
Calcolo Parallelo dall’Infrastruttura alla
Matematica
Calcolo parallelo: perché, quali infrastratture, quali problemi?
Laurea Triennale e Magistrale in Matematica
Fabio Durastante

March Ŷų, ŵųŵŶ

Ŵ/Ŷź

mailto:fabio.durastante@unipi.it


Table of Contents
Ŵ Parallel computing: why?

▶ Parallel computing: why?
Linear Systems,mon amour

▶ Parallel computing: where?
Flynn’s Taxonomy
Bēowulf

▶ Parallel computing: how?
An example of contemporary application

▶ First order of business: GIT

▶ Exercises

ŵ/Ŷź



Scientific computing
Ŵ Parallel computing: why?

“Computational science (also scientific computing or
scientific computation (SC)) is a rapidly growing

multidisciplinary field that uses advanced computing
capabilities to understand and solve complex

problems. It is an area of science which spans many
disciplines, but at its core it involves the development

ofmodels and simulations to understand natural
systems.”

Wikipedia

Leonardo, CINECA

Ŷ/Ŷź



What are the applications?
Ŵ Parallel computing: why?

• Computational finance,
• Computational biology,
• Simulation of complex systems,
• Network analysis
• Multi-physics simulations,
• Weather and climate models,
• …

Why the need for parallelism?

ŷ/Ŷź



What are the applications?
Ŵ Parallel computing: why?

• Computational finance,
• Computational biology,
• Simulation of complex systems,
• Network analysis
• Multi-physics simulations,
• Weather and climate models,
• …

Why the need for parallelism?

ŷ/Ŷź



Moore’s law
Ŵ Parallel computing: why?

“The complexity for minimum component costs
has increased at a rate of roughly a factor of two
per year. Certainly over the short term this rate
can be expected to continue, if not to increase.
Over the longer term, the rate of increase is a bit
more uncertain, although there is no reason to
believe it will not remain nearly constant for at

least Ŵų years.”

G. Moore, ŴżźŸ

Computers should reach the physical limits
of Moore’s Law at some point in the

ŵųŵųs…exponential functions saturates
physical capabilities!

Ÿ/Ŷź



Moore’s law
Ŵ Parallel computing: why?

“The complexity for minimum component costs
has increased at a rate of roughly a factor of two
per year. Certainly over the short term this rate
can be expected to continue, if not to increase.
Over the longer term, the rate of increase is a bit
more uncertain, although there is no reason to
believe it will not remain nearly constant for at

least Ŵų years.”

G. Moore, ŴżźŸ

Computers should reach the physical limits
of Moore’s Law at some point in the

ŵųŵųs…exponential functions saturates
physical capabilities!Ÿ/Ŷź



Parallel computing: why?
Ŵ Parallel computing: why?

• We are hitting the wall of single processor transistor count/computing capabilities,

• Some applications needs more memory than the one that could be available on a
single machine,

• Optimization of sequential algorithms can bring us only to a certain extent
“διαίρϵι καὶ βασίλϵνϵ“
(diáirei kái basíleue)
Dividi et Impera

Therefore, we need
• Algorithms that can work in parallel,
• A communications protocol for parallel computation integrated with our

programming languages,
• Parallel machines that can actually run this code.

Ź/Ŷź



Parallel computing: why?
Ŵ Parallel computing: why?

• We are hitting the wall of single processor transistor count/computing capabilities,
• Some applications needs more memory than the one that could be available on a

single machine,

• Optimization of sequential algorithms can bring us only to a certain extent
“διαίρϵι καὶ βασίλϵνϵ“
(diáirei kái basíleue)
Dividi et Impera

Therefore, we need
• Algorithms that can work in parallel,
• A communications protocol for parallel computation integrated with our

programming languages,
• Parallel machines that can actually run this code.

Ź/Ŷź



Parallel computing: why?
Ŵ Parallel computing: why?

• We are hitting the wall of single processor transistor count/computing capabilities,
• Some applications needs more memory than the one that could be available on a

single machine,
• Optimization of sequential algorithms can bring us only to a certain extent

“διαίρϵι καὶ βασίλϵνϵ“
(diáirei kái basíleue)
Dividi et Impera

Therefore, we need
• Algorithms that can work in parallel,
• A communications protocol for parallel computation integrated with our

programming languages,
• Parallel machines that can actually run this code.

Ź/Ŷź



Parallel computing: why?
Ŵ Parallel computing: why?

• We are hitting the wall of single processor transistor count/computing capabilities,
• Some applications needs more memory than the one that could be available on a

single machine,
• Optimization of sequential algorithms can bring us only to a certain extent

“διαίρϵι καὶ βασίλϵνϵ“
(diáirei kái basíleue)

Dividi et Impera

Therefore, we need
• Algorithms that can work in parallel,
• A communications protocol for parallel computation integrated with our

programming languages,
• Parallel machines that can actually run this code.

Ź/Ŷź



Parallel computing: why?
Ŵ Parallel computing: why?

• We are hitting the wall of single processor transistor count/computing capabilities,
• Some applications needs more memory than the one that could be available on a

single machine,
• Optimization of sequential algorithms can bring us only to a certain extent

“διαίρϵι καὶ βασίλϵνϵ“
(diáirei kái basíleue)
Dividi et Impera

Therefore, we need
• Algorithms that can work in parallel,
• A communications protocol for parallel computation integrated with our

programming languages,
• Parallel machines that can actually run this code.

Ź/Ŷź



Parallel computing: why?
Ŵ Parallel computing: why?

• We are hitting the wall of single processor transistor count/computing capabilities,
• Some applications needs more memory than the one that could be available on a

single machine,
• Optimization of sequential algorithms can bring us only to a certain extent

“διαίρϵι καὶ βασίλϵνϵ“
(diáirei kái basíleue)
Dividi et Impera

Therefore, we need
• Algorithms that can work in parallel,
• A communications protocol for parallel computation integrated with our

programming languages,
• Parallel machines that can actually run this code.

Ź/Ŷź



The philosophy behind the effort
Ŵ Parallel computing: why?

