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Scientific computing
Parallel computing: why?

“Computational science (also scientific computing or
scientific computation (SC)) is a rapidly growing

multidisciplinary field that uses advanced computing
capabilities to understand and solve complex

problems. It is an area of science which spans many
disciplines, but at its core it involves the development

ofmodels and simulations to understand natural
systems.”

Wikipedia

Leonardo, CINECA

/



What are the applications?
Parallel computing: why?

• Computational finance,
• Computational biology,
• Simulation of complex systems,
• Network analysis
• Multi-physics simulations,
• Weather and climate models,
• …

Why the need for parallelism?
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Moore’s law
Parallel computing: why?

“The complexity for minimum component costs
has increased at a rate of roughly a factor of two
per year. Certainly over the short term this rate
can be expected to continue, if not to increase.
Over the longer term, the rate of increase is a bit
more uncertain, although there is no reason to
believe it will not remain nearly constant for at

least years.”

G. Moore,

Computers should reach the physical limits
of Moore’s Law at some point in the

s…exponential functions saturates
physical capabilities!
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Parallel computing: why?
Parallel computing: why?

• We are hitting the wall of single processor transistor count/computing capabilities,

• Some applications needs more memory than the one that could be available on a
single machine,

• Optimization of sequential algorithms can bring us only to a certain extent
“διαίρϵι καὶ βασίλϵνϵ“
(diáirei kái basíleue)
Dividi et Impera

Therefore, we need
• Algorithms that can work in parallel,
• A communications protocol for parallel computation integrated with our

programming languages,
• Parallel machines that can actually run this code.
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The philosophy behind the effort
Parallel computing: why?

C. E. Leiserson, N. C. Thompson, J. S. Emer, B. C. Kuszmaul, B. W. Lampson,

D. Sanchez, and T. B. Schardl, “There’s plenty of room at the Top: What

will drive computer performance after Moore’s law?”, Science ( )

“As miniaturization wanes, the silicon-fabrication
improvements at the Bottom will no longer
provide the predictable, broad-based gains in

computer performance that society has enjoyed
for more than years. Software performance
engineering, development of algorithms, and

hardware streamlining at the Top can continue to
make computer applications faster in the

post-Moore era.”
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Linear Systems
Parallel computing: why?

Solve : Ax = b,

where
• A ∈ Rn×n is a very large and sparse matrix nnz(A) = O(n),
• x,b ∈ Rn,

.

is often the most time consuming computational kernel in many areas of computational
science and engineering problems.

s s s s s s s s s s

n ∼ 10 n ∼ 20 n ∼ 90 n ∼ 500
n ∼ 104,5

n ∼ 105,6n ∼ 106,7
n ∼ 10≥8
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Solve : Ax = b,

where
• A ∈ Rn×n is a very large and sparse matrix nnz(A) = O(n),
• x,b ∈ Rn.

s s s s s s s s s s

n ∼ 10

n ∼ 20 n ∼ 90 n ∼ 500
n ∼ 104,5

n ∼ 105,6n ∼ 106,7
n ∼ 10≥8

“In a ground wire problem involving a large number of ground conductors, simultaneous equations were
solved…” – Dwight ( )”

“The second machine, now in operation, was designed for the direct solution of nine or fewer simultaneous
equations.” – Wilbur, J. B. ( )/



Linear Systems
Parallel computing: why?

Solve : Ax = b,

where
• A ∈ Rn×n is a very large and sparse matrix nnz(A) = O(n),
• x,b ∈ Rn.

s s s s s s s s s s

n ∼ 10 n ∼ 20

n ∼ 90 n ∼ 500
n ∼ 104,5

n ∼ 105,6n ∼ 106,7
n ∼ 10≥8

“Finally, though the labour of relaxation in three dimensions is prohibitively great, the future use of the new
electronic calculating machines in this connexion is a distinct possibility” – Fox, L. ( )
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Linear Systems
Parallel computing: why?

