
Calcolo Parallelo dall’Infrastruttura alla
Matematica
An Introduction to MPI
Laurea Triennale e Magistrale in Matematica
Fabio Durastante

April 20, 2023

1/39

mailto:fabio.durastante@unipi.it

Table of Contents1 An Introduction to MPI
▶ An Introduction to MPIOur First MPI ProgramThe MPI parallel environmentWhen to travel the MPI route
▶ Point-to-Point CommunicationsDeadlockNonblocking communicationsSendreceiveThings left out
▶ References

2/39

How do we realize practically this parallelism?1 An Introduction to MPI
Let us focus on what we have discussed until now:
• We have “machines” with multiple processors and whose main memory ispartitioned into fragmented components,
• We have algorithms that can divide a problem of size N among these processors sothat they can run (almost) independently,
• With a certain degree of approximation, we know how to compute what is the best
improvementwe can expect from a parallel program with M processors on a problemof size N:
Strong scaling: fixed problem size, increasing number of processes, Amdahl’s law;Weak scaling: fixed problem size per computing process, Gustafson’s law.

3/39

How do we realize practically this parallelism?1 An Introduction to MPI

What we need to discuss now is then:
“How can we actually implement these algorithms on real machines?”

• We need a way to define a parallel environment in which every processor isaccounted for,
• We need to have data formats that are aware of the fact that we have a distributedmemory,
• We need to exchange data between the various memory fragments.

4/39

How do we realize practically this parallelism?1 An Introduction to MPI

What we need to discuss now is then:
“How can we actually implement these algorithms on real machines?”

• We need a way to define a parallel environment in which every processor isaccounted for,

• We need to have data formats that are aware of the fact that we have a distributedmemory,
• We need to exchange data between the various memory fragments.

4/39

How do we realize practically this parallelism?1 An Introduction to MPI

What we need to discuss now is then:
“How can we actually implement these algorithms on real machines?”

• We need a way to define a parallel environment in which every processor isaccounted for,
• We need to have data formats that are aware of the fact that we have a distributedmemory,

• We need to exchange data between the various memory fragments.

4/39

How do we realize practically this parallelism?1 An Introduction to MPI

What we need to discuss now is then:
“How can we actually implement these algorithms on real machines?”

• We need a way to define a parallel environment in which every processor isaccounted for,
• We need to have data formats that are aware of the fact that we have a distributedmemory,
• We need to exchange data between the various memory fragments.

4/39

Message Passing Interface – www.mpi-forum.org1 An Introduction to MPI
“MPI (Message Passing Interface) is a specification for a standard library for mes-
sage passing that was defined by theMPI Forum, a broadly based group of paral-
lel computer vendors, library writers, and applications specialists.” –W. Gropp, E.
Lusk, N. Doss, A. Skjellum, A high-performance, portable implementation of the
MPI message passing interface standard, Parallel Computing, 22 (6), 1996.

• MPI implementations consist of a specific set of routines directly callable from C,C++, Fortran;
• MPI uses Language Independent Specifications for calls and language bindings;
• The MPI interface provides an essential virtual topology, synchronization, andcommunication functionality inside a set of processes.
• There existmany implementations of the MPI specification, e.g., MPICH, Open MPI,pyMPI, Spectrum MPI, Intel MPI, . . .

5/39

https://www.mpi-forum.org/

Message Passing Interface – www.mpi-forum.org1 An Introduction to MPI
“MPI (Message Passing Interface) is a specification for a standard library for mes-
sage passing that was defined by theMPI Forum, a broadly based group of paral-
lel computer vendors, library writers, and applications specialists.” –W. Gropp, E.
Lusk, N. Doss, A. Skjellum, A high-performance, portable implementation of the
MPI message passing interface standard, Parallel Computing, 22 (6), 1996.

• MPI implementations consist of a specific set of routines directly callable from C,C++, Fortran;

• MPI uses Language Independent Specifications for calls and language bindings;
• The MPI interface provides an essential virtual topology, synchronization, andcommunication functionality inside a set of processes.
• There existmany implementations of the MPI specification, e.g., MPICH, Open MPI,pyMPI, Spectrum MPI, Intel MPI, . . .

5/39

https://www.mpi-forum.org/

Message Passing Interface – www.mpi-forum.org1 An Introduction to MPI
“MPI (Message Passing Interface) is a specification for a standard library for mes-
sage passing that was defined by theMPI Forum, a broadly based group of paral-
lel computer vendors, library writers, and applications specialists.” –W. Gropp, E.
Lusk, N. Doss, A. Skjellum, A high-performance, portable implementation of the
MPI message passing interface standard, Parallel Computing, 22 (6), 1996.

• MPI implementations consist of a specific set of routines directly callable from C,C++, Fortran;
• MPI uses Language Independent Specifications for calls and language bindings;

• The MPI interface provides an essential virtual topology, synchronization, andcommunication functionality inside a set of processes.
• There existmany implementations of the MPI specification, e.g., MPICH, Open MPI,pyMPI, Spectrum MPI, Intel MPI, . . .

5/39

https://www.mpi-forum.org/

Message Passing Interface – www.mpi-forum.org1 An Introduction to MPI
“MPI (Message Passing Interface) is a specification for a standard library for mes-
sage passing that was defined by theMPI Forum, a broadly based group of paral-
lel computer vendors, library writers, and applications specialists.” –W. Gropp, E.
Lusk, N. Doss, A. Skjellum, A high-performance, portable implementation of the
MPI message passing interface standard, Parallel Computing, 22 (6), 1996.

• MPI implementations consist of a specific set of routines directly callable from C,C++, Fortran;
• MPI uses Language Independent Specifications for calls and language bindings;
• The MPI interface provides an essential virtual topology, synchronization, andcommunication functionality inside a set of processes.