C. E. Leiserson, N. C. Thompson, J. S. Emer, B. C. Kuszmaul, B. W. Lampson,

D. Sanchez, and T. B. Schardl, “There’s plenty of room at the Top: What

will drive computer performance after Moore’s law?”, Science (ŵųŵų)

“As miniaturization wanes, the silicon-fabrication
improvements at the Bottom will no longer
provide the predictable, broad-based gains in

computer performance that society has enjoyed
for more than Ÿų years. Software performance
engineering, development of algorithms, and

hardware streamlining at the Top can continue to
make computer applications faster in the

post-Moore era.”

ź/Ŷź



Linear Systems
Ŵ Parallel computing: why?

Solve : Ax = b,

where
• A ∈ Rn×n is a very large and sparse matrix nnz(A) = O(n),
• x,b ∈ Rn,

.

is often the most time consuming computational kernel in many areas of computational
science and engineering problems.

Ŷųs ŷųs Ÿųs Źųs źųs Żųs żųs ųųs Ŵųs ŵųs

n ∼ 10 n ∼ 20 n ∼ 90 n ∼ 500
n ∼ 104,5

n ∼ 105,6n ∼ 106,7
n ∼ 10≥8

Ż/Ŷź



Linear Systems
Ŵ Parallel computing: why?

Solve : Ax = b,

where
• A ∈ Rn×n is a very large and sparse matrix nnz(A) = O(n),
• x,b ∈ Rn.

Ŷųs ŷųs Ÿųs Źųs źųs Żųs żųs ųųs Ŵųs ŵųs

n ∼ 10

n ∼ 20 n ∼ 90 n ∼ 500
n ∼ 104,5

n ∼ 105,6n ∼ 106,7
n ∼ 10≥8

“In a ground wire problem involving a large number of ground conductors, ŴŶ simultaneous equations were
solved…” – Dwight (ŴżŶų)”

“The second machine, now in operation, was designed for the direct solution of nine or fewer simultaneous
equations.” – Wilbur, J. B. (ŴżŶŹ)Ż/Ŷź



Linear Systems
Ŵ Parallel computing: why?

Solve : Ax = b,

where
• A ∈ Rn×n is a very large and sparse matrix nnz(A) = O(n),
• x,b ∈ Rn.

Ŷųs ŷųs Ÿųs Źųs źųs Żųs żųs ųųs Ŵųs ŵųs

n ∼ 10 n ∼ 20

n ∼ 90 n ∼ 500
n ∼ 104,5

n ∼ 105,6n ∼ 106,7
n ∼ 10≥8

“Finally, though the labour of relaxation in three dimensions is prohibitively great, the future use of the new
electronic calculating machines in this connexion is a distinct possibility” – Fox, L. (Ŵżŷź)

Ż/Ŷź



Linear Systems
Ŵ Parallel computing: why?

Solve : Ax = b,

where
• A ∈ Rn×n is a very large and sparse matrix nnz(A) = O(n),
• x,b ∈ Rn.

Ŷųs ŷųs Ÿųs Źųs źųs Żųs żųs ųųs Ŵųs ŵųs

n ∼ 10 n ∼ 20 n ∼ 90

n ∼ 500
n ∼ 104,5

n ∼ 105,6n ∼ 106,7
n ∼ 10≥8

“The Ferranti PEGASUS computer, with a main store of ŷųżŹ words, can solve a maximum of ŻŹ simultaneous
equations by its standard subroutine and takes about ŷŸ minutes to complete this calculation.” – Wilson, L. B.

(ŴżŸż)
Ż/Ŷź



Linear Systems
Ŵ Parallel computing: why?

Solve : Ax = b,

where
• A ∈ Rn×n is a very large and sparse matrix nnz(A) = O(n),
• x,b ∈ Rn.

Ŷųs ŷųs Ÿųs Źųs źųs Żųs żųs ųųs Ŵųs ŵųs

n ∼ 10 n ∼ 20 n ∼ 90 n ∼ 500

n ∼ 104,5

n ∼ 105,6n ∼ 106,7
n ∼ 10≥8

“…the bound imposed by this ism+ n ≤ 474. In addition, this number of equations would fill one standard
(Ŵ.Żųųft) reel of magnetic tape, and the fifty-odd hours taken in the calculation might be thought excessive.” –

Barron, Swinnerton-Dyer (ŴżŹų)
Ż/Ŷź



Linear Systems
Ŵ Parallel computing: why?

Solve : Ax = b,

where
• A ∈ Rn×n is a very large and sparse matrix nnz(A) = O(n),
• x,b ∈ Rn.

Ŷųs ŷųs Ÿųs Źųs źųs Żųs żųs ųųs Ŵųs ŵųs

n ∼ 10 n ∼ 20 n ∼ 90 n ∼ 500
n ∼ 104,5

n ∼ 105,6n ∼ 106,7
n ∼ 10≥8

“…handling problems involving sets of simultaneous equations of two-thousandth order, and SAMIS available
through ”Cosmic” at the University of Georgia, which can treat up to Ŵų,ųųų simultaneous equations.” –

Melosh, Schmele (ŴżŹż)
Ż/Ŷź



Linear Systems
Ŵ Parallel computing: why?

Solve : Ax = b,

where
• A ∈ Rn×n is a very large and sparse matrix nnz(A) = O(n),
• x,b ∈ Rn.

Ŷųs ŷųs Ÿųs Źųs źųs Żųs żųs ųųs Ŵųs ŵųs

n ∼ 10 n ∼ 20 n ∼ 90 n ∼ 500
n ∼ 104,5

n ∼ 105,6n ∼ 106,7
n ∼ 10≥8

“The mini-computer cost algorithm is applied to the same complex shell problem used previously, with żŴŵų
degrees of freedom […]. The running times, however, are ŷų and źų hr, respectively! It would appear that

improvement of mini-computer speeds is required…” – Kamel, McCabe (ŴżźŻ)
Ż/Ŷź



Linear Systems
Ŵ Parallel computing: why?

Solve : Ax = b,

where
• A ∈ Rn×n is a very large and sparse matrix nnz(A) = O(n),
• x,b ∈ Rn.

