

Calcolo Parallelo dall'Infrastruttura alla Matematica

Calcolo parallelo: perché, quali infrastratture, quali problemi? Laurea Triennale e Magistrale in Matematica

Fabio Durastante

April 28, 2023

- ► Building our machine OS: What flavor of Linux?
- Network architecture Ethernet Cables
- ► Let's rock and rol Install the OS

Cluster

"Clusters are an ensemble of **off-the-shelf computers** integrated by an **interconnection network** and operating within a single administrative domain and usually within a single machine room. Commodity clusters employ **commercially available networks** (e.g., **Ethernet**, Myrinet) as opposed to custom networks (e.g., IBM SP-2). *Beowulf-class* clusters incorporate mass-market PC technology for their compute nodes to achieve the best price/performance."

Beowulf Cluster Computing with Linux

A **node** is responsible for all activities and capabilities associated with executing an application program and supporting a sophisticated software environment:

- 1. instruction execution;
- 2. high-speed temporary information storage;
- 3. high-capacity persistent information storage, and
- 4. **communication** with the external environment, including **other nodes**.

A **network** is a combination of *physical transport* and *control mechanisms* associated with a **layered hierarchy** of **message** encapsulation.

Let's start with the nodes:

Radxa ROCK 4C+

CPU Arm® big.LITTLE™ technology:
Dual Cortex® A72 frequency 1.5GHz and a
Quad Cortex A53 frequency 1.0GHz,

GPU Arm Mali™ T860MP4 GPU,

RAM Dual channel 4GB 64bit LPDDR4,

LAN 1x Gigabit Ethernet port,

HD 1x micro SD card slot.

Let's start with the nodes:

Radxa ROCK 4C+

CPU Arm®big.LITTLE™ technology:
Dual Cortex® A72 frequency 1.5GHz and a
Quad Cortex A53 frequency 1.0GHz.

GPU Arm Mali™ T860MP4 GPU,

RAM Dual channel 4GB 64bit LPDDR4,

LAN 1x Gigabit Ethernet port,

HD 1x micro SD card slot.

Why two processors?

The idea

ARM big.LITTLE is a **heterogeneous computing architecture** coupling *relatively* energy-saving and slower processor cores (LITTLE) with *relatively* more powerful and power-hungry ones (big).

- Only one "side" or the other will be active at once,
- All cores have access to the same memory regions, so workloads can be swapped between big and LITTLE cores on the fly.

LITTLE

The idea

ARM big.LITTLE is a **heterogeneous computing architecture** coupling *relatively* energy-saving and slower processor cores (LITTLE) with *relatively* more powerful and power-hungry ones (big).

- Only one "side" or the other will be active at once,
- All cores have access to the same memory regions, so workloads can be swapped between big and LITTLE cores on the fly.

big

The LPDDR4 acronym stands for Low-Power Double Data Rate 4 dynamic RAM.

Along with processor speed (Moore's Law), memory capacity has grown at a phenomenal rate, quadrupling in size approximately every three years.

Source: John C. McCallum (2023)

OurWorldInData.org/technological-change • CC BY
Note: For each year, the time series shows the cheapest historical price recorded until that year.

Each node will use Kingston 64 GB Micro SD (SDHC Class 10) SDCS/32GB with

- OS Local to the node.
- Home Where the users files and program will reside, it will be a shared file system.

Power requirements and cooling

1 Building our machine

The Radxa ROCK 4C+ is powered with a 5V source.

- USB C 5V/3A,
- 5V Power applied to the GPIO PIN 2 & 4.

The recommended power source capacity is at least 5V/3A.

"The Radxa ROCK 4C+ will operate perfectly well without any additional cooling and is **designed for sprint performance** - expecting a light use case on average then ramping up the CPU speed when needed (e.g. when loading a webpage). If a user wishes to load the system continually or operate it at a high termperature (sic.) at full perfor-

mance, further cooling may be needed."

