You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
351 lines
16 KiB
FortranFixed
351 lines
16 KiB
FortranFixed
19 years ago
|
C
|
||
|
C Parallel Sparse BLAS v2.0
|
||
|
C (C) Copyright 2006 Salvatore Filippone University of Rome Tor Vergata
|
||
|
C Alfredo Buttari University of Rome Tor Vergata
|
||
|
C
|
||
|
C Redistribution and use in source and binary forms, with or without
|
||
|
C modification, are permitted provided that the following conditions
|
||
|
C are met:
|
||
|
C 1. Redistributions of source code must retain the above copyright
|
||
|
C notice, this list of conditions and the following disclaimer.
|
||
|
C 2. Redistributions in binary form must reproduce the above copyright
|
||
|
C notice, this list of conditions, and the following disclaimer in the
|
||
|
C documentation and/or other materials provided with the distribution.
|
||
|
C 3. The name of the PSBLAS group or the names of its contributors may
|
||
|
C not be used to endorse or promote products derived from this
|
||
|
C software without specific written permission.
|
||
|
C
|
||
|
C THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||
|
C ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
||
|
C TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
||
|
C PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE PSBLAS GROUP OR ITS CONTRIBUTORS
|
||
|
C BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
||
|
C CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
||
|
C SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
||
|
C INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
||
|
C CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
||
|
C ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||
|
C POSSIBILITY OF SUCH DAMAGE.
|
||
|
C
|
||
|
C
|
||
20 years ago
|
***********************************************************************
|
||
|
* PROCEDURAL LOGIC SECTION *
|
||
|
* SUBROUTINE DJADMV (DIAG,NROW,NCOL,ALPHA,NG,A,KA,JA,IA,X,BETA,Y) *
|
||
|
* DOUBLE PRECISION ZERO *
|
||
|
* PARAMETER (ZERO=0.0D0) *
|
||
|
* DOUBLE PRECISION ACC *
|
||
|
* INTEGER I, J, K, IPX, IPG *
|
||
|
* LOGICAL UNI *
|
||
|
*C .. Executable Statements .. *
|
||
|
*C *
|
||
|
*C *
|
||
|
* IF (DIAG.EQ.'U') THEN *
|
||
|
* DO 10 I = 1, M *
|
||
|
* Y(I) = BETA*Y(I) + ALPHA*X(I) *
|
||
|
* 10 CONTINUE *
|
||
|
* ELSE *
|
||
|
* DO 20 I = 1, M *
|
||
|
* Y(I) = BETA*Y(I) *
|
||
|
* 20 CONTINUE *
|
||
|
* END IF *
|
||
|
* *
|
||
|
* IF (ALPHA.EQ.ZERO) THEN *
|
||
|
* RETURN *
|
||
|
* END IF *
|
||
|
*C *
|
||
|
*C *
|
||
|
*C DO 200 IPG = 1, NG *
|
||
|
* DO 50 K = IA(2,IPG), IA(3,IPG)-1 *
|
||
|
* IPX = IA(1,IPG) *
|
||
|
* DO 40 I = JA(K), JA(K+1) - 1 *
|
||
|
* Y(IPX) = Y(IPX) + ALPHA*A(I)*X(KA(I)) *
|
||
|
* IPX = IPX + 1 *
|
||
|
* 40 CONTINUE *
|
||
|
* 50 CONTINUE *
|
||
|
*C *
|
||
|
*C *
|
||
|
* IPX = IA(1,IPG) *
|
||
|
* DO 70 K = IA(3,IPG), IA(2,IPG+1)-1 *
|
||
|
* DO 60 I = JA(K), JA(K+1) - 1 *
|
||
|
* Y(IPX) = Y(IPX) + ALPHA*A(I)*X(KA(I)) *
|
||
|
* 60 CONTINUE *
|
||
|
* IPX = IPX + 1 *
|
||
|
* 70 CONTINUE *
|
||
|
* 200 CONTINUE *
|
||
|
*C *
|
||
|
* RETURN *
|
||
|
*C *
|
||
|
*C *
|
||
|
* END *
|
||
|
* *
|
||
|
* *
|
||
|
***********************************************************************
|
||
|
SUBROUTINE DJADMV (DIAG,NROW,NCOL,ALPHA,NG,A,KA,JA,IA,X,
|
||
|
+ BETA,Y,IERROR)
|
||
|
IMPLICIT NONE
|
||
|
DOUBLE PRECISION A(*),X(*),Y(*),ALPHA,BETA,ZERO
|
||
|
INTEGER IA(3,*),KA(*),JA(*),NCOL,NROW,NG,IERROR
|
||
|
CHARACTER DIAG
|
||
|
PARAMETER (ZERO=0.0D0)
|
||
|
INTEGER I, K, IPX, IPG, I0, IN
|
||
|
INTEGER NPG
|
||
|
DOUBLE PRECISION Y0, Y1, Y2, Y3, Y4, Y5, Y6, Y7,
|
||
|
+ Y8, Y9, Y10, Y11, Y12, Y13, Y14, Y15
|
||
|
c .. Executable Statements ..