Ŷųs ŷųs Ÿųs Źųs źųs Żųs żųs ųųs Ŵųs ŵųs

n ∼ 10 n ∼ 20 n ∼ 90 n ∼ 500
n ∼ 104,5

n ∼ 105,6

n ∼ 106,7
n ∼ 10≥8

“For instance, Pomerell in Ŵżżŷ reports on successful application of preconditioned Krylov methods for very
ill-conditioned unstructured finite element systems of order up to ŵŴų,ųųų that arise in semiconductor device

modeling.” – Saad Y., van der Vorst, H.A. (ŵųųų)
Ż/Ŷź



Linear Systems
Ŵ Parallel computing: why?

Solve : Ax = b,

where
• A ∈ Rn×n is a very large and sparse matrix nnz(A) = O(n),
• x,b ∈ Rn.

Ŷųs ŷųs Ÿųs Źųs źųs Żųs żųs ųųs Ŵųs ŵųs

n ∼ 10 n ∼ 20 n ∼ 90 n ∼ 500
n ∼ 104,5

n ∼ 105,6n ∼ 106,7

n ∼ 10≥8

“As a second example, we show results (Table VIII) for a problem arising in ocean modeling (barotropic
equation) with n = 370, 000 unknowns and approximately Ŷ.Ŷ million nonzero entries…” – Benzi, M. (ŵųųŵ)

Ż/Ŷź



Linear Systems
Ŵ Parallel computing: why?

Solve : Ax = b,

where
• A ∈ Rn×n is a very large and sparse matrix nnz(A) = O(n),
• x,b ∈ Rn.

Ŷųs ŷųs Ÿųs Źųs źųs Żųs żųs ųųs Ŵųs ŵųs

n ∼ 10 n ∼ 20 n ∼ 90 n ∼ 500
n ∼ 104,5

n ∼ 105,6n ∼ 106,7

n ∼ 10≥8

“Problem: Large, mesh size: 180× 60× 30, ♯ unknowns (in simulation): Ŵ,ųŴų,ŴŹų, Solution time ŷŸ.ź h” –
Wang, de Sturler, Paulino (ŵųųŹ)

Ż/Ŷź



Linear Systems
Ŵ Parallel computing: why?

Solve : Ax = b,

where
• A ∈ Rn×n is a very large and sparse matrix nnz(A) = O(n),
• x,b ∈ Rn.

Ŷųs ŷųs Ÿųs Źųs źųs Żųs żųs ųųs Ŵųs ŵųs

n ∼ 10 n ∼ 20 n ∼ 90 n ∼ 500
n ∼ 104,5

n ∼ 105,6n ∼ 106,7

n ∼ 10≥8

“The parallel GMRES was tested on the Tesla TŴųP GPU using a set of matrix data from the oil field simulation
data of Conoco Phillips. The order of the system ranges from∼ 2000 to∼ 1.1million.” – M. Wang, H. Klie,

M. Parashar, H. Sudan (ŵųųż)
Ż/Ŷź



Linear Systems
Ŵ Parallel computing: why?

Solve : Ax = b,

where
• A ∈ Rn×n is a very large and sparse matrix nnz(A) = O(n),
• x,b ∈ Rn.

Ŷųs ŷųs Ÿųs Źųs źųs Żųs żųs ųųs Ŵųs ŵųs

n ∼ 10 n ∼ 20 n ∼ 90 n ∼ 500
n ∼ 104,5

n ∼ 105,6n ∼ 106,7
n ∼ 10≥8

The exascale challenge, using computer that do 1015 Flops, targeting next-gen systems
doing 1018 Flops to solve problems with tens of billions of unknowns.

Ż/Ŷź



Table of Contents
ŵ Parallel computing: where?

▶ Parallel computing: why?
Linear Systems,mon amour

▶ Parallel computing: where?
Flynn’s Taxonomy
Bēowulf

▶ Parallel computing: how?
An example of contemporary application

▶ First order of business: GIT

▶ Exercises

ż/Ŷź



Parallel computers: Flynn’s Taxonomy
ŵ Parallel computing: where?

Let us start from the bottom: the machines.

• What is a parallel computer?
• Let us abstract from the machine by describing Flynn’s taxonomy

Single instruction
stream, single data

stream
SISD

Single instruction
stream, multiple data

streams
SIMD

Multiple instruction
streams, single data

stream
MISD

Multiple instruction
streams, multiple data

streams
MIMD

Ŵų/Ŷź



Parallel computers: Flynn’s Taxonomy
ŵ Parallel computing: where?

Let us start from the bottom: the machines.
• What is a parallel computer?

• Let us abstract from the machine by describing Flynn’s taxonomy

Single instruction
stream, single data

stream
SISD

Single instruction
stream, multiple data

streams
SIMD

Multiple instruction
streams, single data

stream
MISD

Multiple instruction
streams, multiple data

streams
MIMD

Ŵų/Ŷź



Parallel computers: Flynn’s Taxonomy
ŵ Parallel computing: where?

Let us start from the bottom: the machines.
• What is a parallel computer? well, it can be a certain number of different “things”

— Multi-core computing
— Symmetric multiprocessing
— Distributed computing
— Cluster computing
— Massively parallel computing
— Grid computing
— General-purpose computing on graphics processing units (GPGPU)
— Vector processors

• Let us abstract from the machine by describing Flynn’s taxonomy

Single instruction
stream, single data

stream
SISD

Single instruction
stream, multiple data

streams
SIMD

Multiple instruction
streams, single data

stream
MISD

Multiple instruction
streams, multiple data

streams
MIMD

Ŵų/Ŷź



Parallel computers: Flynn’s Taxonomy
ŵ Parallel computing: where?

Let us start from the bottom: the machines.
• What is a parallel computer? well, it can be a certain number of different “things”

— Multi-core computing
— Symmetric multiprocessing
— Distributed computing
— Cluster computing
— Massively parallel computing
— Grid computing
— General-purpose computing on graphics processing units (GPGPU)
— Vector processors

• Let us abstract from the machine by describing Flynn’s taxonomy

Single instruction
stream, single data

stream
SISD

Single instruction
stream, multiple data

streams
SIMD

Multiple instruction
streams, single data

stream
MISD

Multiple instruction
streams, multiple data

streams
MIMD

Ŵų/Ŷź



Parallel computers: Flynn’s Taxonomy
ŵ Parallel computing: where?