Solve : Ax = b,

where
• A ∈ Rn×n is a very large and sparse matrix nnz(A) = O(n),
• x,b ∈ Rn.

s s s s s s s s s s

n ∼ 10 n ∼ 20 n ∼ 90

n ∼ 500
n ∼ 104,5

n ∼ 105,6n ∼ 106,7
n ∼ 10≥8

“The Ferranti PEGASUS computer, with a main store of words, can solve a maximum of simultaneous
equations by its standard subroutine and takes about minutes to complete this calculation.” – Wilson, L. B.

( )
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Linear Systems
Parallel computing: why?

Solve : Ax = b,

where
• A ∈ Rn×n is a very large and sparse matrix nnz(A) = O(n),
• x,b ∈ Rn.

s s s s s s s s s s

n ∼ 10 n ∼ 20 n ∼ 90 n ∼ 500

n ∼ 104,5

n ∼ 105,6n ∼ 106,7
n ∼ 10≥8

“…the bound imposed by this ism+ n ≤ 474. In addition, this number of equations would fill one standard
( . ft) reel of magnetic tape, and the fifty-odd hours taken in the calculation might be thought excessive.” –

Barron, Swinnerton-Dyer ( )
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Linear Systems
Parallel computing: why?

Solve : Ax = b,

where
• A ∈ Rn×n is a very large and sparse matrix nnz(A) = O(n),
• x,b ∈ Rn.

s s s s s s s s s s

n ∼ 10 n ∼ 20 n ∼ 90 n ∼ 500
n ∼ 104,5

n ∼ 105,6n ∼ 106,7
n ∼ 10≥8

“…handling problems involving sets of simultaneous equations of two-thousandth order, and SAMIS available
through ”Cosmic” at the University of Georgia, which can treat up to , simultaneous equations.” –

Melosh, Schmele ( )
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Linear Systems
Parallel computing: why?

Solve : Ax = b,

where
• A ∈ Rn×n is a very large and sparse matrix nnz(A) = O(n),
• x,b ∈ Rn.

s s s s s s s s s s

n ∼ 10 n ∼ 20 n ∼ 90 n ∼ 500
n ∼ 104,5

n ∼ 105,6n ∼ 106,7
n ∼ 10≥8

“The mini-computer cost algorithm is applied to the same complex shell problem used previously, with
degrees of freedom […]. The running times, however, are and hr, respectively! It would appear that

improvement of mini-computer speeds is required…” – Kamel, McCabe ( )
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Linear Systems
Parallel computing: why?

Solve : Ax = b,

where
• A ∈ Rn×n is a very large and sparse matrix nnz(A) = O(n),
• x,b ∈ Rn.

s s s s s s s s s s

n ∼ 10 n ∼ 20 n ∼ 90 n ∼ 500
n ∼ 104,5

n ∼ 105,6

n ∼ 106,7
n ∼ 10≥8

“For instance, Pomerell in reports on successful application of preconditioned Krylov methods for very
ill-conditioned unstructured finite element systems of order up to , that arise in semiconductor device

modeling.” – Saad Y., van der Vorst, H.A. ( )
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Linear Systems
Parallel computing: why?

Solve : Ax = b,

where
• A ∈ Rn×n is a very large and sparse matrix nnz(A) = O(n),
• x,b ∈ Rn.

s s s s s s s s s s

n ∼ 10 n ∼ 20 n ∼ 90 n ∼ 500
n ∼ 104,5

n ∼ 105,6n ∼ 106,7

n ∼ 10≥8

“As a second example, we show results (Table VIII) for a problem arising in ocean modeling (barotropic
equation) with n = 370, 000 unknowns and approximately . million nonzero entries…” – Benzi, M. ( )
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Linear Systems
Parallel computing: why?

