTU
TUTTTTI ©SIR0D PTU
~sdeems~esaROOTPTU

TOATOSQNS~9SIROD TPTU

“oATOSTOSIROD PTU
Tqew osSIBOD PTU

SIU2UWUL0D

ynofop

Tea

adfiy vop

Jeym

1 General Overview 17

6.3 Subroutine mld_precbld

mld_precbld(a,desc_a,p,info)

This routine builds the preconditioner according to the requirements made by
the user through the routines mld_precinit and mld_precset.

Arguments

a type(psb_zspmat_type), intent(in).
The sparse matrix structure containing the local part of the matrix to be
preconditioned. Note that z must be chosen according to the real/complex,
single/double precision version of MLD2P4 under use. See the PSBLAS
User’s Guide for details [?].

desc_a type(psb_desc_type), intent(in).
The communication descriptor of a. See the PSBLAS User’s Guide for
details [?].

) type (mld_zprec_type), intent(inout).
The preconditioner data structure. Note that 2 must be chosen according
to the real/complex, single/double precision version of MLD2P4 under use.

info integer, intent(out).
Error code. See Section 7 for details.

1 General Overview 18

6.4 Subroutine mld_precaply

mld_precaply(p,x,y,desc_a,info)
mld_precaply(p,x,y,desc_a,info,trans,work)

This routine computes y = op(M ~1) z, where M is a previously built precondi-
tioner, stored in the p data structure, and op denotes the preconditioner itself
or its transpose, according to the value of trans. Note that, when MLD2P4
is used with a Krylov solver from PSBLAS, m1d_precaply is called within the
PSBLAS routine ml1d_krylov and hence is completely transparent to the user.

Arguments

%

desc_a

info

trans

work

type (mld_zprec_type), intent(inout).

The preconditioner data structure, containing the local part of M. Note that
z must be chosen according to the real/complex, single/double precision
version of MLD2P4 under use.

type (kind_parameter) , dimension(:), intent(in).

The local part of the vector . Note that type and kind_parameter must
be chosen according to the real/complex, single/double precision version of
MLD2P4 under use.

type (kind_parameter) , dimension(:), intent (out).

The local part of the vector y. Note that type and kind_parameter must
be chosen according to the real/complex, single/double precision version of
MLD2P4 under use.

type(psb_desc_type), intent(in).

The communication descriptor associated to the matrix to be precondi-
tioned.

integer, intent(out).

Error code. See Section 7 for details.

character(len=1), optional, intent(in).

If trans = °N’,’n’ then op(M~') = M~!; if trans = *T’,’t’ then
op(M~1) = M~T (transpose of M~1).

type (kind_parameter) , dimension(:), optional, target.

Workspace. Its size must be at least
4 * psb_cd_get_local_cols(desc_a) (see the PSBLAS User’s Guide).
Note that type and kind_parameter must be chosen according to the
real /complex, single/double precision version of MLD2P4 under use.

6.5 Subroutine mld_precfree

mld_precfree(p,info)

This routine deallocates the preconditioner data structure.

Arguments

p

info

type(mld_zprec_type), intent(inout).

The preconditioner data structure. Note that z must be chosen according
to the real/complex, single/double precision version of MLD2P4 under use.
integer, intent(out).

Error code. See Section 7 for details.

1 General Overview 19

6.6 Subroutine mld_precdescr

mld_precdescr(p,iout)

This routine prints a description of the preconditioner to the standard output
or to a file. FARE UNA SOLA ROUTINE, COL PARAMETRO IOUT
OPZIONALE.

Arguments

P type(mld_zprec_type), intent(in).
The preconditioner data structure. Note that z must be chosen
according to the real/complex, single/double precision version of
MLD2P4 under use.

iout integer, intent(in).
The id of the file where the preconditioner description will be printed.
If iout is missing, the description is printed on the standard output.

1 General Overview

7 Error Handling

Error handling - Breve descrizione con rinvio alla guida di PSBLAS

20

1 General Overview 21

References

[1]

(6]

[7]

[10]

[11]

Bella, G., Filippone, S., De Maio, A., Testa, M.: A Simulation Model for
Forest Fires. In: Dongarra, J., Madsen, K., Wasniewski, J. (eds.): Proceed-
ings of PARA 04 Workshop on State of the Art in Scientific Computing.
Lecture Notes in Computer Science, 3732. Berlin: Springer, 2005

A. Buttari, D. di Serafino, P. D’Ambra, S. Filippone, 2LEV-D2P4: a pack-
age of high-performance preconditioners, Applicable Algebra in Engineer-
ing, Communications and Computing, Volume 18, Number 3, May, 2007,
pp. 223-239

P. D’Ambra, S. Filippone, D. Di Serafino On the Development of
PSBLAS-based Parallel Two-level Schwarz Preconditioners Applied Nu-
merical Mathematics, Elsevier Science, Volume 57, Issues 11-12, November-
December 2007, Pages 1181-1196.