• There existmany implementations of the MPI specification, e.g., MPICH, Open MPI,pyMPI, Spectrum MPI, Intel MPI, . . .

5/39

https://www.mpi-forum.org/

Message Passing Interface – www.mpi-forum.org1 An Introduction to MPI
“MPI (Message Passing Interface) is a specification for a standard library for mes-
sage passing that was defined by theMPI Forum, a broadly based group of paral-
lel computer vendors, library writers, and applications specialists.” –W. Gropp, E.
Lusk, N. Doss, A. Skjellum, A high-performance, portable implementation of the
MPI message passing interface standard, Parallel Computing, 22 (6), 1996.

• MPI implementations consist of a specific set of routines directly callable from C,C++, Fortran;
• MPI uses Language Independent Specifications for calls and language bindings;
• The MPI interface provides an essential virtual topology, synchronization, andcommunication functionality inside a set of processes.
• There existmany implementations of the MPI specification, e.g., MPICH, Open MPI,pyMPI, Spectrum MPI, Intel MPI, . . .

5/39

https://www.mpi-forum.org/

Fallacies of distributed computing1 An Introduction to MPI

2 The network is reliable;
1 Latency is zero;
5 Bandwidth is infinite;
4 The network is secure;
3 Topology doesn’t change;
6 There is one administrator;
8 Transport cost is zero;
7 The network is homogeneous.

Peter Deutsch
All prove to be false in the long run and allcause big trouble and painful learning
experiences.

6/39

Hello (parallel) world!1 An Introduction to MPI
In all the course we are going to use the MPI inside C programs.
#include "mpi.h"

#include <stdio.h>

int main(int argc,

char **argv){

MPI_Init(&argc, &argv);

printf("Hello, world!\n");

MPI_Finalize();

return 0;

}

• #include "mpi.h" provides basic MPIdefinitions and types,
• MPI_Init start MPI, it has to precede any MPIcall!
• MPI_Finalize exits MPI
• All the non–MPI routines are local!

We need now to compile and link the helloworld.c program, and we can do it simply by:
mpicc helloworld.c -o helloworld

7/39

Hello (parallel) world!1 An Introduction to MPI
In all the course we are going to use the MPI inside C programs.
#include "mpi.h"

#include <stdio.h>

int main(int argc,

char **argv){

MPI_Init(&argc, &argv);

printf("Hello, world!\n");

MPI_Finalize();

return 0;

}

• #include "mpi.h" provides basic MPIdefinitions and types,
• MPI_Init start MPI, it has to precede any MPIcall!
• MPI_Finalize exits MPI
• All the non–MPI routines are local!

We need now to compile and link the helloworld.c program, and we can do it simply by:
mpicc helloworld.c -o helloworld

7/39

Hello (parallel) world! – Compile, Link and Run1 An Introduction to MPI
mpicc helloworld.c -o helloworld

• mpicc is a wrapper for a C compiler provided by the implementation of MPI we areusing.
• the option -o sets the name of the compiled (executable) file.

Let us see what is happening behind the curtains
• you can first try to discover what compiler are you using by executing
mpicc --version,

• or discover what are the library inclusion and linking options by asking for
mpicc --showme:compile and mpicc --showme:link, respectively.

• In general, looking at the output of the man mpicc command is always a good idea.

8/39

Hello (parallel) world! – Compile, Link and Run1 An Introduction to MPI
mpicc helloworld.c -o helloworld

• mpicc is a wrapper for a C compiler provided by the implementation of MPI we areusing.• the option -o sets the name of the compiled (executable) file.Let us see what is happening behind the curtains• you can first try to discover what compiler are you using by executing
mpicc --version, that will give you something like
icc (ICC) 17.0.4 20170411

Copyright (C) 1985-2017 Intel Corporation.

All rights reserved.for an Intel compiler.

• or discover what are the library inclusion and linking options by asking for
mpicc --showme:compile and mpicc --showme:link, respectively.• In general, looking at the output of the man mpicc command is always a good idea.

8/39

Hello (parallel) world! – Compile, Link and Run1 An Introduction to MPI
mpicc helloworld.c -o helloworld

• mpicc is a wrapper for a C compiler provided by the implementation of MPI we areusing.
• the option -o sets the name of the compiled (executable) file.

Let us see what is happening behind the curtains
• you can first try to discover what compiler are you using by executing
mpicc --version,

• or discover what are the library inclusion and linking options by asking for
mpicc --showme:compile and mpicc --showme:link, respectively.

• In general, looking at the output of the man mpicc command is always a good idea.

8/39

Hello (parallel) world! – Compile, Link and Run1 An Introduction to MPI
mpicc helloworld.c -o helloworld

• mpicc is a wrapper for a C compiler provided by the implementation of MPI we areusing.
• the option -o sets the name of the compiled (executable) file.

Let us see what is happening behind the curtains
• you can first try to discover what compiler are you using by executing
mpicc --version,

• or discover what are the library inclusion and linking options by asking for
mpicc --showme:compile and mpicc --showme:link, respectively.

• In general, looking at the output of the man mpicc command is always a good idea.
8/39

Hello (parallel) world! – Compile, Link and Run1 An Introduction to MPI
mpicc helloworld.c -o helloworld

• mpicc is a wrapper for a C compiler provided by the implementation of MPI we areusing.• the option -o sets the name of the compiled (executable) file.Let us see what is happening behind the curtains• you can first try to discover what compiler are you using by executing
mpicc --version,• or discover what are the library inclusion and linking options by asking for
mpicc --showme:compile and mpicc --showme:link, respectively.• In general, looking at the output of the man mpicc command is always a good idea.