Let us start from the bottom: the machines.
• What is a parallel computer?
• Let us abstract from the machine by describing Flynn’s taxonomy

Single instruction
stream, single data

stream
SISD

Single instruction
stream, multiple data

streams
SIMD

Multiple instruction
streams, single data

stream
MISD

Multiple instruction
streams, multiple data

streams
MIMD

Ŵų/Ŷź



Parallel computers: Flynn’s Taxonomy
ŵ Parallel computing: where?

Let us start from the bottom: the machines.
• What is a parallel computer?
• Let us abstract from the machine by describing Flynn’s taxonomy

Single instruction
stream, single data

stream
SISD

Single instruction
stream, multiple data

streams
SIMD

Multiple instruction
streams, single data

stream
MISD

Multiple instruction
streams, multiple data

streams
MIMD

Ŵų/Ŷź



Parallel Computers: our computer model
ŵ Parallel computing: where?

For our task of introducing parallel computations we need to fix a specific multiprocessor
model, i.e., a specific generalization of the sequential RAM model in which there is more
than one processor.

Since we want to stay in a SIMD/MIMD
model, we focus on a local memory machine
model, i.e., a set ofM processors each with
its own local memory that are attached to a
common communication network.

Communication Network

Processors

Memories

ŴŴ/Ŷź



Parallel Computers: our computer model
ŵ Parallel computing: where?

For our task of introducing parallel computations we need to fix a specific multiprocessor
model, i.e., a specific generalization of the sequential RAM model in which there is more
than one processor.

Since we want to stay in a SIMD/MIMD
model, we focus on a local memory machine
model, i.e., a set ofM processors each with
its own local memory that are attached to a
common communication network.

Communication Network

Processors

Memories

• We can be more precise about the connection between processors, one can consider
a network (a collection of switches connected by communication channels) and
delve in a detailed way into its pattern of interconnection, i.e., into what is called the
network topology.

ŴŴ/Ŷź



Parallel Computers: our computer model
ŵ Parallel computing: where?

For our task of introducing parallel computations we need to fix a specific multiprocessor
model, i.e., a specific generalization of the sequential RAM model in which there is more
than one processor.

Since we want to stay in a SIMD/MIMD
model, we focus on a local memory machine
model, i.e., a set ofM processors each with
its own local memory that are attached to a
common communication network.

Communication Network

Processors

Memories

• An alternative is to summarize the network properties in terms of two parameters:
latency and bandwidth

Latency the time it takes for a message to traverse the network;
Bandwidth the rate at which a processor can inject data into the network.

ŴŴ/Ŷź



Parallel computing: where? – https://www.top500.org/
ŵ Parallel computing: where?

“…we have decided in ŴżżŶ to assemble and
maintain a list of the Ÿųų most powerful
computer systems. Our list has been
compiled twice a year since June ŴżżŶ with
the help of high-performance computer
experts, computational scientists,
manufacturers, and the Internet community
in general…
In the present list (which we call the
TOPŸųų), we list computers ranked by their
performance on the LINPACK Benchmark.”
http:
//www.netlib.org/benchmark/hpl/

The LINPACK Benchmark.
Solution of a dense n× n system of linear
equations Ax = b, so that

Ŵŵ/Ŷź

https://www.top500.org/
http://www.netlib.org/benchmark/hpl/
http://www.netlib.org/benchmark/hpl/


Parallel computing: where? – https://www.top500.org/
ŵ Parallel computing: where?

“…we have decided in ŴżżŶ to assemble and
maintain a list of the Ÿųų most powerful
computer systems. Our list has been
compiled twice a year since June ŴżżŶ with
the help of high-performance computer
experts, computational scientists,
manufacturers, and the Internet community
in general…
In the present list (which we call the
TOPŸųų), we list computers ranked by their
performance on the LINPACK Benchmark.”
http:
//www.netlib.org/benchmark/hpl/

The LINPACK Benchmark.
Solution of a dense n× n system of linear
equations Ax = b, so that

• ∥Ax−b∥
∥A∥∥x∥nε ≤ O(1), for εmachine
precision,

• It uses a specialized right–looking LU
factorization with look–ahead

Ŵŵ/Ŷź

https://www.top500.org/
http://www.netlib.org/benchmark/hpl/
http://www.netlib.org/benchmark/hpl/


Parallel computing: where? – https://www.top500.org/
ŵ Parallel computing: where?

“…we have decided in ŴżżŶ to assemble and
maintain a list of the Ÿųų most powerful
computer systems. Our list has been
compiled twice a year since June ŴżżŶ with
the help of high-performance computer
experts, computational scientists,
manufacturers, and the Internet community
in general…
In the present list (which we call the
TOPŸųų), we list computers ranked by their
performance on the LINPACK Benchmark.”
http:
//www.netlib.org/benchmark/hpl/

The LINPACK Benchmark.
Solution of a dense n× n system of linear
equations Ax = b, so that

• Measuring

— Rmax the performance in GFLOPS
for the largest problem run on a
machine,

— Nmax the size of the largest
problem run on a machine,

— N1/2 the size where half the Rmax
execution rate is achieved,

— Rpeak the theoretical peak
performance GFLOPS for the
machine.

Ŵŵ/Ŷź

https://www.top500.org/
http://www.netlib.org/benchmark/hpl/
http://www.netlib.org/benchmark/hpl/


The TOPŸųų List
ŵ Parallel computing: where?

Rank System Cores Rmax (PFlop/s) Rpeak (PFlop/s) Power (kW)

Ŵ Frontier Ż,źŶų,ŴŴŵ Ŵ,Ŵųŵ.ųų Ŵ,ŹŻŸ.ŹŸ ŵŴ,Ŵųų
ŵ Supercomputer

Fugaku
ź,ŹŶų,ŻŷŻ ŷŷŵ.ųŴ ŸŶź.ŵŴ ŵż,Żżż

Ŷ LUMI ŵ,ŵŵų,ŵŻŻ Ŷųż.Ŵų ŷŵŻ.źų Ź,ųŴŹ
ŷ Leonardo Ŵ,ŷŹŶ,ŹŴŹ Ŵźŷ.źų ŵŸŸ.źŸ Ÿ,ŹŴų
Ÿ Summit ŵ,ŷŴŷ,Ÿżŵ ŴŷŻ.Źų ŵųų.źż Ŵų,ųżŹ

OS Family System Share

Linux
Ŵųų%

Cores per Socket

8 10 12 14 16 18 20 22 24 26 28 32 36 38 40 48 64 68

5
10
15
20

Pe
rc
en

ta
ge

ŴŶ/Ŷź



The machines we have in the department
ŵ Parallel computing: where?