|
||
|
c
|
||
|
c
|
||
|
IERROR=0
|
||
|
IF (DIAG.EQ.'U') THEN
|
||
|
IF (BETA.EQ.ZERO) THEN
|
||
|
DO I = 1, NROW
|
||
|
Y(I) = ALPHA*X(I)
|
||
|
ENDDO
|
||
|
ELSE
|
||
|
DO 10 I = 1, NROW
|
||
|
Y(I) = BETA*Y(I) + ALPHA*X(I)
|
||
|
10 CONTINUE
|
||
|
ENDIF
|
||
|
ELSE
|
||
|
IF (BETA.EQ.ZERO) THEN
|
||
|
DO I = 1, NROW
|
||
|
Y(I) = 0.D0
|
||
|
ENDDO
|
||
|
ELSE
|
||
|
DO 20 I = 1, NROW
|
||
|
Y(I) = BETA*Y(I)
|
||
|
20 CONTINUE
|
||
|
END IF
|
||
|
ENDIF
|
||
|
|
||
|
IF (ALPHA.EQ.ZERO) THEN
|
||
|
RETURN
|
||
|
END IF
|
||
|
c
|
||
|
c
|
||
|
DO 200 IPG = 1, NG
|
||
|
K = IA(2,IPG)
|
||
|
NPG = JA(K+1)-JA(K)
|
||
|
|
||
|
IF (NPG.EQ.4) THEN
|
||
|
IPX = IA(1,IPG)
|
||
|
Y0 = ZERO
|
||
|
Y1 = ZERO
|
||
|
Y2 = ZERO
|
||
|
Y3 = ZERO
|
||
|
K = IA(2,IPG)
|
||
|
I0 = JA(K)
|
||
|
K = IA(3,IPG)-1
|
||
|
IN = JA(K)
|
||
|
DO I = I0, IN+3, 4
|
||
|
Y0 = Y0 + A(I+0)*X(KA(I+0))
|
||
|
Y1 = Y1 + A(I+1)*X(KA(I+1))
|
||
|
Y2 = Y2 + A(I+2)*X(KA(I+2))
|
||
|
Y3 = Y3 + A(I+3)*X(KA(I+3))
|
||
|
ENDDO
|
||
|
Y(IPX+0) = Y(IPX+0) + ALPHA*Y0
|
||
|
Y(IPX+1) = Y(IPX+1) + ALPHA*Y1
|
||
|
Y(IPX+2) = Y(IPX+2) + ALPHA*Y2
|
||
|
Y(IPX+3) = Y(IPX+3) + ALPHA*Y3
|
||
|
|
||
|
ELSE IF (NPG.EQ.5) THEN
|
||
|
|
||
|
IPX = IA(1,IPG)
|
||
|
Y0 = ZERO
|
||
|
Y1 = ZERO
|
||
|
Y2 = ZERO
|
||
|
Y3 = ZERO
|
||
|
Y4 = ZERO
|
||
|
K = IA(2,IPG)
|
||
|
I0 = JA(K)
|
||
|
K = IA(3,IPG)-1
|
||
|
IN = JA(K)
|
||
|
DO I = I0, IN+4, 5
|
||
|
Y0 = Y0 + A(I+0)*X(KA(I+0))
|
||
|
Y1 = Y1 + A(I+1)*X(KA(I+1))
|
||
|
Y2 = Y2 + A(I+2)*X(KA(I+2))
|
||
|
Y3 = Y3 + A(I+3)*X(KA(I+3))
|
||
|
Y4 = Y4 + A(I+4)*X(KA(I+4))
|
||
|
ENDDO
|
||
|