“If you find yourself saying, ”But I don’t want to use wrapper compilers!”, please humor us and try
them. See if they work for you. Be sure to let us know if they do not work for you. ” -
https://www.open-mpi.org/faq/?category=mpi-apps

8/39

https://www.open-mpi.org/faq/?category=mpi-apps

Hello (parallel) world! – Compile, Link and Run1 An Introduction to MPI
A piece of advice: if your program is anything more realistic than a classroom exercise use
make, and save yourself from writing painfully long compiling commands, and dealingwith complex dependencies more than once.

“Make gets its knowledge of how to build your program from a file called the
makefile, which lists each of the non-source files and how to compute it from
other files.”

A simple Makefile for our first test would be
MPICC = mpicc #The wrapper for the compiler

CFLAGS += -g #Useful for debug symbols

all: helloworld

helloworld: helloworld.c

$(MPICC) $(CFLAGS) $(LDFLAGS) $? $(LDLIBS) -o $@

clean:

rm -f helloworld9/39

https://www.gnu.org/software/make/

Hello (parallel) world! – Compile, Link and Run1 An Introduction to MPI
If you are running on your machine (possibly for doing some debug), you can run yourfirst parallel program by doing:
mpirun [-np X] [--hostfile <filename>] helloworld

or by using its synonym
mpiexec [-np X] [--hostfile <filename>] helloworld

• mpirun/mpiexec will run X copies of helloworld in your current run-timeenvironment, scheduling (by default) in a round-robin fashion by CPU slot.
• if running under a supported resource manager, Open MPI’s mpirun will usuallyautomatically use the corresponding resource manager process starter, as opposedto, for example, rsh or ssh, which require the use of a hostfile, or will default torunning all X copies on the localhost

• as always, look at the manual, by doing man mpirun.

10/39

Hello (parallel) world! – Compile, Link and Run1 An Introduction to MPI
If you are running on your machine (possibly for doing some debug), you can run yourfirst parallel program by doing:
mpirun [-np X] [--hostfile <filename>] helloworld

or by using its synonym
mpiexec [-np X] [--hostfile <filename>] helloworld

• mpirun/mpiexec will run X copies of helloworld in your current run-timeenvironment, scheduling (by default) in a round-robin fashion by CPU slot.
• if running under a supported resource manager, Open MPI’s mpirun will usuallyautomatically use the corresponding resource manager process starter, as opposedto, for example, rsh or ssh, which require the use of a hostfile, or will default torunning all X copies on the localhost
• as always, look at the manual, by doing man mpirun.

10/39

Hello (parallel) world! – Compile, Link and Run1 An Introduction to MPI
If we now run
mpirun -np 6 helloworldwe get
Hello, world!

Hello, world!

Hello, world!

Hello, world!

Hello, world!

Hello, world!

Every process executes the line
printf("Hello, world!\n");

that it is a local routine!

local versus non-local procedure
A procedure is local if completion of the procedure depends only onthe local executing process.A procedure is non-local if completion of the operation may requirethe execution of some MPI procedure on another process. Such anoperationmay require communication occurring with another userprocess.

11/39

Hello (parallel) world! – Compile, Link and Run1 An Introduction to MPI
If we now run
mpirun -np 6 helloworldwe get
Hello, world!

Hello, world!

Hello, world!

Hello, world!

Hello, world!

Hello, world!

Every process executes the line
printf("Hello, world!\n");

that it is a local routine!
local versus non-local procedure

A procedure is local if completion of the procedure depends only onthe local executing process.A procedure is non-local if completion of the operation may requirethe execution of some MPI procedure on another process. Such anoperationmay require communication occurring with another userprocess.
11/39

The MPI parallel environment1 An Introduction to MPI
Let us modify our helloworld to investigate the MPI parallel environment. Specifically,we want to answer, from within the program, to the questions:
1. How manyprocessesare there?
2. Who am I?

#include "mpi.h"

#include <stdio.h>

int main(int argc, char **argv){

int rank, size;

MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

MPI_Comm_size(MPI_COMM_WORLD, &size);

printf("Hello world! I'm process %d of %d\n",rank, size);

MPI_Finalize();

return 0;

}

12/39

The MPI parallel environment1 An Introduction to MPI
#include "mpi.h"

#include <stdio.h>

int main(int argc, char **argv){

int rank, size;

MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

MPI_Comm_size(MPI_COMM_WORLD, &size);

printf("Hello world! I'm process %d of %d\n",rank, size);

MPI_Finalize();

return 0;

}

• How many is answered by a call to MPI_Comm_size as an int value,• Who am I? Is answered by a call to MPI_Comm_rank as an int value that isconventionally called rank and is a number between 0 and size-1.13/39

The MPI parallel environment1 An Introduction to MPI
The last keyword we describe is the MPI_COMM_WORLD, this is the Communicator object.

Communicator
A Communicator object connects a group of processes in one MPI session. There can bemore than one communicator in an MPI session, each of them gives each containedprocess an independent identifier and arranges its contained processes in an orderedtopology.
This provides• a safe communication space, that guarantees that the code can communicate asthey need to, without conflicting with communication extraneous to the presentcode, e.g., if other parallel libraries are in use,• a unified object for conveniently denoting communication context, the group of

communicating processes and to house abstract process naming.
14/39

The MPI parallel environment1 An Introduction to MPI

If we have saved our inquiring MPI program in the file hamlet.c, we can then modify our
Makefile by modifying/adding the lines
all: helloworld hamlet

hamlet: hamlet.c

$(MPICC) $(CFLAGS) $(LDFLAGS) $? $(LDLIBS) -o $@

clean:

rm -f helloworld hamlet

Then, we compile everything by doing make hamlet (or, simply, make).

