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The blocking send and receive1 A first scientific computation
int MPI_Send(void *message, int count, MPI_Datatype datatype, int dest,

int tag, MPI_Comm comm)

void *message points to the message content itself, it can be a simple scalar or a groupof data,
int count specifies the number of data elements of which the message is composed,
MPI_Datatype datatype indicates the data type of the elements that make up themessage,
int dest the rank of the destination process,
int tag the user-defined tag field,

MPI_Comm comm the communicator in which the source and destination processes resideand for which their respective ranks are defined.
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The blocking send and receive1 A first scientific computation
int MPI_Recv (void *message, int count, MPI_Datatype datatype, int source,

int tag, MPI_Comm comm, MPI_Status *status)

void *message points to the message content itself, it can be a simple scalar or a groupof data,
int count specifies the number of data elements of which the message is composed,
MPI_Datatype datatype indicates the data type of the elements that make up themessage,
int source the rank of the source process,

int tag the user-defined tag field,
MPI_Comm comm the communicator in which the source and destination processesreside,
MPI_Status *status is a structure that contains three fields named MPI_SOURCE ,

MPI_TAG, and MPI_ERROR.
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Basic MPI Data Types1 A first scientific computation
Correspondence table of MPI_Datatype and C data types:

MPI_CHAR signed char

MPI_SHORT signed short int

MPI_INT signed int

MPI_LONG signed long int

MPI_FLOAT float

MPI_DOUBLE double

MPI_LONG_DOUBLE long double

MPI_UNSIGNED_CHAR unsigned char

MPI_UNSIGNED_SHORT unsigned short int

MPI_UNSIGNED unsigned int

MPI_UNSIGNED_LONG unsigned long int
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The 1st derivative of a function with finite differences1 A first scientific computation
Given a function f (x) : [a, b] → R we want to approximate f ′(x) on a (uniform) grid onthe [a, b] interval by using a finite difference scheme in parallel.
• Given an integer n ∈ N we can subdivide the interval [a, b] into intervals of length
∆x = (b−a)/n−1 with grid points {xj}n

j=0 = {xj = a + j∆x}n−1
j=0 :

x0 ≡ a
x1

x2

x3

xj = x0 + j∆x

xn−2

xn−1 ≡ b

,
• and consider the values {fj}n−1

j=0 = {f (xj)}n−1
j=0• We can approximate the values of f ′(xj), for j = 1, . . . , n − 2, by using only thevalues of f at the knots {fj}n−1

j=0
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The 1st derivative of a function with finite differences1 A first scientific computation
• The first derivative of f at x = xj can be expressed by using knots for j′ > j

f ′(xj) ≜ lim
∆x→0

fj+1 − fj

∆x
≈

fj+1 − fj

∆x
≜ D+fj,

xj−1 xj xj+1

• or equivalently by using knots for j′ < j

f ′(xj) ≜ lim
∆x→0

fj − fj−1

∆x
≈

fj − fj−1

∆x
≜ D−fj,

xj−1 xj xj+1

• at last we can consider the arithmetic mean of previous two:
f ′(xj) ≈ D0fj ≜

1
2
(D−fj + D+fj) =

fj+1 − fj−1

2∆x
,

xj−1 xj xj+1

7/48



The 1st derivative of a function with finite differences1 A first scientific computation
• The first derivative of f at x = xj can be expressed by using knots for j′ > j

f ′(xj) ≜ lim
∆x→0

fj+1 − fj

∆x
≈

fj+1 − fj

∆x
≜ D+fj,

xj−1 xj xj+1

• or equivalently by using knots for j′ < j

f ′(xj) ≜ lim
∆x→0

fj − fj−1

∆x
≈

fj − fj−1

∆x
≜ D−fj,

xj−1 xj xj+1

• at last we can consider the arithmetic mean of previous two:
f ′(xj) ≈ D0fj ≜

1
2
(D−fj + D+fj) =

fj+1 − fj−1

2∆x
,

xj−1 xj xj+1

7/48



The 1st derivative of a function with finite differences1 A first scientific computation
• The first derivative of f at x = xj can be expressed by using knots for j′ > j

