
Calcolo Parallelo dall’Infrastruttura alla
Matematica
Auxiliary Tools
Laurea Triennale e Magistrale in Matematica
Fabio Durastante

May 18, 2023

1/29

mailto:fabio.durastante@unipi.it


Table of Contents1 Timers and Synchronization

▶ Timers and Synchronization
▶ A Queue ManagerHow to run a jobChecking the status and canceling a jobAvailable online resources

2/29



Timers and Synchronization1 Timers and Synchronization

• A timer is specified even though it is not an instruction based on “message-passing”:timing parallel programs is important for inquiring on the “performances” of yourcode.

• the timer returns a floating-point number of seconds, representing elapsedwall-clock time since some time in the past:
double MPI_Wtime(void);

the time in the past is guaranteed not to change during the life of the process.
• There exists a tag MPI_WTIME_IS_GLOBAL that is 1 if clocks at all processes in
MPI_COMM_WORLD are synchronized, 0 otherwise.

3/29



Timers and Synchronization1 Timers and Synchronization

• A timer is specified even though it is not an instruction based on “message-passing”:timing parallel programs is important for inquiring on the “performances” of yourcode.
• the timer returns a floating-point number of seconds, representing elapsedwall-clock time since some time in the past:

double MPI_Wtime(void);

the time in the past is guaranteed not to change during the life of the process.

• There exists a tag MPI_WTIME_IS_GLOBAL that is 1 if clocks at all processes in
MPI_COMM_WORLD are synchronized, 0 otherwise.

3/29



Timers and Synchronization1 Timers and Synchronization
• A timer is specified even though it is not an instruction based on “message-passing”:timing parallel programs is important for inquiring on the “performances” of yourcode.• the timer returns a floating-point number of seconds, representing elapsedwall-clock time since some time in the past:

double MPI_Wtime(void);the time in the past is guaranteed not to change during the life of the process.
• the usual application of a timer is something of the form:

double starttime, endtime;

starttime = MPI_Wtime();

< --- foolish things happen here --- >

endtime = MPI_Wtime();

printf("That took %f seconds\n",endtime-starttime);

• There exists a tag MPI_WTIME_IS_GLOBAL that is 1 if clocks at all processes in
MPI_COMM_WORLD are synchronized, 0 otherwise.

3/29



Timers and Synchronization1 Timers and Synchronization

• A timer is specified even though it is not an instruction based on “message-passing”:timing parallel programs is important for inquiring on the “performances” of yourcode.
• the timer returns a floating-point number of seconds, representing elapsedwall-clock time since some time in the past:

double MPI_Wtime(void);

the time in the past is guaranteed not to change during the life of the process.
• There exists a tag MPI_WTIME_IS_GLOBAL that is 1 if clocks at all processes in
MPI_COMM_WORLD are synchronized, 0 otherwise.

3/29



Timers and Synchronization1 Timers and Synchronization
• MPI offers a barrier function that blocks the caller until all processes in the communicatorhave called it
int MPI_Barrier(MPI_Comm comm)

that is, the call returns at any process only after all members of the communicator haveentered the call.

• It can be used together with the MPI_Wait function to force a synchronization point in theprogram.
• It can be used to regulate the access to an external resource (e.g., a file) in such a way thatevery processor accesses it in an order way: if you are interested in writing file in parallel youcan look at Chapter 13 of the MPI guide1
1Message Passing Interface Forum. MPI: A Message-Passing Interface Standard, Version 3.1.

https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf, High Performance ComputingCenter Stuttgart (HLRS).

4/29

https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf


Timers and Synchronization1 Timers and Synchronization
• MPI offers a barrier function that blocks the caller until all processes in the communicatorhave called it
int MPI_Barrier(MPI_Comm comm)

that is, the call returns at any process only after all members of the communicator haveentered the call.
• It can be used together with the MPI_Wait function to force a synchronization point in theprogram.

• It can be used to regulate the access to an external resource (e.g., a file) in such a way thatevery processor accesses it in an order way: if you are interested in writing file in parallel youcan look at Chapter 13 of the MPI guide1
1Message Passing Interface Forum. MPI: A Message-Passing Interface Standard, Version 3.1.

https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf, High Performance ComputingCenter Stuttgart (HLRS).