15/39

The MPI parallel environment1 An Introduction to MPI
If we have saved our inquiring MPI program in the file hamlet.c, we can then modify our
Makefile by modifying/adding the lines
all: helloworld hamlet

hamlet: hamlet.c

$(MPICC) $(CFLAGS) $(LDFLAGS) $? $(LDLIBS) -o $@

clean:

rm -f helloworld hamletThen, we compile everything by doing make hamlet (or, simply, make).When we run the code with mpirun -np 6 hamlet we see
Hello world! I'm process 1 of 6

Hello world! I'm process 5 of 6

Hello world! I'm process 0 of 6

Hello world! I'm process 3 of 6

Hello world! I'm process 2 of 6

Hello world! I'm process 4 of 6

• Every processor answers the call,
• But it answers it as soon as he has done doing thecomputation! There is no synchronization.

15/39

The MPI parallel environment1 An Introduction to MPI
If we have saved our inquiring MPI program in the file hamlet.c, we can then modify our
Makefile by modifying/adding the lines
all: helloworld hamlet

hamlet: hamlet.c

$(MPICC) $(CFLAGS) $(LDFLAGS) $? $(LDLIBS) -o $@

clean:

rm -f helloworld hamletThen, we compile everything by doing make hamlet (or, simply, make).When we run the code with mpirun -np 6 hamlet we see
Hello world! I'm process 1 of 6

Hello world! I'm process 5 of 6

Hello world! I'm process 0 of 6

Hello world! I'm process 3 of 6

Hello world! I'm process 2 of 6

Hello world! I'm process 4 of 6

• Every processor answers the call,

• But it answers it as soon as he has done doing thecomputation! There is no synchronization.

15/39

The MPI parallel environment1 An Introduction to MPI
If we have saved our inquiring MPI program in the file hamlet.c, we can then modify our
Makefile by modifying/adding the lines
all: helloworld hamlet

hamlet: hamlet.c

$(MPICC) $(CFLAGS) $(LDFLAGS) $? $(LDLIBS) -o $@

clean:

rm -f helloworld hamletThen, we compile everything by doing make hamlet (or, simply, make).When we run the code with mpirun -np 6 hamlet we see
Hello world! I'm process 1 of 6

Hello world! I'm process 5 of 6

Hello world! I'm process 0 of 6

Hello world! I'm process 3 of 6

Hello world! I'm process 2 of 6

Hello world! I'm process 4 of 6

• Every processor answers the call,
• But it answers it as soon as he has done doing thecomputation! There is no synchronization.

15/39

A word of advice1 An Introduction to MPI
When should you not write parallel code with MPI?• The effort of writing optimized and scalable MPI codes is not negligible, therefore adirect usage of it its usually best suited for developing libraries for scientific

computations.

• If there is a library containing a good (possibly open source) parallel implementationof the algorithm and the data structure you need: LEARN IT AND USE IT!

When should you write parallel code with MPI?

• When you are learning about parallel computing with distributed memory!• To really understand what the instructions manuals of such parallel libraries aretelling you,• Sometimes it happens, you are using a library based on MPI and some function thatyou truly need is not included.• To develop new and better libraries for your scientific challenge!

16/39

A word of advice1 An Introduction to MPI
When should you not write parallel code with MPI?• The effort of writing optimized and scalable MPI codes is not negligible, therefore adirect usage of it its usually best suited for developing libraries for scientific

computations.• If there is a library containing a good (possibly open source) parallel implementationof the algorithm and the data structure you need: LEARN IT AND USE IT!When should you write parallel code with MPI?

• When you are learning about parallel computing with distributed memory!• To really understand what the instructions manuals of such parallel libraries aretelling you,• Sometimes it happens, you are using a library based on MPI and some function thatyou truly need is not included.• To develop new and better libraries for your scientific challenge!

16/39

A word of advice1 An Introduction to MPI
When should you not write parallel code with MPI?• The effort of writing optimized and scalable MPI codes is not negligible, therefore adirect usage of it its usually best suited for developing libraries for scientific

computations.• If there is a library containing a good (possibly open source) parallel implementationof the algorithm and the data structure you need: LEARN IT AND USE IT!When should you write parallel code with MPI?• When you are learning about parallel computing with distributed memory!

• To really understand what the instructions manuals of such parallel libraries aretelling you,• Sometimes it happens, you are using a library based on MPI and some function thatyou truly need is not included.• To develop new and better libraries for your scientific challenge!

16/39

A word of advice1 An Introduction to MPI
When should you not write parallel code with MPI?• The effort of writing optimized and scalable MPI codes is not negligible, therefore adirect usage of it its usually best suited for developing libraries for scientific

computations.• If there is a library containing a good (possibly open source) parallel implementationof the algorithm and the data structure you need: LEARN IT AND USE IT!When should you write parallel code with MPI?• When you are learning about parallel computing with distributed memory!• To really understand what the instructions manuals of such parallel libraries aretelling you,

• Sometimes it happens, you are using a library based on MPI and some function thatyou truly need is not included.• To develop new and better libraries for your scientific challenge!

16/39

A word of advice1 An Introduction to MPI
When should you not write parallel code with MPI?• The effort of writing optimized and scalable MPI codes is not negligible, therefore adirect usage of it its usually best suited for developing libraries for scientific

computations.• If there is a library containing a good (possibly open source) parallel implementationof the algorithm and the data structure you need: LEARN IT AND USE IT!When should you write parallel code with MPI?• When you are learning about parallel computing with distributed memory!• To really understand what the instructions manuals of such parallel libraries aretelling you,• Sometimes it happens, you are using a library based on MPI and some function thatyou truly need is not included.

• To develop new and better libraries for your scientific challenge!