Y(IPX+0) = Y(IPX+0) + ALPHA*Y0
|
||
|
Y(IPX+1) = Y(IPX+1) + ALPHA*Y1
|
||
|
Y(IPX+2) = Y(IPX+2) + ALPHA*Y2
|
||
|
Y(IPX+3) = Y(IPX+3) + ALPHA*Y3
|
||
|
Y(IPX+4) = Y(IPX+4) + ALPHA*Y4
|
||
|
|
||
|
ELSE IF (NPG.EQ.6) THEN
|
||
|
|
||
|
IPX = IA(1,IPG)
|
||
|
Y0 = ZERO
|
||
|
Y1 = ZERO
|
||
|
Y2 = ZERO
|
||
|
Y3 = ZERO
|
||
|
Y4 = ZERO
|
||
|
Y5 = ZERO
|
||
|
K = IA(2,IPG)
|
||
|
I0 = JA(K)
|
||
|
K = IA(3,IPG)-1
|
||
|
IN = JA(K)
|
||
|
DO I = I0, IN+5, 6
|
||
|
Y0 = Y0 + A(I+0)*X(KA(I+0))
|
||
|
Y1 = Y1 + A(I+1)*X(KA(I+1))
|
||
|
Y2 = Y2 + A(I+2)*X(KA(I+2))
|
||
|
Y3 = Y3 + A(I+3)*X(KA(I+3))
|
||
|
Y4 = Y4 + A(I+4)*X(KA(I+4))
|
||
|
Y5 = Y5 + A(I+5)*X(KA(I+5))
|
||
|
ENDDO
|
||
|
Y(IPX+0) = Y(IPX+0) + ALPHA*Y0
|
||
|
Y(IPX+1) = Y(IPX+1) + ALPHA*Y1
|
||
|
Y(IPX+2) = Y(IPX+2) + ALPHA*Y2
|
||
|
Y(IPX+3) = Y(IPX+3) + ALPHA*Y3
|
||
|
Y(IPX+4) = Y(IPX+4) + ALPHA*Y4
|
||
|
Y(IPX+5) = Y(IPX+5) + ALPHA*Y5
|
||
|
|
||
|
ELSE IF (NPG.EQ.7) THEN
|
||
|
|
||
|
IPX = IA(1,IPG)
|
||
|
Y0 = ZERO
|
||
|
Y1 = ZERO
|
||
|
Y2 = ZERO
|
||
|
Y3 = ZERO
|
||
|
Y4 = ZERO
|
||
|
Y5 = ZERO
|
||
|
Y6 = ZERO
|
||
|
K = IA(2,IPG)
|
||
|
I0 = JA(K)
|
||
|
K = IA(3,IPG)-1
|
||
|
IN = JA(K)
|
||
|
DO I = I0, IN+6, 7
|
||
|
Y0 = Y0 + A(I+0)*X(KA(I+0))
|
||
|
Y1 = Y1 + A(I+1)*X(KA(I+1))
|
||
|
Y2 = Y2 + A(I+2)*X(KA(I+2))
|
||
|
Y3 = Y3 + A(I+3)*X(KA(I+3))
|
||
|
Y4 = Y4 + A(I+4)*X(KA(I+4))
|
||
|
Y5 = Y5 + A(I+5)*X(KA(I+5))
|
||
|
Y6 = Y6 + A(I+6)*X(KA(I+6))
|
||
|
ENDDO
|
||
|
Y(IPX+0) = Y(IPX+0) + ALPHA*Y0
|
||
|
Y(IPX+1) = Y(IPX+1) + ALPHA*Y1
|
||
|
Y(IPX+2) = Y(IPX+2) + ALPHA*Y2
|
||
|
Y(IPX+3) = Y(IPX+3) + ALPHA*Y3
|