4/29

https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf


Timers and Synchronization1 Timers and Synchronization
• MPI offers a barrier function that blocks the caller until all processes in the communicatorhave called it
int MPI_Barrier(MPI_Comm comm)

that is, the call returns at any process only after all members of the communicator haveentered the call.
• It can be used together with the MPI_Wait function to force a synchronization point in theprogram.
• It can be used to regulate the access to an external resource (e.g., a file) in such a way thatevery processor accesses it in an order way: if you are interested in writing file in parallel youcan look at Chapter 13 of the MPI guide1
1Message Passing Interface Forum. MPI: A Message-Passing Interface Standard, Version 3.1.

https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf, High Performance ComputingCenter Stuttgart (HLRS).
4/29

https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf


Evaluating performances1 Timers and Synchronization
You can use the MPI_Wtime() to give a simple evalaution of the performances of yourprogram.
Consider, e.g., the two programs for the computation of the π constant. You can evaluatethe weak scalability of your code by looking at the time spent in doing the wholecomputation for growing size of processor numbers and samples.
We can compute the efficiency of the code by measuring:

E = t(1)/t(N) ∈ [0, 1]

where
• t(1) is the amount of time to complete a work unit with 1 processing element,
• t(N) is the amount of time to complete N of the same work units with N processingelements.

5/29



Further modifications1 Timers and Synchronization
For the derivative program:
• In every case the function void firstderiv1Dp_vec wants to exchangeinformation between two adjacent processes, i.e., every process wants to “swap” ishalo with its adjacent process. We can rewrite the whole function by using the
MPI_Sendrecv_replace point-to-point communication routine.

• We can rewrite the entire program in an “embarrassing parallel” way, if every processhas access to f , and are assuming that all the interval are partitioned the same way,by using the knowledge of our rank we can compute what are the boundaryelements at the previous and following process. Thus, no communication at all!
For the π programs,
• Make a graph of the timings to evaluate the weak scaling efficiency.

6/29



Table of Contents2 A Queue Manager

▶ Timers and Synchronization
▶ A Queue ManagerHow to run a jobChecking the status and canceling a jobAvailable online resources

7/29



A Queue Manager2 A Queue Manager
“Slurm is an open source, fault-tolerant, and highly
scalable cluster management and job scheduling sys-
tem for large and small Linux clusters1.”

• It allocates exclusive and/or non-exclusive access to
resources (compute nodes) to users for some duration oftime so they can perform work;

• It provides a framework for starting, executing, and
monitoring work (normally a parallel job) on the set ofallocated nodes;

• It arbitrates contention for resources by managing aqueue of pending work.
1https://slurm.schedmd.com/quickstart.html

8/29

https://slurm.schedmd.com/quickstart.html


The Slurm architecture2 A Queue Manager
Slurm consists of a
• slurmd daemon running on eachcompute node and
• a central slurmctld daemon runningon a management node (there may befail-over twins, but not in our case. . .).

Daemon
A daemon is a service process that runs inthe background and supervises the systemor provides functionality to other processes.

9/29



The Slurm architecture2 A Queue Manager
Slurm consists of a
• slurmd daemon running on eachcompute node and
• a central slurmctld daemon runningon a management node (there may befail-over twins, but not in our case. . .).

Daemon
A daemon is a service process that runs inthe background and supervises the systemor provides functionality to other processes.

9/29



What does Slurm control?2 A Queue Manager
Entities managed by Slurm daemons include:

nodes the compute resource inSlurm,
partitions which group nodes into logical(possibly overlapping) sets,

jobs allocations of resourcesassigned to a user for aspecified amount of time.

More generally, job steps, which are sets of (possibly parallel) tasks within a job.

10/29



What does Slurm control?2 A Queue Manager
Entities managed by Slurm daemons include:

nodes the compute resource inSlurm,
partitions which group nodes into logical(possibly overlapping) sets,

jobs allocations of resourcesassigned to a user for aspecified amount of time.
More generally, job steps, which are sets of (possibly parallel) tasks within a job.