16/39

A word of advice1 An Introduction to MPI
When should you not write parallel code with MPI?• The effort of writing optimized and scalable MPI codes is not negligible, therefore adirect usage of it its usually best suited for developing libraries for scientific

computations.• If there is a library containing a good (possibly open source) parallel implementationof the algorithm and the data structure you need: LEARN IT AND USE IT!When should you write parallel code with MPI?• When you are learning about parallel computing with distributed memory!• To really understand what the instructions manuals of such parallel libraries aretelling you,• Sometimes it happens, you are using a library based on MPI and some function thatyou truly need is not included.• To develop new and better libraries for your scientific challenge!
16/39

Table of Contents2 Point-to-Point Communications
▶ An Introduction to MPIOur First MPI ProgramThe MPI parallel environmentWhen to travel the MPI route
▶ Point-to-Point CommunicationsDeadlockNonblocking communicationsSendreceiveThings left out
▶ References

17/39

Sending and Receiving Messages2 Point-to-Point Communications
We have seen that each process within a communicator is identified by its rank, how canwe exchange data between two processes?

P0 P1

A
B

send

receive

We need to posses several information to have a meaningful message• Who is sending the data?• To whom the data is sent?• What type of data are we sending?• How does the receiver can identify it?18/39

The blocking send and receive2 Point-to-Point Communications
int MPI_Send(void *message, int count, MPI_Datatype datatype, int dest,

int tag, MPI_Comm comm)

void *message points to the message content itself, it can be a simple scalar or a groupof data,
int count specifies the number of data elements of which the message is composed,
MPI_Datatype datatype indicates the data type of the elements that make up themessage,
int dest the rank of the destination process,
int tag the user-defined tag field,

MPI_Comm comm the communicator in which the source and destination processes resideand for which their respective ranks are defined.
19/39

The blocking send and receive2 Point-to-Point Communications
int MPI_Recv (void *message, int count, MPI_Datatype datatype, int source,

int tag, MPI_Comm comm, MPI_Status *status)

void *message points to the message content itself, it can be a simple scalar or a groupof data,
int count specifies the number of data elements of which the message is composed,
MPI_Datatype datatype indicates the data type of the elements that make up themessage,
int source the rank of the source process,

int tag the user-defined tag field,
MPI_Comm comm the communicator in which the source and destination processesreside,
MPI_Status *status is a structure that contains three fields named MPI_SOURCE ,

MPI_TAG, and MPI_ERROR.
20/39

Basic MPI Data Types2 Point-to-Point Communications
Of the previous slides inputs the only ones that is specific to MPI is the MPI_Datatype:

MPI_CHAR signed char

MPI_SHORT signed short int

MPI_INT signed int

MPI_LONG signed long int

MPI_FLOAT float

MPI_DOUBLE double

MPI_LONG_DOUBLE long double

MPI_UNSIGNED_CHAR unsigned char

MPI_UNSIGNED_SHORT unsigned short int

MPI_UNSIGNED unsigned int

MPI_UNSIGNED_LONG unsigned long int

21/39

Why “blocking” send and receive?2 Point-to-Point Communications
For the MPI_Send to be locally blocking means that it does not return until the messagedata and envelope have been safely stored away so that the sender is free to modify thesend buffer: it is a non local operation.
Note: The message might be copied directly into the matching receive buffer (as in thefirst figure), or it might be copied into a temporary system buffer.

P0 P1

A
Buffer B

send

receive

22/39

Why “blocking” send and receive?2 Point-to-Point Communications

For the MPI_Send to be locally blocking means that it does not return until the messagedata and envelope have been safely stored away so that the sender is free to modify thesend buffer: it is a non local operation.

The MPI_Receive, on the other hand returns only after the receive buffer contains thenewly received message. A receive can’t complete before the matching send hascompleted, but, of course, it can complete only after the matching send has started.

22/39

A simple send/receive example2 Point-to-Point Communications
#include "mpi.h"

#include <string.h>

#include <stdio.h>

int main(int argc, char **argv){

char message[20]; int myrank; MPI_Status status;

MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD, &myrank);

if (myrank == 0){ /* code for process zero */

strcpy(message,"Hello, there");

MPI_Send(message, strlen(message)+1, MPI_CHAR, 1, 99, MPI_COMM_WORLD);

}

else if (myrank == 1){ /* code for process one */

MPI_Recv(message, 20, MPI_CHAR, 0, 99, MPI_COMM_WORLD, &status);

printf("received :%s:\n", message);

}

MPI_Finalize();

return 0; }

23/39

A simple send/receive example2 Point-to-Point Communications
We can compile our code by simply adding to our Makefile
easysendrecv: easysendrecv.c

$(MPICC) $(CFLAGS) $(LDFLAGS) $? $(LDLIBS) -o $@

then, we type make, and we run our program with
mpirun -np 2 easysendrecv

getting as answer
received :Hello, there:

So, what have we done?

24/39

A simple send/receive example2 Point-to-Point Communications

MPI_Send(message, strlen(message)+1, MPI_CHAR, 1, 99, MPI_COMM_WORLD);

Process 0 sends the content of the char array message[20], whose size is
strlen(message)+1 size of char (MPI_CHAR) to processor 1 with tag 99 on thecommunicator MPI_COMM_WORLD.

MPI_Recv(message, 20, MPI_CHAR, 0, 99, MPI_COMM_WORLD, &status);

on the other side process 1, receives into the buffer message[20] an array with size 20size of MPI_CHAR, from process 0 with tag 99 on the same communicator
MPI_COMM_WORLD.

25/39

A simple send/receive example : programmer smash!2 Point-to-Point Communications
It is a good exercise to try and mess things up, so let us see some damaging suggestions:

• What happens if we have a mismatch in the tags?