f ′(xj) ≜ lim
∆x→0

fj+1 − fj

∆x
≈

fj+1 − fj

∆x
≜ D+fj,

xj−1 xj xj+1

• or equivalently by using knots for j′ < j

f ′(xj) ≜ lim
∆x→0

fj − fj−1

∆x
≈

fj − fj−1

∆x
≜ D−fj,

xj−1 xj xj+1

• at last we can consider the arithmetic mean of previous two:
f ′(xj) ≈ D0fj ≜

1
2
(D−fj + D+fj) =

fj+1 − fj−1

2∆x
,

xj−1 xj xj+1

7/48



Writing the sequential algorithm1 A first scientific computation

The sequential algorithms needs to break the approximation process into three parts
1. evaluate the derivative f ′(xi) for i = 1, . . . , n − 2,
2. evaluate the derivative at the left–hand side f ′(x0),
3. evaluate the derivative at the right–hand side f ′(xn−1).

To have the same order of approximation at each point of the grid we need to use aone–sided formula for the steps 2. and 3., specifically
f ′(x0) ≈

−3f0 + 4f1 − f2

2∆x
, f ′(xn−1) ≈

3fn−1 − 4fn−2 + fn−3

2∆x
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Writing the sequential algorithm1 A first scientific computation
void firstderiv1D_vec(int n, double dx, double *f, double *fx){

double scale;

scale = 1.0/(2.0*dx);

for (int i = 1; i < n-1; i++){

fx[i] = (f[i+1] - f[i-1])*scale;

}

fx[0] = (-3.0*f[0] + 4.0*f[1] - f[2])*scale;

fx[n-1] = (3.0*f[n-1] - 4.0*f[n-2] + f[n-3])*scale;

return;

}

The function takes as input• the number of grid points is n,
• the amplitude of such intervals∆x,
• the array containing the evaluation of f

(intent: input),
• the array that will contain the value of thederivative (intent: output)
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Writing the parallel algorithm1 A first scientific computation

To implement the sequential differencing functions in parallel with MPI, we have toperform several steps
1. partition our domain [a, b] among the processors,
2. each processor computes the FD for all the points contained on that processor
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Writing the parallel algorithm1 A first scientific computation
To implement the sequential differencing functions in parallel with MPI, we have toperform several steps1. partition our domain [a, b] among the processors,2. each processor computes the FD for all the points contained on that processorTo actually perform the second step, we observe that the end-points on each subdomainneeds information not contained on the processor, but that resides on a different one, we
need to communicate boundary data!

Red dots are halo data, the one we need to communicate, gray dots are owned data.
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Writing the parallel algorithm1 A first scientific computation
The prototype of the function we want to write can be, in this case,
void firstderiv1Dp_vec(int n, double dx, double *f, double *fx,

int mynode, int totalnodes)where• int n is the number of points per process,• double dx the amplitude of each interval,• double *f, double *fx the local portions with the values of f (x) (input) and
f ′(x) (output),• int mynode the rank of the current process,• int totalnodes the size of the communicatorWe declare then the variables

double scale = 1.0/(2.0*dx);

double mpitemp;

MPI_Status status;11/48



Writing the parallel algorithm1 A first scientific computation

Then we can treat the case in which we are at the beginning or at the end of the globalinterval
if(mynode == 0){

fx[0] = (-3.0*f[0] + 4.0*f[1] - f[2])*scale;

}

if(mynode == (totalnodes-1)){

fx[n-1] = (3.0*f[n-1] - 4.0*f[n-2] + f[n-3])*scale;

}

this approximate the derivative at the first and last point of the global interval.
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Writing the parallel algorithm1 A first scientific computation
Then we can treat the case in which we are at the beginning or at the end of the globalinterval
if(mynode == 0){

fx[0] = (-3.0*f[0] + 4.0*f[1] - f[2])*scale;

}

if(mynode == (totalnodes-1)){

fx[n-1] = (3.0*f[n-1] - 4.0*f[n-2] + f[n-3])*scale;