10/29



What configuration do we have?2 A Queue Manager

In our case the system is configured as having
steffe0 running the slurmctld daemon,

steffe[1-19] running the slurmd daemon.
For the moment we also have a single partition called “production”, the partition canbe considered a job queue, usually coming with an assortment of constraints such as jobsize limit, job time limit, users permitted to use it, etc.

To discover information on the system we can run the command sinfo:

11/29



What configuration do we have?2 A Queue Manager
In our case the system is configured as having

steffe0 running the slurmctld daemon,
steffe[1-19] running the slurmd daemon.
For the moment we also have a single partition called “production”, the partition canbe considered a job queue, usually coming with an assortment of constraints such as jobsize limit, job time limit, users permitted to use it, etc.
To discover information on the system we can run the command sinfo:

fdurastante@steffe0:~$ sinfo

PARTITION AVAIL TIMELIMIT NODES STATE NODELIST

production* up infinite 19 idle steffe[1-19]

11/29



What configuration do we have?2 A Queue Manager
Further information on the available partition could be obtained by doing:
fdurastante@steffe0:~$ scontrol show partition

PartitionName=production

AllowGroups=ALL AllowAccounts=ALL AllowQos=ALL

AllocNodes=ALL Default=YES QoS=N/A

DefaultTime=NONE DisableRootJobs=NO ExclusiveUser=NO GraceTime=0 Hidden=NO

MaxNodes=UNLIMITED MaxTime=UNLIMITED MinNodes=0 LLN=NO MaxCPUsPerNode=UNLIMITED

Nodes=steffe[1-19]

PriorityJobFactor=1 PriorityTier=1 RootOnly=NO ReqResv=NO OverSubscribe=NO

OverTimeLimit=NONE PreemptMode=OFF

State=UP TotalCPUs=114 TotalNodes=19 SelectTypeParameters=NONE

JobDefaults=(null)

DefMemPerNode=UNLIMITED MaxMemPerNode=UNLIMITED

12/29



Running a job: the interactive case2 A Queue Manager
• Interactive jobs allow a user to interact with applications on the compute nodes.
• With an interactive job, you request time and resources to work on a compute node.

They are mostly used to spawn interactive shells on a compute node via the sruncommand, e.g., the following command
srun --partition=production --time=00:30:00 --nodes=1 --pty bash -i

gives us
• 1 node (--nodes=1),
• from the partition production (--nodes=1),
• for half an our (--time=00:30:00),
• running an interactive bash shell --pty bash -i

13/29



Running a job: the interactive case2 A Queue Manager
Let us try it:
fdurastante@steffe0:~$ srun --partition=production --time=00:30:00

--nodes=1 --pty bash -i↪→

fdurastante@steffe2:~$

the code returns us a shell on the node steffe2 and we have it available for half an hour.In our case all nodes are equal, but we may ask for specific properties:
• --mem=<size>[units] Specify the real memory required per node. Default unitsare megabytes. Different units can be specified using the suffix [K—M—G—T].Default value is DefMemPerNode and the maximum value isMaxMemPerNode.
• -c, --cpus-per-task=<ncpus> Request that ncpus be allocated per process.This may be useful if the job is multithreaded and requires more than one CPU pertask for optimal performance,

14/29



Running a job: the interactive case2 A Queue Manager

• --ntasks=<number> Specify the number of tasks to run. Request that srunallocate resources for ntasks tasks.The default is one task per node, but note that the --cpus-per-task option willchange this default.
• --ntasks-per-node=<ntasks> Request that ntasks be invoked on each node.If used with the --ntasks option, the –ntasks option will take precedence and the
--ntasks-per-node will be treated as a maximum count of tasks per node.Meant to be used with the --nodes option. This is related to
--cpus-per-task=ncpus, but does not require knowledge of the actual number of
cpus on each node.

15/29



Running a job: the interactive case2 A Queue Manager
• --exclusive[={user|mcs}] This option applies to job and job step allocations,and has two slightly different meanings for each one.When used to initiate a job, the job allocation cannot share nodes with otherrunning jobs (or just other users with the =user option or =mcs option).If user/mcs are not specified (i.e. the job allocation can not share nodes with otherrunning jobs), the job is allocated all CPUs and GRES on all nodes in the allocation,but is only allocated as much memory as it requested.