A: The process stays there hanging waiting for a message with a tag that will never come. . .

• What happens if we have a mismatch in the ranks of the sending and receiving processes?

A: The process stays there hanging trying to match messages that will never come. . .

• What happens if we use the wrong message size?

A: If the size of the arriving message is longer than the expected we get an error of
MPI_ERR_TRUNCATE: message truncated, note that there are combinations of wrongsizes for which things still works

• What happens if we have a mismatch in the type?

A: There are combinations of instances in which things seems to work, but the code iserroneous, and the behavior is not deterministic.

26/39

A simple send/receive example : programmer smash!2 Point-to-Point Communications
It is a good exercise to try and mess things up, so let us see some damaging suggestions:

• What happens if we have a mismatch in the tags?
A: The process stays there hanging waiting for a message with a tag that will never come. . .
• What happens if we have a mismatch in the ranks of the sending and receiving processes?

A: The process stays there hanging trying to match messages that will never come. . .

• What happens if we use the wrong message size?

A: If the size of the arriving message is longer than the expected we get an error of
MPI_ERR_TRUNCATE: message truncated, note that there are combinations of wrongsizes for which things still works

• What happens if we have a mismatch in the type?

A: There are combinations of instances in which things seems to work, but the code iserroneous, and the behavior is not deterministic.

26/39

A simple send/receive example : programmer smash!2 Point-to-Point Communications
It is a good exercise to try and mess things up, so let us see some damaging suggestions:

• What happens if we have a mismatch in the tags?
A: The process stays there hanging waiting for a message with a tag that will never come. . .
• What happens if we have a mismatch in the ranks of the sending and receiving processes?
A: The process stays there hanging trying to match messages that will never come. . .
• What happens if we use the wrong message size?

A: If the size of the arriving message is longer than the expected we get an error of
MPI_ERR_TRUNCATE: message truncated, note that there are combinations of wrongsizes for which things still works

• What happens if we have a mismatch in the type?

A: There are combinations of instances in which things seems to work, but the code iserroneous, and the behavior is not deterministic.

26/39

A simple send/receive example : programmer smash!2 Point-to-Point Communications
It is a good exercise to try and mess things up, so let us see some damaging suggestions:

• What happens if we have a mismatch in the tags?
A: The process stays there hanging waiting for a message with a tag that will never come. . .
• What happens if we have a mismatch in the ranks of the sending and receiving processes?
A: The process stays there hanging trying to match messages that will never come. . .
• What happens if we use the wrong message size?
A: If the size of the arriving message is longer than the expected we get an error of

MPI_ERR_TRUNCATE: message truncated, note that there are combinations of wrongsizes for which things still works
• What happens if we have a mismatch in the type?

A: There are combinations of instances in which things seems to work, but the code iserroneous, and the behavior is not deterministic.

26/39

A simple send/receive example : programmer smash!2 Point-to-Point Communications
It is a good exercise to try and mess things up, so let us see some damaging suggestions:

• What happens if we have a mismatch in the tags?
A: The process stays there hanging waiting for a message with a tag that will never come. . .
• What happens if we have a mismatch in the ranks of the sending and receiving processes?
A: The process stays there hanging trying to match messages that will never come. . .
• What happens if we use the wrong message size?
A: If the size of the arriving message is longer than the expected we get an error of

MPI_ERR_TRUNCATE: message truncated, note that there are combinations of wrongsizes for which things still works
• What happens if we have a mismatch in the type?
A: There are combinations of instances in which things seems to work, but the code iserroneous, and the behavior is not deterministic.

26/39

Dealing with more than one send and receive2 Point-to-Point Communications

We have two processes that exchange data: MPI_Comm_rank(comm, &myrank);

• Solution 1:
if (myrank == 0){

MPI_Send(sendbuf, count, MPI_DOUBLE, 1, tag, comm);

MPI_Recv(recvbuf, count, MPI_DOUBLE, 1, tag, comm, status);

}else if(myrank == 1){

MPI_Send(sendbuf, count, MPI_DOUBLE, 0, tag, comm);

MPI_Recv(recvbuf, count, MPI_DOUBLE, 0, tag, comm, status);

}

27/39

Dealing with more than one send and receive2 Point-to-Point Communications
We have two processes that exchange data: MPI_Comm_rank(comm, &myrank);• Solution 1:
if (myrank == 0){

MPI_Send(sendbuf, count, MPI_DOUBLE, 1, tag, comm);

MPI_Recv(recvbuf, count, MPI_DOUBLE, 1, tag, comm, status);

}else if(myrank == 1){

MPI_Send(sendbuf, count, MPI_DOUBLE, 0, tag, comm);

MPI_Recv(recvbuf, count, MPI_DOUBLE, 0, tag, comm, status);

}

• Solution 2:
if (myrank == 0){

MPI_Recv(recvbuf, count, MPI_DOUBLE, 1, tag, comm, status);

MPI_Send(sendbuf, count, MPI_DOUBLE, 1, tag, comm);

}else if(myrank == 1){

MPI_Recv(recvbuf, count, MPI_DOUBLE, 0, tag, comm, status);

MPI_Send(sendbuf, count, MPI_DOUBLE, 0, tag, comm);

}27/39

Dealing with more than one send and receive2 Point-to-Point Communications
We have two processes that exchange data: MPI_Comm_rank(comm, &myrank);• Solution 2:
if (myrank == 0){

MPI_Recv(recvbuf, count, MPI_DOUBLE, 1, tag, comm, status);

MPI_Send(sendbuf, count, MPI_DOUBLE, 1, tag, comm);

}else if(myrank == 1){

MPI_Recv(recvbuf, count, MPI_DOUBLE, 0, tag, comm, status);