}this approximate the derivative at the first and last point of the global interval.Then, we can compute the inner part (the gray points) of the local interval by doing:
for(int i=1;i<n-1;i++){

fx[i] = (f[i+1]-f[i-1])*scale;

}
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Writing the parallel algorithm1 A first scientific computation
The other case we need to treat is again the particular case in which we are in the first, orin the last interval. In both cases we have only one communication to perform
if(mynode == 0){

mpitemp = f[n-1];

MPI_Send();

MPI_Recv();

fx[n-1] = (mpitemp - f[n-2])*scale;

}

else if(mynode == (totalnodes-1)){

MPI_Recv();

fx[0] = (f[1]-mpitemp)*scale;

mpitemp = f[0];

MPI_Send();

}
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Writing the parallel algorithm1 A first scientific computation
The other case we need to treat is again the particular case in which we are in the first, orin the last interval. In both cases we have only one communication to perform
if(mynode == 0){

mpitemp = f[n-1];

MPI_Send(&mpitemp,1,MPI_DOUBLE,1,1,MPI_COMM_WORLD);

MPI_Recv(&mpitemp,1,MPI_DOUBLE,1,1,MPI_COMM_WORLD,&status);

fx[n-1] = (mpitemp - f[n-2])*scale;

}

else if(mynode == (totalnodes-1)){

MPI_Recv(&mpitemp,1,MPI_DOUBLE,mynode-1,1,MPI_COMM_WORLD,

&status);

fx[0] = (f[1]-mpitemp)*scale;

mpitemp = f[0];

MPI_Send(&mpitemp,1,MPI_DOUBLE,mynode-1,1,MPI_COMM_WORLD);

}
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Writing the parallel algorithm1 A first scientific computation
Finally, the only remaining case is the one in which we need to communicate both theextremes of the interval
else{

MPI_Recv();

fx[0] = (f[1]-mpitemp)*scale;

mpitemp = f[0];

MPI_Send();

mpitemp = f[n-1];

MPI_Send();

MPI_Recv();

fx[n-1] = (mpitemp-f[n-2])*scale;

}

14/48



Writing the parallel algorithm1 A first scientific computation
Finally, the only remaining case is the one in which we need to communicate both theextremes of the interval
else{

MPI_Recv(&mpitemp,1,MPI_DOUBLE,mynode-1,1,MPI_COMM_WORLD,

&status);

fx[0] = (f[1]-mpitemp)*scale;

mpitemp = f[0];

MPI_Send(&mpitemp,1,MPI_DOUBLE,mynode-1,1,MPI_COMM_WORLD);

mpitemp = f[n-1];

MPI_Send(&mpitemp,1,MPI_DOUBLE,mynode+1,1,MPI_COMM_WORLD);

MPI_Recv(&mpitemp,1,MPI_DOUBLE,mynode+1,1,MPI_COMM_WORLD,

&status);

fx[n-1] = (mpitemp-f[n-2])*scale;

}And the routine is complete!
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Writing the parallel algorithm1 A first scientific computation
A simple (and not very useful) principal program for this routine can be written by first initializing the parallelenvironment, and discovering who we are.
MPI_Init( &argc, &argv );

MPI_Comm_rank( MPI_COMM_WORLD, &mynode );

MPI_Comm_size( MPI_COMM_WORLD, &totalnodes );

Then we build the local values of the f function
globala = 0; globalb = 1;

a = globala + ((double) mynode)*(globalb - globala)/( (double) totalnodes);

b = globala + ((double) mynode+1)*(globalb - globala)/( (double) totalnodes);

f = (double *) malloc(sizeof(double)*(n));

fx = (double *) malloc(sizeof(double)*(n));

dx = (b-a)/((double) n);

for( int i = 0; i < n; i++){ f[i] = fun(a+((double) i)*dx); }

Finally we invoke our parallel computation
firstderiv1Dp_vec( n, dx, f, fx, mynode, totalnodes);
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Writing the parallel algorithm1 A first scientific computation
To check if what we have done makes sens we evaluate the error in the ∥ · ∥2 norm on thegrid, i.e.,√∆x∥f ′ − fx∥2 on every process
error = 0.0;

for(int i = 0; i < n; i++){

error += pow( fx[i]-funprime(a+((b-a)*((double) i))/((double) n)),2.0);

