psblas3/base/serial/csr/zcsrmm.f

206 lines
6.4 KiB
FortranFixed

C
C SUBROUTINE ZCSRMM(TRANSA,M,K,N,ALPHA,DESCRA,AR,
C * JA,IA,B,LDB,BETA,C,LDC,WORK,LWORK)
C
C Purpose
C =======
C
C Computing C <-- ALPHA A B + BETA C or
C C <-- ALPHA At B + BETA C or
C C <-- ALPHA Atc B + BETA C
C Called by ZSWMM
C This routine calls kernel for CSR data structure.
C
C Parameters
C ==========
C
C TRANSA - CHARACTER*1
C On entry TRANS specifies if the routine operates with matrix A
C or with the transpose of A as follows:
C TRANS = 'N' -> use matrix A
C TRANS = 'T' -> use A' (transpose of matrix A)
C TRANS = 'C' -> use conjugate transpose of A
C Unchanged on exit.
C
C N.B.: M, K for C matrix
C M, N for A matrix
C N, K for B matrix
C In the calling subroutine, ZSWMM, it was:
C M, N for C matrix
C M, K for A matrix
C K, N for B matrix
C Check the parameters order!
C
C M - INTEGER
C On entry: number of rows of matrix A (A') and
C number of rows of matrix C
C Unchanged on exit.
C
C K - INTEGER
C On entry: number of columns of matrix B
C and number of columns of matrix C.
C Unchanged on exit.
C
C N - INTEGER
C On entry: number of columns of matrix A (A') and
C number of rows of matrix B
C Unchanged on exit.
C
C ALPHA - COMPLEX*16
C On entry: multiplicative constant.
C Unchanged on exit.
C
C DESCRA - CHARACTER*1 array of DIMENSION (9)
C On entry DESCRA describes the characteristics of the input
C sparse matrix.
C Unchanged on exit.
C
C AR - COMPLEX*16 array of DIMENSION (*)
C On entry AR specifies the values of the input sparse
C matrix.
C Unchanged on exit.
C
C JA - INTEGER array of dimension (*)
C On entry JA holds integer information on input sparse
C matrix. Actual information will depend on data format used.
C Unchanged on exit.
C
C IA - INTEGER array of dimension (*)
C On entry IA holds integer information on input sparse
C matrix. Actual information will depend on data format used.
C Unchanged on exit.
C
C INFOA - INTEGER array of length 10.
C On entry can hold auxiliary information on input matrices
C formats or environment of subsequent calls.
C Might be changed on exit.
C
C B - COMPLEX*16 matrix of dimension (LDB,*)
C On entry: dense matrix.
C Unchanged on exit.
C
C LDB - INTEGER
C On entry: leading dimension of B
C Unchanged on exit.
C
C BETA - COMPLEX*16
C On entry: multiplicative constant.
C Unchanged on exit.
C
C C - COMPLEX*16 matrix of dimension (LDC,*)
C On entry: dense matrix.
C On exit is updated with the matrix-matrix product.
C
C LDC - INTEGER
C On entry: leading dimension of C
C Unchanged on exit.
C
C WORK - COMPLEX*16 array of dimension (LWORK)
C On entry: work area.
C On exit INT(WORK(1)) contains the minimum value
C for LWORK satisfying ZSWMM memory requirements.
C
C LWORK - INTEGER
C On entry LWORK specifies the dimension of WORK
C Unchanged on exit.
C
SUBROUTINE ZCSRMM(TRANSA,M,K,N,ALPHA,DESCRA,AR,
* JA,IA,B,LDB,BETA,C,LDC,WORK,LWORK)
C
C
C .. Scalar Arguments ..
COMPLEX*16 ALPHA, BETA
INTEGER K, LDB, LDC, M, N, LWORK
CHARACTER TRANSA
C .. Array Arguments ..
COMPLEX*16 AR(*), B(LDB,*), C(LDC,*), WORK(*)
INTEGER IA(*), JA(*)
CHARACTER DESCRA*11
C .. Local Scalars ..
INTEGER I, J
CHARACTER DIAG, TRANS
C .. External Subroutines ..
EXTERNAL ZSRMV
C .. Executable Statements ..
C
C
C IF (DESCRA(1).EQ.'G') TRANS = TRANSA
C
C .. Why to loose TRANSA for H, T, A matrices?
C
TRANS = TRANSA
C
IF ((DESCRA(1:1).EQ.'S').AND.(DESCRA(2:2).EQ.'U')) THEN
IF (TRANSA.EQ.'C') THEN
TRANS = 'V'
ELSE
TRANS = 'U'
ENDIF
ENDIF
IF ((DESCRA(1:1).EQ.'S').AND.(DESCRA(2:2).EQ.'L')) THEN
IF (TRANSA.EQ.'C') THEN
TRANS = 'M'
ELSE
TRANS = 'L'
ENDIF
ENDIF
C .. Diagonal matrix
IF (DESCRA(1:1).EQ.'D') THEN
C .. Diagonal matrix with unitary values
IF (DESCRA(3:3).EQ.'U') THEN
DO 40 I = 1, K
DO 20 J = 1, M
C(J,I) = BETA*C(J,I) + ALPHA*B(J,I)
20 CONTINUE
40 CONTINUE
RETURN
C .. Diagonal matrix to be conjugated
ELSE IF (TRANSA.EQ.'C') THEN
DO 80 I = 1, K
DO 60 J = 1, M
C(J,I) = BETA*C(J,I) + ALPHA *
+ CONJG(AR(J)) * B(J,I)
60 CONTINUE
80 CONTINUE
RETURN
C .. Generic diagonal matrix
ELSE
DO 91 I = 1, K
DO 90 J = 1, M
C(J,I) = BETA*C(J,I) + ALPHA *
+ AR(J) * B(J,I)
90 CONTINUE
91 CONTINUE
RETURN
ENDIF
END IF
C
IF (DESCRA(3:3).EQ.'N') DIAG = 'N'
IF (DESCRA(3:3).EQ.'U') DIAG = 'U'
C
C C = A*B or C=A'*B or C=conjug(A')*B
C
C TRANS =
C 'N': Compute using A as it is.
C 'T': Compute using the transpose of A.
C 'C': Compute using conjugate transpose of A.
C 'U': A is symmetric, stored upper, compute as it is;
C (transposition makes no sense)
C 'V': A is symmetric, stored upper, to be conjugated.
C 'L': A is symmetric, stored lower, compute as it is.
C 'M': A is symmetric, stored lower, to be conjugated.
C DIAG =
C 'U': Unitary diagonal.
C 'N': Generic diagonal.
C
DO 100 I = 1, K
CALL ZSRMV(TRANS,DIAG,M,N,ALPHA,AR,JA,IA,B(1,I),
+ BETA,C(1,I),WORK)
100 CONTINUE
RETURN
END