||
|
Y(IPX+4) = Y(IPX+4) + ALPHA*Y4
|
||
|
Y(IPX+5) = Y(IPX+5) + ALPHA*Y5
|
||
|
Y(IPX+6) = Y(IPX+6) + ALPHA*Y6
|
||
|
|
||
|
ELSE IF (NPG.EQ.8) THEN
|
||
|
|
||
|
IPX = IA(1,IPG)
|
||
|
Y0 = ZERO
|
||
|
Y1 = ZERO
|
||
|
Y2 = ZERO
|
||
|
Y3 = ZERO
|
||
|
Y4 = ZERO
|
||
|
Y5 = ZERO
|
||
|
Y6 = ZERO
|
||
|
Y7 = ZERO
|
||
|
K = IA(2,IPG)
|
||
|
I0 = JA(K)
|
||
|
K = IA(3,IPG)-1
|
||
|
IN = JA(K)
|
||
|
DO I = I0, IN+7, 8
|
||
|
Y0 = Y0 + A(I+0)*X(KA(I+0))
|
||
|
Y1 = Y1 + A(I+1)*X(KA(I+1))
|
||
|
Y2 = Y2 + A(I+2)*X(KA(I+2))
|
||
|
Y3 = Y3 + A(I+3)*X(KA(I+3))
|
||
|
Y4 = Y4 + A(I+4)*X(KA(I+4))
|
||
|
Y5 = Y5 + A(I+5)*X(KA(I+5))
|
||
|
Y6 = Y6 + A(I+6)*X(KA(I+6))
|
||
|
Y7 = Y7 + A(I+7)*X(KA(I+7))
|
||
|
ENDDO
|
||
|
Y(IPX+0) = Y(IPX+0) + ALPHA*Y0
|
||
|
Y(IPX+1) = Y(IPX+1) + ALPHA*Y1
|
||
|
Y(IPX+2) = Y(IPX+2) + ALPHA*Y2
|
||
|
Y(IPX+3) = Y(IPX+3) + ALPHA*Y3
|
||
|
Y(IPX+4) = Y(IPX+4) + ALPHA*Y4
|
||
|
Y(IPX+5) = Y(IPX+5) + ALPHA*Y5
|
||
|
Y(IPX+6) = Y(IPX+6) + ALPHA*Y6
|
||
|
Y(IPX+7) = Y(IPX+7) + ALPHA*Y7
|
||
|
|
||
|
ELSE IF (NPG.EQ.16) THEN
|
||
|
|
||
|
IPX = IA(1,IPG)
|
||
|
Y0 = ZERO
|
||
|
Y1 = ZERO
|
||
|
Y2 = ZERO
|
||
|
Y3 = ZERO
|
||
|
Y4 = ZERO
|
||
|
Y5 = ZERO
|
||
|
Y6 = ZERO
|
||
|
Y7 = ZERO
|
||
|
Y8 = ZERO
|
||
|
Y9 = ZERO
|
||
|
Y10 = ZERO
|
||
|
Y11 = ZERO
|
||
|
Y12 = ZERO
|
||
|
Y13 = ZERO
|
||
|
Y14 = ZERO
|
||
|
Y15 = ZERO
|
||
|
K = IA(2,IPG)
|
||
|
I0 = JA(K)
|
||
|
K = IA(3,IPG)-1
|
||
|
IN = JA(K)
|
||
|
DO I = I0, IN+15, 16
|
||
|
Y0 = Y0 + A(I+0)*X(KA(I+0))
|
||
|
Y1 = Y1 + A(I+1)*X(KA(I+1))
|
||
|
Y2 = Y2 + A(I+2)*X(KA(I+2))
|
||
|
Y3 = Y3 + A(I+3)*X(KA(I+3))