}

error = sqrt(dx*error);

printf("Node %d ||f' - fx||_2 = %e\n",mynode,error);

Then we clear the memory and close the parallel environment
free(f);

free(fx);

MPI_Finalize();
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Collective Communications2 Collective Communications
A collective communication is a communication that involves a group (or groups) ofprocesses.• the group of processes is represented as always as a communicator that provides acontext for the operation,• Syntax and semantics of the collective operations are consistent with the syntax andsemantics of the point-to-point operations,• For collective operations, the amount of data sent must exactly match the amount ofdata specified by the receiver.

Mixing type of calls
Collective communication calls may use the same communicators as point-to-pointcommunication; Any (conforming) implementation of MPI messages guarantees that callsgenerated on behalf of collective communication calls will not be confused with messagesgenerated by point-to-point communication.
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Taxonomy of collective communications2 Collective Communications
• The broadcast operation

a0 a0

a0

a0

a0

data

processes

In the broadcast, initially just the first process contains the data a0, but after thebroadcast all processes contain it.
• This is an example of a one-to-all communication, i.e., only one process contributesto the result, while all processes receive the result.
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Taxonomy of collective communications: Broadcast2 Collective Communications
int MPI_Bcast(void* buffer, int count, MPI_Datatype datatype, int root,

MPI_Comm comm)

Broadcasts a message from the process with rank root to all processes of the group, itselfincluded.
void* buffer on return, the content of root’s buffer is copied to all other processes.
int count size of the message
MPI_Datatype datatype type of the buffer
int root rank of the process broadcasting the message

MPI_Comm comm communicator grouping the processes involved in the broadcastoperation
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Taxonomy of collective comm‘s: Scatter and Gather2 Collective Communications
• The scatter and gather operations

a0 a1 a2 a3 a0

a1

a2

a3

data

processes

• In the scatter, initially just the first process contains the data a0, . . . , a3, but after the
scatter the jth process contains the aj data.• In the gather, initially the jth process contains the aj data, but after the gather thefirst process contains the data a0, . . . , a3
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Taxonomy of collective communications: Gather2 Collective Communications
Each process (root process included) sends the contents of its send buffer to the root process. Thelatter receives the messages and stores them in rank order.
int MPI_Gather(const void* sendbuf, int sendcount, MPI_Datatype sendtype,

void* recvbuf, int recvcount, MPI_Datatype recvtype, int root, MPI_Comm comm)

const void* sendbuf starting address of send buffer
int sendcount number of elements in send buffer
MPI_Datatype sendtype data type of send buffer elements
void* recvbuf address of receive buffer
int recvcount number of elements for any single receive (and not the total number of items!)
MPI_Datatype recvtype data type of received buffer elements

int root rank of receiving process
MPI_Comm comm communicator

These are significant only at root!
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Taxonomy of collective communications: Gather2 Collective Communications

Observe that
• The type signature of sendcount, sendtype on each process must be equal to the typesignature of recvcount, recvtype at all the processes.
• The amount of data sent must be equal to the amount of data received, pairwise betweeneach process and the root.
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Taxonomy of collective communications: Gather2 Collective Communications
Observe that

• The type signature of sendcount, sendtype on each process must be equal to the typesignature of recvcount, recvtype at all the processes.
• The amount of data sent must be equal to the amount of data received, pairwise betweeneach process and the root.