Solve : Ax = b,

where
• A ∈ Rn×n is a very large and sparse matrix nnz(A) = O(n),
• x,b ∈ Rn.

s s s s s s s s s s

n ∼ 10 n ∼ 20 n ∼ 90 n ∼ 500
n ∼ 104,5

n ∼ 105,6n ∼ 106,7

n ∼ 10≥8

“Problem: Large, mesh size: 180× 60× 30, ♯ unknowns (in simulation): , , , Solution time . h” –
Wang, de Sturler, Paulino ( )
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Linear Systems
Parallel computing: why?

Solve : Ax = b,

where
• A ∈ Rn×n is a very large and sparse matrix nnz(A) = O(n),
• x,b ∈ Rn.

s s s s s s s s s s

n ∼ 10 n ∼ 20 n ∼ 90 n ∼ 500
n ∼ 104,5

n ∼ 105,6n ∼ 106,7

n ∼ 10≥8

“The parallel GMRES was tested on the Tesla T P GPU using a set of matrix data from the oil field simulation
data of Conoco Phillips. The order of the system ranges from∼ 2000 to∼ 1.1million.” – M. Wang, H. Klie,

M. Parashar, H. Sudan ( )
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Linear Systems
Parallel computing: why?

Solve : Ax = b,

where
• A ∈ Rn×n is a very large and sparse matrix nnz(A) = O(n),
• x,b ∈ Rn.

s s s s s s s s s s

n ∼ 10 n ∼ 20 n ∼ 90 n ∼ 500
n ∼ 104,5

n ∼ 105,6n ∼ 106,7
n ∼ 10≥8

The exascale challenge, using computer that do 1015 Flops, targeting next-gen systems
doing 1018 Flops to solve problems with tens of billions of unknowns.
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Parallel computers: Flynn’s Taxonomy
Parallel computing: where?

Let us start from the bottom: the machines.

• What is a parallel computer?
• Let us abstract from the machine by describing Flynn’s taxonomy

Single instruction
stream, single data

stream
SISD

Single instruction
stream, multiple data

streams
SIMD

Multiple instruction
streams, single data

stream
MISD

Multiple instruction
streams, multiple data

streams
MIMD
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Parallel Computers: our computer model
Parallel computing: where?

For our task of introducing parallel computations we need to fix a specific multiprocessor
model, i.e., a specific generalization of the sequential RAM model in which there is more
than one processor.

Since we want to stay in a SIMD/MIMD
model, we focus on a local memory machine
model, i.e., a set ofM processors each with
its own local memory that are attached to a
common communication network.

Communication Network

Processors

Memories
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Parallel Computers: our computer model
Parallel computing: where?

For our task of introducing parallel computations we need to fix a specific multiprocessor
model, i.e., a specific generalization of the sequential RAM model in which there is more
than one processor.

Since we want to stay in a SIMD/MIMD
model, we focus on a local memory machine
model, i.e., a set ofM processors each with
its own local memory that are attached to a
common communication network.

Communication Network

Processors

Memories

• We can be more precise about the connection between processors, one can consider
a network (a collection of switches connected by communication channels) and
delve in a detailed way into its pattern of interconnection, i.e., into what is called the
network topology.
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Parallel Computers: our computer model
Parallel computing: where?

For our task of introducing parallel computations we need to fix a specific multiprocessor
model, i.e., a specific generalization of the sequential RAM model in which there is more
than one processor.

Since we want to stay in a SIMD/MIMD
model, we focus on a local memory machine
model, i.e., a set ofM processors each with
its own local memory that are attached to a
common communication network.

Communication Network

Processors

Memories

• An alternative is to summarize the network properties in terms of two parameters:
latency and bandwidth

Latency the time it takes for a message to traverse the network;
Bandwidth the rate at which a processor can inject data into the network.
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Parallel computing: where? – https://www.top500.org/
Parallel computing: where?