The Toeplitz Clustermade of Ÿ nodes:
• ŷ Nodes Intel® Xeon® CPU EŸ-ŵŹŸų

vŷ @ ŵ.ŵųGHz with ŵ threads per
core, Ŵŵ cores per socket and ŵ
socket with ŵŸŹ GB;

• Ŵ Node Intel® Xeon® CPU EŸ-ŵŹŷŶ
vŷ @ Ŷ.ŷųGHz with ŵ threads per
core, Ź cores per socket and ŵ
socket with ŴŵŻ GB.

Ŵŷ/Ŷź



The machines we have in the department
ŵ Parallel computing: where?

The Toeplitz Clustermade of Ÿ nodes:
• ŷ Nodes Intel® Xeon® CPU EŸ-ŵŹŸų

vŷ @ ŵ.ŵųGHz with ŵ threads per
core, Ŵŵ cores per socket and ŵ
socket with ŵŸŹ GB;

• Ŵ Node Intel® Xeon® CPU EŸ-ŵŹŷŶ
vŷ @ Ŷ.ŷųGHz with ŵ threads per
core, Ź cores per socket and ŵ
socket with ŴŵŻ GB.

A new machine we are buying with the
“Dipartimento di Eccellenza” project:

Ŵŷ/Ŷź



The machines we have in the department
ŵ Parallel computing: where?

The Toeplitz Clustermade of Ÿ nodes:
• ŷ Nodes Intel® Xeon® CPU EŸ-ŵŹŸų

vŷ @ ŵ.ŵųGHz with ŵ threads per
core, Ŵŵ cores per socket and ŵ
socket with ŵŸŹ GB;

• Ŵ Node Intel® Xeon® CPU EŸ-ŵŹŷŶ
vŷ @ Ŷ.ŷųGHz with ŵ threads per
core, Ź cores per socket and ŵ
socket with ŴŵŻ GB.

A new machine we are buying with the
“Dipartimento di Eccellenza” project:

The machine we will build here!

Ŵŷ/Ŷź



Bēowulf
ŵ Parallel computing: where?

HWÆT: WE GAR-DENA IN GEARDAGUM
þeodcyninga þrym gefrunon.
Hu ða æþelingas ellen fremedon!
Oft Scyld Scefing sceaþena þreatum
monegum mægþum meodosetla ofteah,
egsode eorl, syððan ærest wearð
feasceaft funden. He þæs frofre gebad,
weox under wolcnum, weorðmyndum þah,
oð þæt him æghwylc þara ymbsittendra
ofer hronrade hyran scolde,
gomban gyldan. Þæt wæs god cyning.

ŴŸ/Ŷź



Bēowulf
ŵ Parallel computing: where?

“Bēowulf is a multi-computer architecture which
can be used for parallel computations. It is a system
which usually consists of one server node, and one
or more client nodes connected via Ethernet or
some other network. It is a system built using
commodity hardware components, like any PC
capable of running a Unix-like operating system,
with standard Ethernet adapters, and switches.”

Radajewski, Radajewski; Eadline, Douglas
(ŵŵ November ŴżżŻ).

“Beowulf HOWTO”. ibiblio.org. vŴ.Ŵ.Ŵ.

ŴŸ/Ŷź

http://bit.ly/3lh3UIv


Table of Contents
Ŷ Parallel computing: how?

▶ Parallel computing: why?
Linear Systems,mon amour

▶ Parallel computing: where?
Flynn’s Taxonomy
Bēowulf

▶ Parallel computing: how?
An example of contemporary application

▶ First order of business: GIT

▶ Exercises

ŴŹ/Ŷź



Parallel Algorithms
Ŷ Parallel computing: how?

In a fairly general way we can say that a parallel algorithm is an algorithm which can do
multiple operations in a given time.

Example: the sum of two vectors x, y ∈ Rn

x = [x1 x2 · · · xi

|

xi+1 · · · xn]
+
y = [y1 y2 · · · yi

|

yi+1 · · · yn]
=

x+ y = [x1 + y1 x2 + y2 · · · xi + yi

|

· · · xn + yn]

• If we do the operation sequentially we do O(n) operations in Tn
• If we split the operation among 2 processors, one summing up the entries between
1, . . . , i, and one summing up the entries between i+ 1, . . . , n we take Ti time for
the first part and Tn−i time for the second, therefore the overall time is
max(Ti,Tn−i) for doing always O(n) operations.

Ŵź/Ŷź



Parallel Algorithms
Ŷ Parallel computing: how?

In a fairly general way we can say that a parallel algorithm is an algorithm which can do
multiple operations in a given time.
Example: the sum of two vectors x, y ∈ Rn

x = [x1 x2 · · · xi

|

xi+1 · · · xn]
+
y = [y1 y2 · · · yi

|

yi+1 · · · yn]
=

x+ y = [x1 + y1 x2 + y2 · · · xi + yi

|

· · · xn + yn]

• If we do the operation sequentially we do O(n) operations in Tn

• If we split the operation among 2 processors, one summing up the entries between
1, . . . , i, and one summing up the entries between i+ 1, . . . , n we take Ti time for
the first part and Tn−i time for the second, therefore the overall time is
max(Ti,Tn−i) for doing always O(n) operations.

Ŵź/Ŷź



Parallel Algorithms
Ŷ Parallel computing: how?

In a fairly general way we can say that a parallel algorithm is an algorithm which can do
multiple operations in a given time.
Example: the sum of two vectors x, y ∈ Rn

x = [x1 x2 · · · xi | xi+1 · · · xn]
+
y = [y1 y2 · · · yi | yi+1 · · · yn]
=

x+ y = [x1 + y1 x2 + y2 · · · xi + yi | · · · xn + yn]

• If we do the operation sequentially we do O(n) operations in Tn
• If we split the operation among 2 processors, one summing up the entries between
1, . . . , i, and one summing up the entries between i+ 1, . . . , n we take Ti time for
the first part and Tn−i time for the second, therefore the overall time is
max(Ti,Tn−i) for doing always O(n) operations.Ŵź/Ŷź



Parallel Algorithms: speedup
Ŷ Parallel computing: how?