The Radxa ROCK 4C+ has **Debian/Ubuntu Linux support**, images can be obtained from:

https://wiki.radxa.com/Rockpi4/downloads

- Ubuntu 20.04.6 LTS (Focal Fossa),
- Server install image ⇒ No GUI!
- Again, why Linux? Linux is the unchallenged champion for building compute engines with commodity parts: www.top500.org.

\approx 10 Gb for the OS:

- Compilers: GCC Suite v10.3.0,
- MPI: OpenMPI v4.0.3,
- OpenBLAS vo.3.8,
- Valgrind v3.15.0.

pprox 40 Gb of shared filesystem for the homes.

- Compilers: GCC Suite v10.3.0,
- MPI: OpenMPI v4.0.3,
- OpenBLAS vo.3.8,
- Valgrind v3.15.0.
- GlusterFS v7.2

 \approx 40 Gb of shared filesystem for the homes.

We will use the **Gluster File S**ystem (www.gluster.org)

pprox 10 Gb for the OS:

- Compilers: GCC Suite v10.3.0,
- MPI: OpenMPI v4.0.3,
- OpenBLAS vo.3.8,
- Valgrind v3.15.0.
- GlusterFS v7.2

 \approx 40 Gb of shared filesystem for the homes.

We will use the **Gluster File S**ystem (www.gluster.org)

"Gluster is a distributed scale-out filesystem that allows rapid provisioning of additional storage based on your storage consumption needs. It incorporates automatic failover as a primary feature. All of this is accomplished without a centralized metadata server."

- Compilers: GCC Suite v10.3.0,
- MPI: OpenMPI v4.0.3,
- OpenBLAS vo.3.8,
- Valgrind v3.15.0.
- GlusterFS v7.2

 \approx 40 Gb of shared filesystem for the homes.

We will use the **Gluster F**ile **S**ystem (www.gluster.org)

"Gluster is a distributed scale-out filesystem that allows rapid provisioning of additional storage based on your storage consumption needs. It incorporates automatic failover as a primary feature. All of this is accomplished without a centralized metadata server."

All the nodes need to have the same configuration and software!

- Building our machine OS: What flavor of Linux?
- ► Network architecture Ethernet Cables
- Let's rock and rol Install the OS

The Ethernet message packet comprises a sequence of **multibit fields**, one of which is variable length. The fields include a **combination** of **network control information** and **data payload**.

Preamble SFD Destination Source MAC MAC Ether Address Address	erType Payload /	FCS
---	------------------	-----

- TCP/IP is the *de facto* standard network communication protocol:
 - The destination of an Internet Protocol packet is specified by a 32-bit IP address, e.g., 192.168.1.2.

The Ethernet message packet comprises a sequence of **multibit fields**, one of which is variable length. The fields include a **combination** of **network control information** and **data payload**.

		Preamble	SFD	Destination MAC Address	Source MAC Address	EtherType	Payload	4	4	,	FCS
--	--	----------	-----	-------------------------------	--------------------------	-----------	---------	---	---	---	-----

- TCP/IP is the *de facto* standard network communication protocol:
 - The destination of an Internet Protocol packet is specified by a 32-bit IP address, e.g., 192.168.1.2.
- Before assigning IP addresses to our nodes, designing the network topology, and booting all the machine, we need to decide how the system will be accessed: how a user can log in to a system and use the machine?

How do we access the system?

2 Network architecture

The Standalone System: unattached to any external networks, the user need to be in the same room of the machine.

The Universally Accessible Machine: every node is accessible from the entire Internet.

The Guarded Beowulf: reserved IPs to all internal nodes, and single front-end with an IP address accessible from outside.

How do we access the system?

2 Network architecture

The Standalone System: unattached to any external networks, the user need to be in the same room of the machine.

The Universally Accessible Machine: every node is accessible from the entire Internet.

The Guarded Beowulf: reserved IPs to all internal nodes, and single front-end with an IP address accessible from outside.

Our network architecture

2 Network architecture

We will build a **guarded Beowulf** with an access node, where the user will log-in.

All the **nodes** will be connected to the **switch** via Ethernet connection, and will be powered through it.