“…we have decided in to assemble and
maintain a list of the most powerful
computer systems. Our list has been
compiled twice a year since June with
the help of high-performance computer
experts, computational scientists,
manufacturers, and the Internet community
in general…
In the present list (which we call the
TOP ), we list computers ranked by their
performance on the LINPACK Benchmark.”
http:
//www.netlib.org/benchmark/hpl/

The LINPACK Benchmark.
Solution of a dense n× n system of linear
equations Ax = b, so that
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Parallel computing: where?

“…we have decided in to assemble and
maintain a list of the most powerful
computer systems. Our list has been
compiled twice a year since June with
the help of high-performance computer
experts, computational scientists,
manufacturers, and the Internet community
in general…
In the present list (which we call the
TOP ), we list computers ranked by their
performance on the LINPACK Benchmark.”
http:
//www.netlib.org/benchmark/hpl/

The LINPACK Benchmark.
Solution of a dense n× n system of linear
equations Ax = b, so that

• ∥Ax−b∥
∥A∥∥x∥nε ≤ O(1), for εmachine
precision,

• It uses a specialized right–looking LU
factorization with look–ahead
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“…we have decided in to assemble and
maintain a list of the most powerful
computer systems. Our list has been
compiled twice a year since June with
the help of high-performance computer
experts, computational scientists,
manufacturers, and the Internet community
in general…
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TOP ), we list computers ranked by their
performance on the LINPACK Benchmark.”
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The LINPACK Benchmark.
Solution of a dense n× n system of linear
equations Ax = b, so that

• Measuring

— Rmax the performance in GFLOPS
for the largest problem run on a
machine,

— Nmax the size of the largest
problem run on a machine,

— N1/2 the size where half the Rmax
execution rate is achieved,

— Rpeak the theoretical peak
performance GFLOPS for the
machine.
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The TOP List
Parallel computing: where?

Rank System Cores Rmax (PFlop/s) Rpeak (PFlop/s) Power (kW)

Frontier , , , . , . ,
Supercomputer
Fugaku

, , . . ,

LUMI , , . . ,
Leonardo , , . . ,
Summit , , . . ,

OS Family System Share

Linux
%

Cores per Socket

8 10 12 14 16 18 20 22 24 26 28 32 36 38 40 48 64 68

5
10
15
20

Pe
rc
en

ta
ge
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The machines we have in the department
Parallel computing: where?

The Toeplitz Clustermade of nodes:
• Nodes Intel® Xeon® CPU E -

v @ . GHz with threads per
core, cores per socket and
socket with GB;

• Node Intel® Xeon® CPU E -
v @ . GHz with threads per
core, cores per socket and
socket with GB.
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core, cores per socket and
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A new machine we are buying with the
“Dipartimento di Eccellenza” project:
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The machines we have in the department
Parallel computing: where?

The Toeplitz Clustermade of nodes:
• Nodes Intel® Xeon® CPU E -

v @ . GHz with threads per
core, cores per socket and
socket with GB;

• Node Intel® Xeon® CPU E -
v @ . GHz with threads per
core, cores per socket and
socket with GB.

A new machine we are buying with the
“Dipartimento di Eccellenza” project:

The machine we will build here!
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Bēowulf
Parallel computing: where?

HWÆT: WE GAR-DENA IN GEARDAGUM
þeodcyninga þrym gefrunon.
Hu ða æþelingas ellen fremedon!
Oft Scyld Scefing sceaþena þreatum
monegum mægþum meodosetla ofteah,
egsode eorl, syððan ærest wearð
feasceaft funden. He þæs frofre gebad,
weox under wolcnum, weorðmyndum þah,
oð þæt him æghwylc þara ymbsittendra
ofer hronrade hyran scolde,
gomban gyldan. Þæt wæs god cyning.
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Bēowulf
Parallel computing: where?

“Bēowulf is a multi-computer architecture which
can be used for parallel computations. It is a system
which usually consists of one server node, and one
or more client nodes connected via Ethernet or
some other network. It is a system built using
commodity hardware components, like any PC
capable of running a Unix-like operating system,
with standard Ethernet adapters, and switches.”