Let us think again abstractly and quantify the overall speed gain for a given gain in a subset of a
process.

• We break a process into N distinct portions with the ith portion occupying the Pi fraction of
the overall completion time,

• order the portions in such a way that the Nth portion subsumes all the parts of the overall
processes with fixed costs.

• The speedup of the ith portion can then be defined as

Si ≜
toriginal
toptimized

, i = 1, . . . ,N− 1

where the numerator and denominator are the original and optimized completion time.

ŴŻ/Ŷź



Parallel Algorithms: speedup
Ŷ Parallel computing: how?

Let us think again abstractly and quantify the overall speed gain for a given gain in a subset of a
process.

• We break a process into N distinct portions with the ith portion occupying the Pi fraction of
the overall completion time,

• order the portions in such a way that the Nth portion subsumes all the parts of the overall
processes with fixed costs.

• The speedup of the ith portion can then be defined as

Si ≜
toriginal
toptimized

, i = 1, . . . ,N− 1

where the numerator and denominator are the original and optimized completion time.

ŴŻ/Ŷź



Parallel Algorithms: speedup
Ŷ Parallel computing: how?

Let us think again abstractly and quantify the overall speed gain for a given gain in a subset of a
process.

• We break a process into N distinct portions with the ith portion occupying the Pi fraction of
the overall completion time,

• order the portions in such a way that the Nth portion subsumes all the parts of the overall
processes with fixed costs.

• The speedup of the ith portion can then be defined as

Si ≜
toriginal
toptimized

, i = 1, . . . ,N− 1

where the numerator and denominator are the original and optimized completion time.

ŴŻ/Ŷź



Parallel Algorithms: speedup
Ŷ Parallel computing: how?

Let us think again abstractly and quantify the overall speed gain for a given gain in a subset of a
process.

Amdahl’s Law
Then the overall speedup for P = (P1, . . . , PN), S = (S1, . . . , SN−1) is:

S(P, S) =

(
PN +

N−1∑
i=1

Pi
Si

)−1

.

ŴŻ/Ŷź



Parallel Algorithms: Amdahl’s Law
Ŷ Parallel computing: how?

Let us make some observations on Amdahl’s Law
• We are not assuming about whether the original completion time involves some

optimization,
• We are not making any assumption on what our optimization process is,
• We are not even saying that the process in question involves a computer!

Amdahl’s Law is a fairly general way of looking at how processes can be speed up by
dividing them into sub-tasks with lower execution time.

Moreover, it fixes the theoretical maximum speedup in various scenarios.
• If we allow all components Si to grow unbounded then the upper bound on all

scenario si Smax = 1/PN.
Let us decline it in the context of the potential utility of parallel hardware.

Ŵż/Ŷź



Parallel Algorithms: Amdahl’s Law
Ŷ Parallel computing: how?

Let us make some observations on Amdahl’s Law
• We are not assuming about whether the original completion time involves some

optimization,
• We are not making any assumption on what our optimization process is,
• We are not even saying that the process in question involves a computer!

Amdahl’s Law is a fairly general way of looking at how processes can be speed up by
dividing them into sub-tasks with lower execution time.
Moreover, it fixes the theoretical maximum speedup in various scenarios.

• If we allow all components Si to grow unbounded then the upper bound on all
scenario si Smax = 1/PN.

Let us decline it in the context of the potential utility of parallel hardware.

Ŵż/Ŷź



Parallel Algorithms: Amdahl’s Law for parallel hardware
Ŷ Parallel computing: how?

Consider now having a parallel machine that permits us dividing the execution of code
acrossM hardware units, then the problem independent maximum speedup that such
hardware can provide isM.

Parallel Efficiency
We define the parallel efficiency E as

E ≜ Soverall
M

,

where E = 100% correspond to the maximal use of the available hardware. When
Smax < M, it is then impossible to take full advantage of all available execution units.

Goal: we require very large Smax and correspondingly tiny PN.

Every dusty corner of a code must scale, any portion that doesn’t becomes the
rate-limiting step!

ŵų/Ŷź



Parallel Algorithms: Amdahl’s Law for parallel hardware
Ŷ Parallel computing: how?

Consider now having a parallel machine that permits us dividing the execution of code
acrossM hardware units, then the problem independent maximum speedup that such
hardware can provide isM.

Parallel Efficiency
We define the parallel efficiency E as

E ≜ Soverall
M

,

where E = 100% correspond to the maximal use of the available hardware. When
Smax < M, it is then impossible to take full advantage of all available execution units.

Goal: we require very large Smax and correspondingly tiny PN.

Every dusty corner of a code must scale, any portion that doesn’t becomes the
rate-limiting step!

ŵų/Ŷź



Parallel Algorithms: Amdahl’s Law for parallel hardware
Ŷ Parallel computing: how?

Consider now having a parallel machine that permits us dividing the execution of code
acrossM hardware units, then the problem independent maximum speedup that such
hardware can provide isM.

Parallel Efficiency
We define the parallel efficiency E as

E ≜ Soverall
M

,

where E = 100% correspond to the maximal use of the available hardware. When
Smax < M, it is then impossible to take full advantage of all available execution units.

Goal: we require very large Smax and correspondingly tiny PN.

Every dusty corner of a code must scale, any portion that doesn’t becomes the
rate-limiting step!ŵų/Ŷź



Parallel Algorithms: Amdahl’s Law limitations
Ŷ Parallel computing: how?

What we are neglecting and what we are tacitly assuming
• We are neglecting overhead costs, i.e., the cost associated with parallel execution

such as
— initializing (spawning) and joining of different computation threads,
— communication between processes, data movement and memory allocation.

• We considered also the ideal case in which Si → +∞∀i, observe that with finite
speedup on portions 1 through N− 1, the Soverall might continue to improve with
increasing number of execution units.

• We are assuming that the size of the problem remains fixed while the number of
execution units increases, this is called the case of strong scalability. In some
contexts, we need to turn instead to weak scalability in which the problem size grows
proportionally to the number of execution units.