The access node will be configured on the IP:

IP: 131.114.10.121 Gateway: 131.114.10.1

- 1. Cut the cable to the length needed,
- 2. Strip back the cable jacket approximately 2.5 cm,
- 3. Use the **568-B wiring scheme** on both ends for a standard patch cable.

The maximum length for a cable segment is 100 meters. If longer runs are required repeaters or switches are necessary.

Ethernet Cables

2 Network architecture

Pin	Pair	Wire	Color
1	2	1	1
2	2	2	
3	3	1	1
4	1	2	0
5	1	1	1
6	3	2	0
7	4	1	1
8	4	2	(1)

ANSI/TIA-568 Standard

- 1. Cut the cable to the length needed,
- 2. Strip back the cable jacket approximately 2.5 cm,
- 3. Use the **568-B wiring scheme** on both ends for a standard patch cable.

Power over Ethernet (PoE)

2 Network architecture

Power over Ethernet, or PoE, describes any of several standards or ad hoc systems that pass electric power along with data on twisted-pair Ethernet cabling.

Compliant with IEEE802.3af/at

Isolation: 2.5kV

Power Input: DC44 57V Power Output: DC5V 3A

- 24 10/100/1000Mbps RJ45 PoE+ Ports Switch with 2 SFP Slots.
- PoE power budget is up to 250 W (in laboratory environment).

- We will divide our 20 nodes into these racks,
- The fans must be connected on the red and black GPIOs (power and ground).

- Building our machine OS: What flavor of Linux?
- Network architecture Ethernet Cables
- ► Let's rock and roll Install the OS

Since all the nodes have to be equal we move in **two steps**:

- 1. Install and configure the first node,
- 2. Make copies of the same SD for all the other nodes *or* execute same configuration commands everywhere.

Since all the nodes have to be equal we move in **two steps**:

- 1. Install and configure the first node,
- 2. Make copies of the same SD for all the other nodes *or* execute same configuration commands everywhere.

Let's start with step 1, we go to wiki.radxa.com/Rockpi4/downloads and download

- Etcher A user friendly Image Writer,
- Ubuntu 20 Server(Linux 4.4).

We use Etcher to write the system image on the SD, on Linux this will be a .appimage file, so first of all we have to *make it* executable.

Remark: we need root privileges!

Etcher is intuitive enough to use:

We select the Ubuntu 20 Server(Linux 4.4) image we have downloaded, then select the SD as target and the we flash the SD.

Gluster FS & Other Software

3 Let's rock and roll

To install GlusterFS in Ubuntu we could **follow these steps**:

```
apt install software-properties-common
add-apt-repository ppa:gluster/glusterfs-7
apt update
apt install glusterfs-server
Since we need to install the same software on all the nodes, we will use a default
#!/bin/bash script to be run on each node with something like
for node in host1 host2: do
 scp /tmp/script.sh user@$node:/tmp/script.sh
 if [[ "$?" == "0" ]]; then # checks that last command didn't fail
  ssh -oBatchMode=yes user@$node /tmp/script.sh
 fi
done
```

where host? is the name of the node and user the user that has to execute the code.

Initialization of the nodes

3 Let's rock and roll

The code should look something like:

```
#!/bin/bash
mkdir /scratch
chown -R rock:rock /home/rock
# Don't ask for anything
export DEBIAN_FRONTEND=noninteractive
# Cambia il fuso orario
timedatectl set-timezone Europe/London
# Fixa la chiave pubblica delle repository
# (da https://forum.radxa.com/t/qpq-error-with-ubuntu-server-20-04/1
→ 3392)
wget -0 - apt.radxa.com/focal-stable/public.key | sudo apt-key add -
                         continue on the next slide
```


continued from previous slide

```
# Update & Upgrade

apt update -y && apt upgrade -y

# Install required packages

apt -y install build-essential gcc openmpi-bin openmpi-common

→ libopenmpi-dev slurm python3-pip valgrind tree git curl man-db

→ mc parallel neovim unrar atool
```

This information is also available on the Wiki on the Git repository.

We still need to configure

- The SLURM queue manager,
- The distributed file-system GlusterFS.

The other important point is making the accounts!