Radajewski, Radajewski; Eadline, Douglas
( November ).

“Beowulf HOWTO”. ibiblio.org. v . . .

/

http://bit.ly/3lh3UIv


Table of Contents
Parallel computing: how?

▶ Parallel computing: why?
Linear Systems,mon amour

▶ Parallel computing: where?
Flynn’s Taxonomy
Bēowulf

▶ Parallel computing: how?
An example of contemporary application

▶ First order of business: GIT

▶ Exercises

/



Parallel Algorithms
Parallel computing: how?

In a fairly general way we can say that a parallel algorithm is an algorithm which can do
multiple operations in a given time.

Example: the sum of two vectors x, y ∈ Rn

x = [x1 x2 · · · xi

|

xi+1 · · · xn]
+
y = [y1 y2 · · · yi

|

yi+1 · · · yn]
=

x+ y = [x1 + y1 x2 + y2 · · · xi + yi

|

· · · xn + yn]

• If we do the operation sequentially we do O(n) operations in Tn
• If we split the operation among 2 processors, one summing up the entries between
1, . . . , i, and one summing up the entries between i+ 1, . . . , n we take Ti time for
the first part and Tn−i time for the second, therefore the overall time is
max(Ti,Tn−i) for doing always O(n) operations.

/



Parallel Algorithms
Parallel computing: how?

In a fairly general way we can say that a parallel algorithm is an algorithm which can do
multiple operations in a given time.
Example: the sum of two vectors x, y ∈ Rn

x = [x1 x2 · · · xi

|

xi+1 · · · xn]
+
y = [y1 y2 · · · yi

|

yi+1 · · · yn]
=

x+ y = [x1 + y1 x2 + y2 · · · xi + yi

|

· · · xn + yn]

• If we do the operation sequentially we do O(n) operations in Tn

• If we split the operation among 2 processors, one summing up the entries between
1, . . . , i, and one summing up the entries between i+ 1, . . . , n we take Ti time for
the first part and Tn−i time for the second, therefore the overall time is
max(Ti,Tn−i) for doing always O(n) operations.

/



Parallel Algorithms
Parallel computing: how?

In a fairly general way we can say that a parallel algorithm is an algorithm which can do
multiple operations in a given time.
Example: the sum of two vectors x, y ∈ Rn

x = [x1 x2 · · · xi | xi+1 · · · xn]
+
y = [y1 y2 · · · yi | yi+1 · · · yn]
=

x+ y = [x1 + y1 x2 + y2 · · · xi + yi | · · · xn + yn]

• If we do the operation sequentially we do O(n) operations in Tn
• If we split the operation among 2 processors, one summing up the entries between
1, . . . , i, and one summing up the entries between i+ 1, . . . , n we take Ti time for
the first part and Tn−i time for the second, therefore the overall time is
max(Ti,Tn−i) for doing always O(n) operations./



Parallel Algorithms: speedup
Parallel computing: how?

Let us think again abstractly and quantify the overall speed gain for a given gain in a subset of a
process.

• We break a process into N distinct portions with the ith portion occupying the Pi fraction of
the overall completion time,

• order the portions in such a way that the Nth portion subsumes all the parts of the overall
processes with fixed costs.

• The speedup of the ith portion can then be defined as

Si ≜
toriginal
toptimized

, i = 1, . . . ,N− 1

where the numerator and denominator are the original and optimized completion time.
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where the numerator and denominator are the original and optimized completion time.
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Parallel Algorithms: speedup
Parallel computing: how?

Let us think again abstractly and quantify the overall speed gain for a given gain in a subset of a
process.

Amdahl’s Law
Then the overall speedup for P = (P1, . . . , PN), S = (S1, . . . , SN−1) is:

S(P, S) =

(
PN +

N−1∑
i=1

Pi
Si

)−1

.
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Parallel Algorithms: Amdahl’s Law
Parallel computing: how?