MPI_Send(sendbuf, count, MPI_DOUBLE, 0, tag, comm);

}

• Solution 3:
if (myrank == 0){

MPI_Send(sendbuf, count, MPI_DOUBLE, 1, tag, comm);

MPI_Recv(recvbuf, count, MPI_DOUBLE, 1, tag, comm, status);

}else if(myrank == 1){

MPI_Recv(recvbuf, count, MPI_DOUBLE, 0, tag, comm, status);

MPI_Send(sendbuf, count, MPI_DOUBLE, 0, tag, comm);

}27/39

Dealing with more than one send and receive2 Point-to-Point CommunicationsIn the case of Solution 1:
MPI_Comm_rank(comm, &myrank);

if (myrank == 0){

MPI_Send(...);

MPI_Recv(...);

}else if(myrank == 1){

MPI_Send(...);

MPI_Recv(...);

} • The call MPI_Send is blocking, therefore the message sent by eachprocess has to be copied out before the send operation returns andthe receive operation starts.
• For the call to complete successfully, it is then necessary that at leastone of the two messages sent be buffered, otherwise . . .
• a deadlock situation occurs: both processes are blocked since thereis no buffer space available!28/39

Dealing with more than one send and receive2 Point-to-Point Communications

Here what happens toyour program when youencounter Deadlock

In the case of Solution 1:
MPI_Comm_rank(comm, &myrank);

if (myrank == 0){

MPI_Send(...);

MPI_Recv(...);

}else if(myrank == 1){

MPI_Send(...);

MPI_Recv(...);

} • The call MPI_Send is blocking, therefore the message sent by eachprocess has to be copied out before the send operation returns andthe receive operation starts.
• For the call to complete successfully, it is then necessary that at leastone of the two messages sent be buffered, otherwise . . .
• a deadlock situation occurs: both processes are blocked since thereis no buffer space available!28/39

Dealing with more than one send and receive2 Point-to-Point Communications
In the case of Solution 2:
MPI_Comm_rank(comm, &myrank);

if (myrank == 0){

MPI_Recv(...);

MPI_Send(...);

}else if(myrank == 1){

MPI_Recv(...);

MPI_Send(...);

} • The receive operation of process 0 must complete before its send. Itcan complete only if the matching send of processor 1 is executed.
• The receive operation of process 1 must complete before its send. Itcan complete only if the matching send of processor 0 is executed.
• This program will always deadlock.

28/39

Dealing with more than one send and receive2 Point-to-Point Communications

Here what happens toyour program when youencounter Deadlock

In the case of Solution 2:
MPI_Comm_rank(comm, &myrank);

if (myrank == 0){

MPI_Recv(...);

MPI_Send(...);

}else if(myrank == 1){

MPI_Recv(...);

MPI_Send(...);

} • The receive operation of process 0 must complete before its send. Itcan complete only if the matching send of processor 1 is executed.
• The receive operation of process 1 must complete before its send. Itcan complete only if the matching send of processor 0 is executed.
• This program will always deadlock.

28/39

Dealing with more than one send and receive2 Point-to-Point Communications
In the case of Solution 3:

MPI_Comm_rank(comm, &myrank);

if (myrank == 0){

MPI_Send(...);

MPI_Recv(...);

}else if(myrank == 1){

MPI_Recv(...);

MPI_Send(...);

}

• This program will succeed even if no buffer space for data isavailable.

28/39

Dealing with more than one send and receive2 Point-to-Point Communications

This way you can beatDeadlock!

In the case of Solution 3:
MPI_Comm_rank(comm, &myrank);

if (myrank == 0){

MPI_Send(...);

MPI_Recv(...);

}else if(myrank == 1){

MPI_Recv(...);

MPI_Send(...);

}

• This program will succeed even if no buffer space for data isavailable.

28/39

Nonblocking communications2 Point-to-Point Communications

As we have seen the use of blocking communications ensures that
• the send and receive buffers used in the MPI_Send and MPI_Recv arguments aresafe to use or reuse after the function call,
• but it also means that unless there is a simultaneously matching send for eachreceive, the code will deadlock.

29/39

Nonblocking communications2 Point-to-Point Communications
There exists a version of the point-to-point communication that returns immediatelyfrom the function call before confirming that the send or the receive has completed,these are the nonblocking send and receive functions.
• To verify that the data has been copied out of the send buffer a separate call isneeded,
• To verify that the data has been received into the receive buffer a separate call isneeded,

• The sender should not modify any part of the send buffer after a nonblocking sendoperation is called, until the send completes.
• The receiver should not access any part of the receive buffer after a nonblockingreceive operation is called, until the receive completes.

29/39

Nonblocking communications2 Point-to-Point Communications
There exists a version of the point-to-point communication that returns immediatelyfrom the function call before confirming that the send or the receive has completed,these are the nonblocking send and receive functions.
• To verify that the data has been copied out of the send buffer a separate call isneeded,
• To verify that the data has been received into the receive buffer a separate call isneeded,
• The sender should not modify any part of the send buffer after a nonblocking sendoperation is called, until the send completes.
• The receiver should not access any part of the receive buffer after a nonblockingreceive operation is called, until the receive completes.