Therefore, if we need to have a varying count of data from each process, we need to use instead
int MPI_Gatherv(const void* sendbuf, int sendcount, MPI_Datatype sendtype,

void* recvbuf, const int recvcounts[], const int displs[],

MPI_Datatype recvtype, int root, MPI_Comm comm)

where
const int recvcounts[] is an array (of length group size) containing the number of elementsthat are received from each process,
const int displs[] is an array (of length group size). Entry i specifies the displacementrelative to recvbuf at which to place the incoming data from process i.23/48



Taxonomy of collective communications: Gather2 Collective Communications

If we need to have the result of the gather operation on every process involved in thecommunicator we can use the variant
int MPI_Allgather(const void* sendbuf, int sendcount,

MPI_Datatype sendtype, void* recvbuf, int recvcount,

MPI_Datatype recvtype, MPI_Comm comm)

• All processes in the communicator comm receive the result. The block of data sent from the
jth process is received by every process and placed in the jth block of the buffer recvbuf.

• The type signature associated with sendcount, sendtype, at a process must be equal to thetype signature associated with recvcount, recvtype at any other process.
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Taxonomy of collective communications: Gather2 Collective Communications
If we need to have the result of the gather operation on every process involved in thecommunicator we can use the variant
int MPI_Allgather(const void* sendbuf, int sendcount,

MPI_Datatype sendtype, void* recvbuf, int recvcount,

MPI_Datatype recvtype, MPI_Comm comm)

• All processes in the communicator comm receive the result. The block of data sent from the
jth process is received by every process and placed in the jth block of the buffer recvbuf.

• The type signature associated with sendcount, sendtype, at a process must be equal to thetype signature associated with recvcount, recvtype at any other process.
This function has also the version for gathering messages with different sizes:
int MPI_Allgatherv(const void* sendbuf, int sendcount,

MPI_Datatype sendtype, void* recvbuf, const int recvcounts[],

const int displs[], MPI_Datatype recvtype, MPI_Comm comm)

and works in a way analogous to the MPI_Gatherv.
24/48



Taxonomy of collective communications: Scatter2 Collective Communications
This is simply the inverse operation of MPI_Gather
int MPI_Scatter(const void* sendbuf, int sendcount,

MPI_Datatype sendtype, void* recvbuf, int recvcount,

MPI_Datatype recvtype, int root, MPI_Comm comm)

const void* sendbuf address of send buffer
int sendcount number of elements sent to each process
MPI_Datatype sendtype type of send buffer elements
void* recvbuf address of receive buffer
int recvcount number of elements in receive buffer
MPI_Datatype recvtype data type of receive buffer elements
int root rank of sending process

MPI_Comm comm communicator

These choices are significant only at root!
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int MPI_Scatter(const void* sendbuf, int sendcount,

MPI_Datatype sendtype, void* recvbuf, int recvcount,

MPI_Datatype recvtype, int root, MPI_Comm comm)

const void* sendbuf address of send buffer
int sendcount number of elements sent to each process
MPI_Datatype sendtype type of send buffer elements
void* recvbuf address of receive buffer
int recvcount number of elements in receive buffer
MPI_Datatype recvtype data type of receive buffer elements
int root rank of sending process

MPI_Comm comm communicator
These choices are significant only at root!
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Taxonomy of collective communications: Scatter2 Collective Communications

Observe that
• The type signature of sendcount, sendtype on each process must be equal to the typesignature of recvcount, recvtype at the root.
• The amount of data sent must be equal to the amount of data received, pairwise betweeneach process and the root.

26/48



Taxonomy of collective communications: Scatter2 Collective Communications
Observe that

• The type signature of sendcount, sendtype on each process must be equal to the typesignature of recvcount, recvtype at the root.
• The amount of data sent must be equal to the amount of data received, pairwise betweeneach process and the root.

Therefore, if we need to have a varying count of data from each process, we need to use instead
int MPI_Scatterv(const void* sendbuf, const int sendcounts[],

const int displs[], MPI_Datatype sendtype, void* recvbuf,

int recvcount, MPI_Datatype recvtype, int root, MPI_Comm comm)

where
const int sendcounts[] is an array (of length group size) containing the number of elementsthat are sent to each process,
const int displs[] is an array (of length group size). Entry i specifies the displacementrelative to recvbuf from which to take the outgoing data to process i.26/48



Modifying the 1st derivative code2 Collective Communications
Let us perform the following modification to our first derivative code:1. Taking from input the number of points to use in each interval,2. Collecting the whole result on one process and print it on file.For the first step we use the MPI_Bcast function,

if(mynode == 0){

if(argc != 2){

n = 20;

}else{

n = atoi(argv[1]);

}

}

MPI_Bcast(&n,1,MPI_INT,

0,MPI_COMM_WORLD);

• We read on rank 0 the number n fromcommand line,
• Then we broadcast it with MPI_Bcast,pay attention to the fact that thebroadcast operations happens on allthe processes!