Let us make some observations on Amdahl’s Law
• We are not assuming about whether the original completion time involves some

optimization,
• We are not making any assumption on what our optimization process is,
• We are not even saying that the process in question involves a computer!

Amdahl’s Law is a fairly general way of looking at how processes can be speed up by
dividing them into sub-tasks with lower execution time.

Moreover, it fixes the theoretical maximum speedup in various scenarios.
• If we allow all components Si to grow unbounded then the upper bound on all

scenario si Smax = 1/PN.
Let us decline it in the context of the potential utility of parallel hardware.
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Parallel Algorithms: Amdahl’s Law for parallel hardware
Parallel computing: how?

Consider now having a parallel machine that permits us dividing the execution of code
acrossM hardware units, then the problem independent maximum speedup that such
hardware can provide isM.

Parallel Efficiency
We define the parallel efficiency E as

E ≜ Soverall
M

,

where E = 100% correspond to the maximal use of the available hardware. When
Smax < M, it is then impossible to take full advantage of all available execution units.

Goal: we require very large Smax and correspondingly tiny PN.

Every dusty corner of a code must scale, any portion that doesn’t becomes the
rate-limiting step!
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Parallel Algorithms: Amdahl’s Law limitations
Parallel computing: how?

What we are neglecting and what we are tacitly assuming
• We are neglecting overhead costs, i.e., the cost associated with parallel execution

such as
— initializing (spawning) and joining of different computation threads,
— communication between processes, data movement and memory allocation.

• We considered also the ideal case in which Si → +∞∀i, observe that with finite
speedup on portions 1 through N− 1, the Soverall might continue to improve with
increasing number of execution units.

• We are assuming that the size of the problem remains fixed while the number of
execution units increases, this is called the case of strong scalability. In some
contexts, we need to turn instead to weak scalability in which the problem size grows
proportionally to the number of execution units.
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Gustafson’s law
Parallel computing: how?

In the weak scalability case the right framework is to use Gustafson’s law

Gustafson’s law

S = s+ p× N = s+ (1− s)× N = N+ (1− N)× s

where
• S is the theoretical speedup of the program with parallelism (scaled speedup),
• N is the number of computing units,
• s and p are the fractions of time spent executing the serial parts and the parallel

parts of the program on the parallel system, i.e., s+ p = 1.

“Solving a larger problem in the same amount of time should be possible by usingmore
computing units”
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Test Case
Parallel computing: how?

Poisson equation

−∆f = 1 on unit cube, with Dirichlet Boundary Conditions

• -point finite-difference discretization

• cartesian grid with uniform refinement along the coordinates for increasing mesh size
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Test Case
Parallel computing: how?

Solver/preconditioner settings

• AMG as preconditioner of Flexible CG, stopped when ∥rk∥2/∥b∥2 ≤ 10−6, or itmax = 500

KCMATCH K-cycle with inner iterations, CMATCH building aggregates of max size 8,
unsmoothed prolongators

VSCMATCH V-cycle, CMATCH building aggregates of max size 8, smoothed prolongators
VSDVB V-cycle for decoupled classic smoothed aggregation

• sweep of forward/backward Hybrid Gauss-Seidel smoother, parallel CG preconditioned with
Block-Jacobi and ILU( ) at the coarsest level

• coarsest matrix size nc ≤ 200np, with np number of cores

An example from: P. D’Ambra, F. Durastante, and S. Filippone, “AMG preconditioners for linear solvers towards extreme

scale”, SIAM J. Sci. Comput. ( ).
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Experimental environment & Comparison
Parallel computing: how?

Piz Daint - Swiss National Supercomputing Center by PRACE
• Cray Model XC /Cray XC architecture with hybrid compute nodes (Intel Xeon

E - v with Nvidia Tesla P accelerator)

• Cray Aries routing and communications ASIC with Dragonfly network topology

• GNU compiler rel. , Cray MPI , Cray-libsci . .