A. Buttari, P. D’Ambra, D. di Serafino and S. Filippone, Extending PS-
BLAS to Build Parallel Schwarz Preconditioners, in , J. Dongarra, K. Mad-
sen, J. Wasniewski, editors, Proceedings of PARA 04 Workshop on State of
the Art in Scientific Computing, pp. 593-602, Lecture Notes in Computer
Science, Springer, 2005.

X.C. Cai and O. B. Widlund, Domain Decomposition Algorithms for In-
definite Elliptic Problems, SIAM Journal on Scientific and Statistical Com-
puting, 13(1), pp. 243-258, 1992.

T. Chan and T. Mathew, Domain Decomposition Algorithms, in A. Iserles,
editor, Acta Numerica 1994, pp. 61-143, 1994. Cambridge University Press.

J. J. Dongarra and R. C. Whaley, A User’s Guide to the BLACS v. 1.1, La-
pack Working Note 94, Tech. Rep. UT-CS-95-281, University of Tennessee,
March 1995 (updated May 1997).

I. Duff, M. Marrone, G. Radicati and C. Vittoli, Level & Basic Linear
Algebra Subprograms for Sparse Matrices: a User Level Interface, ACM
Transactions on Mathematical Software, 23(3), pp. 379401, 1997.

I. Duff, M. Heroux and R. Pozo, An Querview of the Sparse Basic Linear
Algebra Subprograms: the New Standard from the BLAS Technical Forum,
ACM Transactions on Mathematical Software, 28(2), pp. 239-267, 2002.

S. Filippone and M. Colajanni, PSBLAS: A Library for Parallel Linear
Algebra Computation on Sparse Matrices, ACM Transactions on Mathe-
matical Software, 26(4), pp. 527-550, 2000.

S. Filippone, P. D’Ambra, M. Colajanni, Using a Parallel Library of Sparse
Linear Algebra in a Fluid Dynamics Applications Code on Linuzx Clusters,
in G. Joubert, A. Murli, F. Peters, M. Vanneschi, editors, Parallel Com-
puting - Advances & Current Issues, pp. 441-448, Imperial College Press,
2002.

1 General Overview 22

[12]

[13]

[14]

[15]

[16]

[18]

[19]

Karypis, G. and Kumar, V., METIS: Unstructured Graph Partitioning
and Sparse Matrix Ordering System. Minneapolis, MN 55455: University
of Minnesota, Department of Computer Science, 1995. Internet Address:
http://www.cs.umn.edu/ karypis.

Lawson, C., Hanson, R., Kincaid, D. and Krogh, F., Basic Linear Algebra
Subprograms for Fortran usage, ACM Trans. Math. Softw. vol. 5, 38-329,
1979.

Machiels, L. and Deville, M. Fortran 90: An entry to object-oriented pro-
gramming for the solution of partial differential equations. ACM Trans.
Math. Softw. vol. 23, 32—49.

Metcalf, M., Reid, J. and Cohen, M. Fortran 95/2003 explained. Oxford
University Press, 2004.

B. Smith, P. Bjorstad and W. Gropp, Domain Decomposition: Parallel
Multilevel Methods for Elliptic Partial Differential Equations, Cambridge
University Press, 1996.

M. Snir, S. Otto, S. Huss-Lederman, D. Walker and J. Dongarra, MPI:
The Complete Reference. Volume 1 - The MPI Core, second edition, MIT
Press, 1998.

M. Brezina and P. Vanék, A Black-Box Iterative Solver Based on a Two-
Level Schwarz Method, Computing, 1999, 63, 233-263.

P. Vanék, J. Mandel and M. Brezina, Algebraic Multigrid by Smoothed
Aggregation for Second and Fourth Order Elliptic Problems, Computing,
1996, 56, 179-196.

	MLD2P4 User's and Reference Guide
	1 General Overview
	2 Notational Conventions
	3 Code Distribution
	4 Configuring and Building MLD2P4
	5 Getting Started
	5.1 Examples

	6 User Interface
	6.1 Subroutine mld_precinit
	6.2 Subroutine mld_precset
	6.3 Subroutine mld_precbld
	6.4 Subroutine mld_precaply
	6.5 Subroutine mld_precfree
	6.6 Subroutine mld_precdescr

	7 Error Handling