29/39

Nonblocking comms: MPI_Isend and MPI_Irecv2 Point-to-Point Communications
The two nonblocking point-to-point communication call are then
int MPI_Isend(void *message, int count, MPI_Datatype datatype, int dest,

int tag, MPI_Comm comm, MPI_Request *send_request);

int MPI_Irecv(void *message, int count, MPI_Datatype datatype, int source,

int tag, MPI_Comm comm, MPI_Request *recv_request);

• The MPI_Request variables substitute the MPI_Status and store information aboutthe status of the pending communication operation.
• The way of saying when this communications must be completed is by using the
int MPI_Wait(MPI_Request *request, MPI_Status *status)

when is called, the nonblocking request originating from MPI_Isend or MPI_Irecvis provided as an argument.
30/39

Nonblocking communications: an example2 Point-to-Point Communications
int main(int argc, char **argv) {

int a, b, size, rank, tag = 0;

MPI_Status status;

MPI_Request send_request, recv_request;

MPI_Init(&argc, &argv);

MPI_Comm_size(MPI_COMM_WORLD, &size);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

if (rank == 0) {

a = 314159;

MPI_Isend(&a, 1, MPI_INT, 1, tag, MPI_COMM_WORLD, &send_request);

MPI_Irecv (&b, 1, MPI_INT, 1, tag, MPI_COMM_WORLD, &recv_request);

MPI_Wait(&send_request, &status);

MPI_Wait(&recv_request, &status);

printf ("Process %d received value %d\n", rank, b);

}

Continue on the next slide31/39

Nonblocking communications: an examplecontinued

Continued from previous slide

else {

a = 667;

MPI_Isend (&a, 1, MPI_INT, 0, tag, MPI_COMM_WORLD, &send_request);

MPI_Irecv (&b, 1, MPI_INT, 0, tag, MPI_COMM_WORLD, &recv_request);

MPI_Wait(&send_request, &status);

MPI_Wait(&recv_request, &status);

printf ("Process %d received value %d\n", rank, b);

}

MPI_Finalize();

return 0;

}

32/39

A simple send/receive example2 Point-to-Point Communications

We can compile our code by simply adding to our Makefile
nonblockingsendrecv: nonblockingsendrecv.c

$(MPICC) $(CFLAGS) $(LDFLAGS) $? $(LDLIBS) -o $@

then, we type make, and we run our program with
mpirun -np 2 nonblockingsendrecv

getting as answer
Process 0 received value 667

Process 1 received value 314159

33/39

A simple send/receive example2 Point-to-Point Communications
We can compile our code by simply adding to our Makefile
nonblockingsendrecv: nonblockingsendrecv.c

$(MPICC) $(CFLAGS) $(LDFLAGS) $? $(LDLIBS) -o $@

then, we type make, and we run our program with
mpirun -np 2 nonblockingsendrecv

getting as answer
Process 0 received value 667

Process 1 received value 314159

Another useful instruction for the case of nonblocking communication is represented by
int MPI_Test(MPI_Request *request, int *flag, MPI_Status *status);

A call to MPI_TEST returns flag = true if the operation identified by request is complete. Insuch a case, the status object is set to contain information on the completed operation.
33/39

Send-Receive2 Point-to-Point Communications
The send-receive operations combine in one call the sending of a message to onedestination and the receiving of another message, from another process.
• Source and destination are possibly the same,
• Send-receive operation is very useful for executing a shift operation across a chain ofprocesses,
• A message sent by a send-receive operation can be received by a regular receiveoperation

int MPI_Sendrecv(const void *sendbuf, int sendcount,

MPI_Datatype sendtype, int dest, int sendtag, void *recvbuf,

int recvcount, MPI_Datatype recvtype, int source,

int recvtag, MPI_Comm comm, MPI_Status *status);

34/39

Send-Receive-Replace2 Point-to-Point Communications

A slight variant of the MPI_Sendrecv operation is represented by the
MPI_Sendrecv_replace operation
int MPI_Sendrecv_replace(void* buf, int count, MPI_Datatype datatype,

int dest, int sendtag, int source, int recvtag, MPI_Comm comm,

MPI_Status *status)

as the name suggests, the same buffer is used both for the send and for the receive, sothat the message sent is replaced by the message received.
Clearly, if you confront its arguments with the one of the MPI_Sendrecv, the arguments
void *recvbuf, int recvcount are absent.

35/39

Things left out2 Point-to-Point Communications
We are leaving out some variants of the point-to-point communication:• Both for blocking and nonblocking communications wehave left out the synchronous and readymode,

• For nonblocking communications we have also the
buffered variants,

• Instead of waiting/testing for a single communication atthe time we could wait for the completion of some, or allthe operations in a list. There are specific routines forachieving this.You can read about this on the manual:[1] Message Passing Interface Forum. MPI: A Message-Passing Interface Standard, Version 4.0.
https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf, High Performance ComputingCenter Stuttgart (HLRS).

36/39

https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf

Table of Contents3 References
▶ An Introduction to MPIOur First MPI ProgramThe MPI parallel environmentWhen to travel the MPI route
▶ Point-to-Point CommunicationsDeadlockNonblocking communicationsSendreceiveThings left out
▶ References

37/39

References3 References
There are more books, notes, tutorials, online courses and oral tradition on scientific andparallel computing than we would have time to read and listen in a life. Pretty mucheverything that contains the words Parallel Programming and Scientific Computing isgood. . .I suggest here the book
[1] Rouson, D., Xia, J., & Xu, X. (2011). Scientific software design: the object-orientedway. Cambridge University Press.that discusses general aspect of scientific computing (not perfectly related to parallelcomputing), and to have on your bedside
[1] Message Passing Interface Forum. MPI: A Message-Passing Interface Standard,Version 4.0. https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf,High Performance Computing Center Stuttgart (HLRS).
38/39

https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf

Calcolo Parallelo dall’Infrastruttura allaMatematica Thank you for listening!

Any questions?

39/39

	An Introduction to MPI
	Our First MPI Program
	The MPI parallel environment
	When to travel the MPI route

	Point-to-Point Communications
	Deadlock
	Nonblocking communications
	Sendreceive
	Things left out

	References