Use cases for interactive shells are, e.g.,
• working with interactive software that requires many resources,
• getting a node just to compile a project in parallel,
• testing and debugging.

16/29



Running a job: the batched case2 A Queue Manager

In a general setting, a batch script is an unformatted script file which containsmultiple
commands to achieve a certain task.

Commands are executed by command line interpreter that for Slurm is called sbatch.
• sbatch exits immediately after the script is successfully transferred to the Slurmcontroller and assigned a Slurm job ID.
• The batch script is not necessarily granted resources immediately, it may sit in the
queue of pending jobs for some time before its required resources become available.

17/29



Running a job: the batched case2 A Queue Manager
Let us start from an example, we want to run our midpointintegral.c code on ourmachine, thus we create a bash script called run.sh (e.g., touch run.sh and then oureditor, or whatever editor we like vim run.sh.).
The simplest script we can write is:
#!/bin/bash

#SBATCH -n 10

#SBATCH --time=12:00:00

mpirun ./midpointintegral 100

Then we can put it into the queue by doing
sbatch run.sh

that will answer something like: Submitted batch job 29.
18/29



Running a job: the batched case2 A Queue Manager

If we look into the folder where we have launched the script we will find a file called
slurm-29.out containing:
fdurastante@steffe0:~/simpletests$ more slurm-29.out

pi is approximately 3.1415927369231262, Error is 8.333333e-08

What did we do?
• We have run the program midpointintegral on -n 10 tasks,
• this means that we have used 2 nodes of our cluster (each node has only 6 CPUs),
• we have also told the machine that the upper-bound time for our execution was 12minutes (we finished way earlier. . .).

19/29



Running a job: the batched case2 A Queue Manager

If we look into the folder where we have launched the script we will find a file called
slurm-29.out containing:
fdurastante@steffe0:~/simpletests$ more slurm-29.out

pi is approximately 3.1415927369231262, Error is 8.333333e-08

What did we do?
• We have run the program midpointintegral on -n 10 tasks,
• this means that we have used 2 nodes of our cluster (each node has only 6 CPUs),
• we have also told the machine that the upper-bound time for our execution was 12minutes (we finished way earlier. . .).

19/29



Running a job: the batched case2 A Queue Manager

What about the queue?If we run again the sbatch command followed by the squeue we can visualize it:
fdurastante@steffe0:~/simpletests$ sbatch run.sh; squeue

Submitted batch job 30

JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)

30 productio run.sh fdurasta R 0:00 2 steffe[2-3]

The squeue command gives us all the information relevant to the queued jobs.

Before investigating it further, let us go back to the options we can add to our batch script.

20/29



Running a job: the batched case2 A Queue Manager

What about the queue?If we run again the sbatch command followed by the squeue we can visualize it:
fdurastante@steffe0:~/simpletests$ sbatch run.sh; squeue

Submitted batch job 30

JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)

30 productio run.sh fdurasta R 0:00 2 steffe[2-3]

The squeue command gives us all the information relevant to the queued jobs.

Before investigating it further, let us go back to the options we can add to our batch script.

20/29



Running a job: the batched case2 A Queue Manager
The options overlap with the ones we have seen for the srun command.
• #SBATCH --job-name=<jobname>Specify a name for the job allocation. The specified name will appear along with thejob id number when querying running jobs on the system.
• #SBATCH --mem=<size>[units]

• #SBATCH -t, --time=<time>Set a limit on the total run time of the job allocation. If the requested time limitexceeds the partition’s time limit, the job will be left in a PENDING state (possiblyindefinitely). The default time limit is the partition’s default time limit. When thetime limit is reached, each task in each job step is sent SIGTERM followed by SIGKILL.Acceptable time formats include “minutes”, “minutes:seconds”,
21/29



Running a job: the batched case2 A Queue Manager
“hours:minutes:seconds”, “days-hours”, “days-hours:minutes” and“days-hours:minutes:seconds”.

• #SBATCH --nodelist=<node_name_list>Request a specific list of hosts. The job will contain all of these hosts and possiblyadditional hosts as needed to satisfy resource requirements. The list may bespecified as a comma-separated list of hosts, a range of hosts (steffe[1-5,7,...]for example), or a filename. The host list will be assumed to be a filename if itcontains a / character.
• #SBATCH-p, --partition=<partition_names>Request a specific partition for the resource allocation. If not specified, the defaultbehavior is to allow the slurm controller to select the default partition as designatedby the system administrator.