ŵŴ/Ŷź



Gustafson’s law
Ŷ Parallel computing: how?

In the weak scalability case the right framework is to use Gustafson’s law

Gustafson’s law

S = s+ p× N = s+ (1− s)× N = N+ (1− N)× s

where
• S is the theoretical speedup of the program with parallelism (scaled speedup),
• N is the number of computing units,
• s and p are the fractions of time spent executing the serial parts and the parallel

parts of the program on the parallel system, i.e., s+ p = 1.

“Solving a larger problem in the same amount of time should be possible by usingmore
computing units”

ŵŵ/Ŷź



Gustafson’s law
Ŷ Parallel computing: how?

In the weak scalability case the right framework is to use Gustafson’s law

Gustafson’s law

S = s+ p× N = s+ (1− s)× N = N+ (1− N)× s

where
• S is the theoretical speedup of the program with parallelism (scaled speedup),
• N is the number of computing units,
• s and p are the fractions of time spent executing the serial parts and the parallel

parts of the program on the parallel system, i.e., s+ p = 1.

“Solving a larger problem in the same amount of time should be possible by usingmore
computing units”

ŵŵ/Ŷź



Test Case
Ŷ Parallel computing: how?

Poisson equation

−∆f = 1 on unit cube, with Dirichlet Boundary Conditions

• ź-point finite-difference discretization

• cartesian grid with uniform refinement along the coordinates for increasing mesh size

ŵŶ/Ŷź



Test Case
Ŷ Parallel computing: how?

Solver/preconditioner settings

• AMG as preconditioner of Flexible CG, stopped when ∥rk∥2/∥b∥2 ≤ 10−6, or itmax = 500

KCMATCH K-cycle with ŵ inner iterations, CMATCH building aggregates of max size 8,
unsmoothed prolongators

VSCMATCH V-cycle, CMATCH building aggregates of max size 8, smoothed prolongators
VSDVB V-cycle for decoupled classic smoothed aggregation

• Ŵ sweep of forward/backward Hybrid Gauss-Seidel smoother, parallel CG preconditioned with
Block-Jacobi and ILU(ų) at the coarsest level

• coarsest matrix size nc ≤ 200np, with np number of cores

An example from: P. D’Ambra, F. Durastante, and S. Filippone, “AMG preconditioners for linear solvers towards extreme

scale”, SIAM J. Sci. Comput. (ŵųŵŴ).

ŵŶ/Ŷź



Experimental environment & Comparison
Ŷ Parallel computing: how?

Piz Daint - Swiss National Supercomputing Center by PRACE
• Cray Model XCŷų/Cray XCŸų architecture with Ÿźųŷ hybrid compute nodes (Intel Xeon

EŸ-ŵŹżų vŶ with Nvidia Tesla PŴųų accelerator)

• Cray Aries routing and communications ASIC with Dragonfly network topology

• GNU compiler rel. Ż, Cray MPI ź, Cray-libsci ŵų.ųż.Ŵ

• PSBLAS Ŷ.ź, AMGŷPSBLAS Ŵ.ų (See: psctoolkit.github.io)

ŵŷ/Ŷź

https://psctoolkit.github.io/


Experimental environment & Comparison
Ŷ Parallel computing: how?

Hypre: Scalable Linear Solvers and Multigrid Methods by LLNL

• BoomerAMG as preconditioner of CG, stopped when ∥rk∥2/∥b∥2 ≤ 10−6, or itmax = 500

• V-cycle with Ŵ sweep of forward/backward Hybrid Gauss-Seidel smoother, LU factorization at
the coarsest level

• Ŷ coarsening schemes: hybrid RS/CLJP (Flg), Hybrid Maximal Independent Set (HMIS), HMIS
with first level of aggressive coarsening (HMISŴ); default parameters for coarsest matrix size
1 ≤ nc ≤ 9, coupled with modified (long-range) classical interpolation

ŵŷ/Ŷź



Weak scaling (ŵŸŹK dofs× core): Iteration number
Ŷ Parallel computing: how?

AMGŷPSBLAS Hypre

np n/106 KCMATCH VSCMATCH VSDVB Flg HMIS HMISŴ

Ŵ ų.ŵŸŹ Ŵŵ ź ŴŴ Ź Ź Ŵŵ
ŵ ų.ŸŴŵ Ŵŵ ź Ŵŵ ź ż ŴŸ
22 Ŵ.ųŶŹ Ŵŵ ź ŴŶ ź Ŵŵ Ŵź
23 ŵ.ųŷŻ Ŵŵ ź Ŵŷ Ż ŴŶ Ŵź
24 ŷ.ųźŸ Ŵŵ Ż Ŵŷ Ż Ŵŷ ŵų
25 Ż.ųŷż ŴŶ ż ŴŸ Ż Ŵŷ ŵų
26 ŴŹ.ŶŻŷ Ŵŵ Ż ŴŸ ż ŴŹ ŵŵ
27 Ŷŵ.Źųŷ Ŵŵ Ż ŴŸ Ŵų ŴŻ ŵŸ
28 ŹŶ.żŴź ŴŶ ż ŴŹ Ŵų ŵų ŵź
29 ŴŶŴ,ųźŵ Ŵŷ Ż ŴŻ ŴŴ ŵŵ ŵż
210 ŵŸŹ,ųųų ŴŸ Ż Ŵź Ŵŵ ŵŸ Ŷŵ
211 ŸŴŴ,ŶŶŸ ŴŹ Ŵŵ ŵŴ ŴŶ ŵż Ŷź
212 Ŵųŵŷ,Ŵżŵ ŴŸ Ż ŵŹ ŴŶ ŶŸ ŷų
213 ŵųżź,ŴŸŵ ŴŹ ż ŵź Ŵŷ Ŷź ŷŷ

ŵŸ/Ŷź



Weak scaling (ŵŸŹK dofs× core): operator complexity
Ŷ Parallel computing: how?

ŵŹ/Ŷź



Weak scaling (ŵŸŹK dofs× core): solve time
Ŷ Parallel computing: how?

ŵź/Ŷź



Results at extreme scale: MPI vs hybrid MPI-CUDA
Ŷ Parallel computing: how?