• PSBLAS . , AMG PSBLAS . (See: psctoolkit.github.io)

/
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Experimental environment & Comparison
Parallel computing: how?

Hypre: Scalable Linear Solvers and Multigrid Methods by LLNL

• BoomerAMG as preconditioner of CG, stopped when ∥rk∥2/∥b∥2 ≤ 10−6, or itmax = 500

• V-cycle with sweep of forward/backward Hybrid Gauss-Seidel smoother, LU factorization at
the coarsest level

• coarsening schemes: hybrid RS/CLJP (Flg), Hybrid Maximal Independent Set (HMIS), HMIS
with first level of aggressive coarsening (HMIS ); default parameters for coarsest matrix size
1 ≤ nc ≤ 9, coupled with modified (long-range) classical interpolation
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Weak scaling ( K dofs× core): Iteration number
Parallel computing: how?

AMG PSBLAS Hypre

np n/106 KCMATCH VSCMATCH VSDVB Flg HMIS HMIS

.
.

22 .
23 .
24 .
25 .
26 .
27 .
28 .
29 ,
210 ,
211 ,
212 ,
213 ,
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Weak scaling ( K dofs× core): operator complexity
Parallel computing: how?
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Weak scaling ( K dofs× core): solve time
Parallel computing: how?
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Results at extreme scale: MPI vs hybrid MPI-CUDA
Parallel computing: how?
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Software Version Control: GIT
First order of business: GIT

In software engineering, version control is a class of
systems responsible for managing changes to
computer programs, documents, large web sites, or
other collections of information. Version control is a
component of software configuration management.

• We are going to use GIT: https://git-scm.com/,
• Specifically, the Gitea instance run by the PHC: https://git.phc.dm.unipi.it/.
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Getting an up-and-running GIT account
First order of business: GIT

. Go to: https://git.phc.dm.unipi.it/,

. Click on: (top right of the screen),

. Then: ,

. Use UNIPI credentials to login.

Create an SSH key:
. Open a terminal (CTRL+ALT+T),
. Write: ssh-keygen -t ed25519 -C 'fabio.durastante@unipi.it (use your
own E-mail address!)

. Press ENTER to confirm default file location (∼/.ssh),

. At the prompt, type a secure passphrase (you have to remember it!),

. Run: eval "$(ssh-agent -s)" and then ssh-add ∼/.ssh/id_ed25519.
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Getting an up-and-running GIT account
First order of business: GIT

From the settings menu you have access to
the configurations of the Git service.

• SSH key entry

—
— Which inserts similarly

— Concluding with:
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A repository
First order of business: GIT

• You can create a new
repository easily.

• And then:
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A repository
First order of business: GIT

• You can create a new
repository easily.

• And then:

git clone git@git.phc.dm.unipi.it:fdurastante/cpar2023.git
cd cpar2023

The folder will contain these slides, and – in the future – the other material we will use.
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GIT Workflow
First order of business: GIT

We will use GIT to exchange files and working on writing code.

The repository is where
files’ current and historical
data are stored, often on a

server.

checkout To check out is to create a local working copy
from the repository,

pull, push Copy revisions from one repository into another.
Pull is initiated by the receiving repository, while
push is initiated by the source.

commit To commit is to write ormerge the changes
made in the working copy back to the
repository. A commit containsmetadata,
typically the author information and a commit
message that describes the change.

merge is an operation in which two sets of changes are
applied to a file or set of files.
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Exercises
Exercises

• Review the slides at least once to get used to the vocabulary.
• Make working in a Linux shell comfortable, e.g., ls, cd, ssh, mkdir, mv, cp, rm,

grep, diff;
• Follow this GIT tutorial to familiarize yourself with the commands and workflow:

https://git-scm.com/docs/gittutorial
• Propose a name for our Beowulf machine:

https://forms.gle/F XtvAWmVqv jD f
• Have fun.
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Calcolo Parallelo dall’Infrastruttura alla
Matematica Thank you for listening!

Any questions?
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