22/29



Running a job: the batched case2 A Queue Manager
• #SBATCH -N, --nodes=<minnodes>[-maxnodes]|<size_string>Request that a minimum of minnodes nodes be allocated to this job. A maximumnode count may also be specified with maxnodes. If only one number is specified,this is used as both the minimum and maximum node count.
• #SBATCH -n, --ntasks=<number>

sbatch does not launch tasks, it requests an allocation of resources and submits abatch script. The default is one task per node, but note that the --cpus-per-taskoption will change this default.
• #SBATCH --cpus-per-task=<ncpus>Advise the Slurm controller that ensuing job steps will require ncpus number ofprocessors per task. Without this option, the controller will just try to allocate oneprocessor per task.

23/29



Running a job: the batched case2 A Queue Manager
• #SBATCH --ntasks-per-node=<ntasks>Request that ntasks be invoked on each node. If used with the –ntasks option, the
--ntasks option will take precedence and the --ntasks-per-node will be treatedas a maximum count of tasks per node. Meant to be used with the --nodes option.

• #SBATCH --exclusive

• #SBATCH --input=<filename_pattern>Instruct Slurm to connect the batch script’s standard input directly to the file namespecified in the filename pattern.
• #SBATCH -o, --output=<filename_pattern>Instruct Slurm to connect the batch script’s standard output directly to the file namespecified in the filename pattern.

24/29



Running a job: the batched case2 A Queue Manager
sbatch allows commands that have the filename argument to contain one or moresubstitution symbols usually preceded by “%” and followed by a letter:

Substitution Symbol
\\ Do not process any of the substitution symbols.
%% The character “%”
%j jobid of the running job.
%N short hostname. This will create a separate IO file per node.
%n Node identifier for the current job (eg ”0” is the first node of the run-ning job) This will create a separate IO file per node.
%s stepid of the running job.
%u Username
%x Job name

25/29



Running a job: the batched2 A Queue Manager
• #SBATCH --mail-type=<type>Notify user by email when certain event types occur. Valid type values are NONE,
BEGIN, END, FAIL, REQUEUE, ALL (equivalent to BEGIN, END, FAIL,
INVALID_DEPEND, REQUEUE, and STAGE_OUT), INVALID_DEPEND (dependencynever satisfied), STAGE_OUT (burst buffer stage out and teardown completed),
TIME_LIMIT, TIME_LIMIT_90 (reached 90 percent of time limit), TIME_LIMIT_80(reached 80 percent of time limit), TIME_LIMIT_50 (reached 50 percent of timelimit). Multiple type values may be specified in a comma separated list. The user tobe notified is indicated with --mail-user.

• #SBATCH --mail-user=<user>User to receive email notification of state changes as defined by –mail-type. Thedefault value is the submitting user.
26/29



Checking the status and canceling a job2 A Queue Manager
To check the queue a useful option is passing to the command the username:

squeue -u username

To have more information we can pass the flag:
squeue --long

Another useful command is the scontrol command, it can be used to check that thecontroller is UP:
scontrol ping

Slurmctld(primary) at steffe0 is UP

and to get further information on a job
scontrol show jobid

To cancel a job you can use: scancel jobid.
27/29



Available online resources2 A Queue Manager

The Slurm configuration may have kinks that depends on the machine that is running it. . .so always check the relevant documentation, see, e.g., the documentation for
Marconi-100

Other two general resources are:
• https://slurm.schedmd.com/tutorials.html,
• https://slurm.schedmd.com/pdfs/summary.pdf (this is a .pdf file).

28/29

https://shorturl.at/nrOP7
https://slurm.schedmd.com/tutorials.html
https://slurm.schedmd.com/pdfs/summary.pdf


Calcolo Parallelo dall’Infrastruttura allaMatematica Thank you for listening!

Any questions?

29/29


	Timers and Synchronization
	A Queue Manager
	How to run a job
	Checking the status and canceling a job
	Available online resources