27/48



Modifying the 1st derivative code2 Collective Communications

Then we gather all the derivatives from the various processes and collect them on process
0.

if(mynode == 0)

globalderiv = (double *)

malloc(sizeof(double)

*(n*totalnodes));

MPI_Gather(fx,n,MPI_DOUBLE,

globalderiv,n,MPI_DOUBLE,

0,MPI_COMM_WORLD);

• we allocate on rank 0 the memory that is necessaryto store the whole derivative array,
• then we use the
MPI_Gather

to gather all the array fx (of double) inside the
globalderiv array.

28/48



Modifying the 1st derivative code2 Collective Communications
At last we print it out on file on rank 0

if(mynode == 0){

FILE *fptr;

fptr = fopen("derivative", "w");

for(int i = 0; i < n*totalnodes; i++)

fprintf(fptr,"%f %f\n",globala+i*dx,globalderiv[i]);

fclose(fptr);

free(globalderiv);

}

File is now formatted in such a way that you can use MATLAB/Octave or Gnuplot to get afigure.
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All-to-All2 Collective Communications
Extension of MPI_ALLGATHER where each process sends distinct data to each of the receivers.

a0 a1 . . . ad

b0 b1 . . . cd

... ... . . . ...
z0 z1 . . . zd

a0 b0 . . . z1

a1 b1 . . . z2

... ... . . . ...
ad bd . . . zd

data data

processes

int MPI_Alltoall(const void* sendbuf, int sendcount, MPI_Datatype sendtype,

void* recvbuf, int recvcount, MPI_Datatype recvtype, MPI_Comm comm)

• The jth block sent from process i is received by process j and is placed in the ith block of
recvbuf.

• The type signature for sendcount, sendtype, at a process must be equal to the typesignature for recvcount, recvtype at any other process.30/48



All-to-All different data size2 Collective Communications
If we need to send data of different size between the processes
int MPI_Alltoallv(const void* sendbuf, const int sendcounts[],

const int sdispls[], MPI_Datatype sendtype, void* recvbuf,

const int recvcounts[], const int rdispls[],

MPI_Datatype recvtype, MPI_Comm comm);

const void* sendbuf starting address of send buffer
const int sendcounts[] array specifying the number of elements to send to each rank
const int sdispls[] entry j specifies the displacement (relative to sendbuf) from which totake the outgoing data destined for process j

void* recvbuf array specifying the number of elements that can be received from each rank
const int recvcounts[] integer array. Entry i specifies the displacement (relative to

recvbuf) at which to place the incoming data from process i

const int rdispls[] entry i specifies the displacement (relative to recvbuf) at which toplace the incoming data from process i31/48



The reduce operation2 Collective Communications
The reduce operation for a given operator takes a data buffer from each of the processesin the communicator group and combines it according to operator rules.
int MPI_Reduce(const void* sendbuf, void* recvbuf,

int count, MPI_Datatype datatype, MPI_Op op,

int root, MPI_Comm comm);

const void* sendbuf address of send buffer
void* recvbuf address of receive buffer
int count number of elements in send buffer
MPI_Datatype datatype data type of elements of send buffer
MPI_Op op reduce operation
int root rank of root process

MPI_Comm comm communicator
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The reduce operation2 Collective Communications

The value of MPI_Op op for the reduce operation can be taken from any of the followingoperators.
MPI_MAX Maximum MPI_MAXLOC Max value and location
MPI_MIN Minimum MPI_MINLOC Minimum value and location
MPI_SUM Sum MPI_LOR Logical or
MPI_PROD Product MPI_BOR Bit-wise or
MPI_LAND Logical and MPI_LXOR Logical exclusive or
MPI_BAND Bit-wise and MPI_BXOR Bit-wise exclusive or
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The reduce operation2 Collective Communications