ŵŻ/Ŷź



Table of Contents
ŷ First order of business: GIT

▶ Parallel computing: why?
Linear Systems,mon amour

▶ Parallel computing: where?
Flynn’s Taxonomy
Bēowulf

▶ Parallel computing: how?
An example of contemporary application

▶ First order of business: GIT

▶ Exercises

ŵż/Ŷź



Software Version Control: GIT
ŷ First order of business: GIT

In software engineering, version control is a class of
systems responsible for managing changes to
computer programs, documents, large web sites, or
other collections of information. Version control is a
component of software configuration management.

• We are going to use GIT: https://git-scm.com/,
• Specifically, the Gitea instance run by the PHC: https://git.phc.dm.unipi.it/.

Ŷų/Ŷź

https://git-scm.com/
https://git.phc.dm.unipi.it/


Getting an up-and-running GIT account
ŷ First order of business: GIT

Ŵ. Go to: https://git.phc.dm.unipi.it/,
ŵ. Click on: (top right of the screen),

Ŷ. Then: ,
ŷ. Use UNIPI credentials to login.

Create an SSH key:
Ŵ. Open a terminal (CTRL+ALT+T),
ŵ. Write: ssh-keygen -t ed25519 -C 'fabio.durastante@unipi.it (use your

own E-mail address!)
Ŷ. Press ENTER to confirm default file location (∼/.ssh),
ŷ. At the prompt, type a secure passphrase (you have to remember it!),
Ÿ. Run: eval "$(ssh-agent -s)" and then ssh-add ∼/.ssh/id_ed25519.

ŶŴ/Ŷź

https://git.phc.dm.unipi.it/


Getting an up-and-running GIT account
ŷ First order of business: GIT

Ŵ. Go to: https://git.phc.dm.unipi.it/,
ŵ. Click on: (top right of the screen),

Ŷ. Then: ,
ŷ. Use UNIPI credentials to login.

Create an SSH key:
Ŵ. Open a terminal (CTRL+ALT+T),
ŵ. Write: ssh-keygen -t ed25519 -C 'fabio.durastante@unipi.it (use your

own E-mail address!)
Ŷ. Press ENTER to confirm default file location (∼/.ssh),
ŷ. At the prompt, type a secure passphrase (you have to remember it!),
Ÿ. Run: eval "$(ssh-agent -s)" and then ssh-add ∼/.ssh/id_ed25519.

ŶŴ/Ŷź

https://git.phc.dm.unipi.it/


Getting an up-and-running GIT account
ŷ First order of business: GIT

From the settings menu you have access to
the configurations of the Git service.

• SSH key entry

—
— Which inserts similarly

— Concluding with:

Ŷŵ/Ŷź



Getting an up-and-running GIT account
ŷ First order of business: GIT

From the settings menu you have access to
the configurations of the Git service. • SSH key entry:

—
— Which inserts similarly

— Concluding with:

Ŷŵ/Ŷź



Getting an up-and-running GIT account
ŷ First order of business: GIT

From the settings menu you have access to
the configurations of the Git service.

• SSH key entry

—

— Which inserts similarly

— Concluding with:

Ŷŵ/Ŷź



Getting an up-and-running GIT account
ŷ First order of business: GIT

From the settings menu you have access to
the configurations of the Git service. • SSH key entry

—
— Which inserts similarly:

— Concluding with:

Ŷŵ/Ŷź



Getting an up-and-running GIT account
ŷ First order of business: GIT

From the settings menu you have access to
the configurations of the Git service. • SSH key entry

—
— Which inserts similarly:

— Concluding with:

Ŷŵ/Ŷź



A repository
ŷ First order of business: GIT

• You can create a new
repository easily.

• And then:

ŶŶ/Ŷź



A repository
ŷ First order of business: GIT

• You can create a new
repository easily.

• And then:

ŶŶ/Ŷź



A repository
ŷ First order of business: GIT

• You can create a new
repository easily.

• And then:

ŶŶ/Ŷź



A repository
ŷ First order of business: GIT

• You can create a new
repository easily.

• And then:

ŶŶ/Ŷź



A repository
ŷ First order of business: GIT

• You can create a new
repository easily.

• And then:

git clone git@git.phc.dm.unipi.it:fdurastante/cpar2023.git
cd cpar2023

The folder will contain these slides, and – in the future – the other material we will use.

ŶŶ/Ŷź



GIT Workflow
ŷ First order of business: GIT

We will use GIT to exchange files and working on writing code.

The repository is where
files’ current and historical
data are stored, often on a

server.

checkout To check out is to create a local working copy
from the repository,

pull, push Copy revisions from one repository into another.
Pull is initiated by the receiving repository, while
push is initiated by the source.

commit To commit is to write ormerge the changes
made in the working copy back to the
repository. A commit containsmetadata,
typically the author information and a commit
message that describes the change.

merge is an operation in which two sets of changes are
applied to a file or set of files.

Ŷŷ/Ŷź



Table of Contents
Ÿ Exercises

▶ Parallel computing: why?
Linear Systems,mon amour

▶ Parallel computing: where?
Flynn’s Taxonomy
Bēowulf

▶ Parallel computing: how?
An example of contemporary application

▶ First order of business: GIT

▶ Exercises

ŶŸ/Ŷź



Exercises
Ÿ Exercises

• Review the slides at least once to get used to the vocabulary.
• Make working in a Linux shell comfortable, e.g., ls, cd, ssh, mkdir, mv, cp, rm,

grep, diff;
• Follow this GIT tutorial to familiarize yourself with the commands and workflow:

https://git-scm.com/docs/gittutorial
• Propose a name for our Beowulf machine:

https://forms.gle/FżXtvAWmVqvŹjDŸfź
• Have fun.

ŶŹ/Ŷź

https://git-scm.com/docs/gittutorial
https://forms.gle/3A7nww9UgGfq4gyq7


Calcolo Parallelo dall’Infrastruttura alla
Matematica Thank you for listening!

Any questions?

Ŷź/Ŷź


	Parallel computing: why?
	Linear Systems, mon amour

	Parallel computing: where?
	Flynn's Taxonomy
	Bēowulf

	Parallel computing: how?
	An example of contemporary application

	First order of business: GIT
	Exercises