|
||
|
Y4 = Y4 + A(I+4)*X(KA(I+4))
|
||
|
Y5 = Y5 + A(I+5)*X(KA(I+5))
|
||
|
Y6 = Y6 + A(I+6)*X(KA(I+6))
|
||
|
Y7 = Y7 + A(I+7)*X(KA(I+7))
|
||
|
Y8 = Y8 + A(I+8)*X(KA(I+8))
|
||
|
Y9 = Y9 + A(I+9)*X(KA(I+9))
|
||
|
Y10 = Y10 + A(I+10)*X(KA(I+10))
|
||
|
Y11 = Y11 + A(I+11)*X(KA(I+11))
|
||
|
Y12 = Y12 + A(I+12)*X(KA(I+12))
|
||
|
Y13 = Y13 + A(I+13)*X(KA(I+13))
|
||
|
Y14 = Y14 + A(I+14)*X(KA(I+14))
|
||
|
Y15 = Y15 + A(I+15)*X(KA(I+15))
|
||
|
ENDDO
|
||
|
Y(IPX+0) = Y(IPX+0) + ALPHA*Y0
|
||
|
Y(IPX+1) = Y(IPX+1) + ALPHA*Y1
|
||
|
Y(IPX+2) = Y(IPX+2) + ALPHA*Y2
|
||
|
Y(IPX+3) = Y(IPX+3) + ALPHA*Y3
|
||
|
Y(IPX+4) = Y(IPX+4) + ALPHA*Y4
|
||
|
Y(IPX+5) = Y(IPX+5) + ALPHA*Y5
|
||
|
Y(IPX+6) = Y(IPX+6) + ALPHA*Y6
|
||
|
Y(IPX+7) = Y(IPX+7) + ALPHA*Y7
|
||
|
Y(IPX+8) = Y(IPX+8) + ALPHA*Y8
|
||
|
Y(IPX+9) = Y(IPX+9) + ALPHA*Y9
|
||
|
Y(IPX+10) = Y(IPX+10) + ALPHA*Y10
|
||
|
Y(IPX+11) = Y(IPX+11) + ALPHA*Y11
|
||
|
Y(IPX+12) = Y(IPX+12) + ALPHA*Y12
|
||
|
Y(IPX+13) = Y(IPX+13) + ALPHA*Y13
|
||
|
Y(IPX+14) = Y(IPX+14) + ALPHA*Y14
|
||
|
Y(IPX+15) = Y(IPX+15) + ALPHA*Y15
|
||
|
|
||
|
ELSE
|
||
|
|
||
|
DO K = IA(2,IPG), IA(3,IPG)-1
|
||
|
IPX = IA(1,IPG)
|
||
|
DO I = JA(K), JA(K+1) - 1
|
||
|
Y(IPX) = Y(IPX) + ALPHA*A(I)*X(KA(I))
|
||
|
IPX = IPX + 1
|
||
|
ENDDO
|
||
|
ENDDO
|
||
|
END IF
|
||
|
|
||
|
c CSR Product
|
||
|
|
||
|
IPX = IA(1,IPG)
|
||
|
DO 70 K = IA(3,IPG), IA(2,IPG+1)-1
|
||
|
DO 60 I = JA(K), JA(K+1) - 1
|
||
|
Y(IPX) = Y(IPX) + ALPHA*A(I)*X(KA(I))
|
||
|
60 CONTINUE
|
||
|
IPX = IPX + 1
|
||
|
70 CONTINUE
|
||
|
200 CONTINUE
|
||
|
c
|
||
|
RETURN
|
||
|
END
|
||
|
|