Moreover, if a different operator is needed, it is possible to create it by means of thefunction
int MPI_Op_create(MPI_User_function* user_fn, int commute,

MPI_Op* op)

In C the prototype for a MPI_User_function is
typedef void MPI_User_function(void* invec, void* inoutvec,

int *len, MPI_Datatype *datatype);
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Global reduce operation – All-Reduce2 Collective Communications
As for other collective operations we may want to have the result of the reduction available onevery process in a group.The routine for obtaining such result is
int MPI_Allreduce(const void* sendbuf, void* recvbuf,

int count, MPI_Datatype datatype, MPI_Op op, MPI_Comm comm)

const void* sendbuf address of send buffer
void* recvbuf address of receive buffer
int count number of elements in send buffer

MPI_Datatype datatype data type of elements of send buffer
MPI_Op op reduce operation

MPI_Comm comm communicator
This instruction behaves like a combination of a reduction and broadcast operation.
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Global reduce operation – All-Reduce-Scatter2 Collective Communications
This is another variant of the reduction operation in which the result is scattered to allprocesses in a group on return.
int MPI_Reduce_scatter_block(const void* sendbuf,

void* recvbuf, int recvcount, MPI_Datatype datatype,

MPI_Op op, MPI_Comm comm);

• The routine is called by all group members using the same arguments for
recvcount, datatype, op and comm.

• The resulting vector is treated as n consecutive blocks of recvcount elements thatare scattered to the processes of the group comm.
• The ith block is sent to process i and stored in the receive buffer defined by
recvbuf, recvcount, and datatype.
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Global reduce operation – All-Reduce-Scatter2 Collective Communications
Of this function also a variant with variable block–size is available
int MPI_Reduce_scatter(const void* sendbuf, void* recvbuf,

const int recvcounts[], MPI_Datatype datatype, MPI_Op op,

MPI_Comm comm);

• This routine first performs a global element-wise reduction on vectors of
count =

∑n−1
i=0 recevcounts[i] elements in the send buffers defined by sendbuf,

count and datatype, using the operation op, where n is the size of thecommunicator.• The routine is called by all group members using the same arguments for
recvcounts, datatype, op and comm.• The resulting vector is treated as n consecutive blocks where the number ofelements of the ith block is recvcounts[i].• The ith block is sent to process i and stored in the receive buffer defined by
recvbuf, recvcounts[i] and datatype.37/48
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Integrals with parallel midpoint quadrature rule3 Some computations using collective communications
Given f : [a, b] → R themidpoint rule (sometimes rectangle rule) is given by∫ b

a
f (x)dx ≈ I1 = (b − a)f

(
a + b

2

)
,

This is a very crude approximation, to make it moreaccurate we may break up the interval [a, b] into anumber n of non-overlapping subintervals [ak, bk]such that [a, b] = ∪k[ak, bk],
In =

n∑
k=0

(bk − ak)f
(

ak + bk

2

)
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Integrals with parallel midpoint quadrature rule3 Some computations using collective communications
If we want to transform this computation in a parallel computation we can adopt thefollowing sketch:
1. if (mynode == 0) get number of intervals for quadrature2. broadcast number of intervals to all the processes3. assign the non-overlapping intervals to the processes4. sum function values in the center of each interval5. reduce with operator sum the integral on process 0.

As a test function for the parallel integration routine we can use
f (x) =

4
1 + x2 ; I =

∫ 1

0

4
1 + x2 dx = π.

To evaluate the error we can use the value :
double PI25DT = 3.141592653589793238462643;
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Computing integrals with parallel midpoint quadrature
rule3 Some computations using collective communications

h = 1.0 / ((double) n*totalnodes);

sum = 0.0;

for (i = 1+mynode*n;

i <= n*(mynode+1);

i++){

x = h * ((double)i - 0.5);

sum += f(x);

}

mypi = h * sum;

MPI_Reduce(&mypi, &pi, 1,

MPI_DOUBLE,

MPI_SUM, 0,

MPI_COMM_WORLD);

• We assume that all the intervals have the same size,thus the scaling h = 1.0 / (double) n,
• We compute all the value x that are in the localprocess and increment the local sum,
• in conclusion we perform an MPI_Reduce to sumtogether all the local sums.
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Computing integrals with parallel midpoint quadrature
rule3 Some computations using collective communications

You can then print out the obtained value of π and the error with respect to PI25DT as
if (mynode == 0){

printf("pi is approximately %.16f, Error is %e\n",

pi, fabs(pi - PI25DT));

}
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Timers and Synchronization4 Timers and Synchronization

• A timer is specified even though it is not an instruction based on “message-passing”:timing parallel programs is important for inquiring on the “performances” of yourcode.

• the timer returns a floating-point number of seconds, representing elapsedwall-clock time since some time in the past:
double MPI_Wtime(void);

the time in the past is guaranteed not to change during the life of the process.
• There exists a tag MPI_WTIME_IS_GLOBAL that is 1 if clocks at all processes in
MPI_COMM_WORLD are synchronized, 0 otherwise.
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• A timer is specified even though it is not an instruction based on “message-passing”:timing parallel programs is important for inquiring on the “performances” of yourcode.• the timer returns a floating-point number of seconds, representing elapsedwall-clock time since some time in the past:

double MPI_Wtime(void);the time in the past is guaranteed not to change during the life of the process.
• the usual application of a timer is something of the form:
double starttime, endtime;

starttime = MPI_Wtime();

< --- foolish things happen here --- >

endtime = MPI_Wtime();

printf("That took %f seconds\n",endtime-starttime);

• There exists a tag MPI_WTIME_IS_GLOBAL that is 1 if clocks at all processes in
MPI_COMM_WORLD are synchronized, 0 otherwise.
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Timers and Synchronization4 Timers and Synchronization
• MPI offers a barrier function that blocks the caller until all processes in the communicatorhave called it
int MPI_Barrier(MPI_Comm comm)

that is, the call returns at any process only after all members of the communicator haveentered the call.

• It can be used together with the MPI_Wait function to force a synchronization point in theprogram.
• It can be used to regulate the access to an external resource (e.g., a file) in such a way thatevery processor accesses it in an order way: if you are interested in writing file in parallel youcan look at Chapter 13 of the MPI guide1
1Message Passing Interface Forum. MPI: A Message-Passing Interface Standard, Version 3.1.

https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf, High Performance ComputingCenter Stuttgart (HLRS).
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Evaluating performances4 Timers and Synchronization
You can use the MPI_Wtime() to give a simple evalaution of the performances of yourprogram.
Consider, e.g., the two programs for the computation of the π constant. You can evaluatethe weak scalability of your code by looking at the time spent in doing the wholecomputation for growing size of processor numbers and samples.
We can compute the efficiency of the code by measuring:

E = t(1)/t(N) ∈ [0, 1]

where
• t(1) is the amount of time to complete a work unit with 1 processing element,
• t(N) is the amount of time to complete N of the same work units with N processingelements.
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Further modifications4 Timers and Synchronization
For the derivative program:
• In every case the function void firstderiv1Dp_vec wants to exchangeinformation between two adjacent processes, i.e., every process wants to “swap” ishalo with its adjacent process. We can rewrite the whole function by using the
MPI_Sendrecv_replace point-to-point communication routine.• We can rewrite the entire program in an “embarrassing parallel” way, if every processhas access to f , and are assuming that all the interval are partitioned the same way,by using the knowledge of our rank we can compute what are the boundaryelements at the previous and following process. Thus, no communication at all!

For the π programs,
• Make a graph of the timings to evaluate the weak scaling efficiency.

– Try this at home! (Maybe here, if there is still time. . . ) –
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Calcolo Parallelo dall’Infrastruttura allaMatematica Thank you for listening!

Any questions?
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