You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
psblas3/base/serial/coo/dcoomv.f

472 lines
18 KiB
FortranFixed

C
C Parallel Sparse BLAS version 2.2
C (C) Copyright 2006/2007/2008
C Salvatore Filippone University of Rome Tor Vergata
C Alfredo Buttari University of Rome Tor Vergata
C
C Redistribution and use in source and binary forms, with or without
C modification, are permitted provided that the following conditions
C are met:
C 1. Redistributions of source code must retain the above copyright
C notice, this list of conditions and the following disclaimer.
C 2. Redistributions in binary form must reproduce the above copyright
C notice, this list of conditions, and the following disclaimer in the
C documentation and/or other materials provided with the distribution.
C 3. The name of the PSBLAS group or the names of its contributors may
C not be used to endorse or promote products derived from this
C software without specific written permission.
C
C THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
C ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
C TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
C PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE PSBLAS GROUP OR ITS CONTRIBUTORS
C BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
C CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
C SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
C INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
C CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
C ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
C POSSIBILITY OF SUCH DAMAGE.
C
C
20 years ago
***********************************************************************
* DCOOMV. Prolog to be updated. *
* *
* FUNCTION: Driver for routines performing one of the sparse *
* matrix vector operations *
* *
* y = alpha*op(A)*x + beta*y *
* *
* where op(A) is one of: *
* *
* op(A) = A or op(A) = A' or *
* op(A) = lower or upper part of A *
* *
* alpha and beta are scalars. *
* The data structure of the matrix is related *
* to the scalar computer. *
* This is an internal routine called by: *
* DSMMV *
* *
* ENTRY-POINT = DSRMV *
* INPUT = *
* *
* *
* SYMBOLIC NAME: TRANS *
* POSITION: PARAMETER NO 1. *
* ATTRIBUTES: CHARACTER*1 *
* VALUES: 'N' 'T' 'L' 'U' *
* DESCRIPTION: Specifies the form of op(A) to be used in the *
* matrix vector multiplications as follows: *
* *
* TRANS = 'N' , op( A ) = A. *
* *
* TRANS = 'T' , op( A ) = A'. *
* *
* TRANS = 'L' or 'U', op( A ) = lower or *
* upper part of A *
* *
* SYMBOLIC NAME: DIAG *
* POSITION: PARAMETER NO 2. *
* ATTRIBUTES: CHARACTER*1 *
* VALUES: 'N' 'U' *
* DESCRIPTION: *
* Specifies whether or not the matrix A has *
* unit diagonal as follows: *
* *
* DIAG = 'N' A is not assumed *
* to have unit diagonal *
* *
* DIAG = 'U' A is assumed *
* to have unit diagonal. *
* *
* WARNING: it is the caller's responsibility *
* to ensure that if the matrix has unit *
* diagonal, there are no elements of the *
* diagonal are stored in the arrays AS and JA. *
* *
* SYMBOLIC NAME: M *
* POSITION: PARAMETER NO 3. *
* ATTRIBUTES: INTEGER*4. *
* VALUES: M >= 0 *
* DESCRIPTION: Number of rows of the matrix op(A). *
* *
* SYMBOLIC NAME: N *
* POSITION: PARAMETER NO 4. *
* ATTRIBUTES: INTEGER*4. *
* VALUES: N >= 0 *
* DESCRIPTION: Number of columns of the matrix op(A) *
* *
* SYMBOLIC NAME: ALPHA *
* POSITION: PARAMETER NO 5. *
* ATTRIBUTES: REAL*8. *
* VALUES: any. *
* DESCRIPTION: Specifies the scalar alpha. *
* *
* *
* SYMBOLIC NAME: AS *
* POSITION: PARAMETER NO 6. *
* ATTRIBUTES: REAL*8: ARRAY(IA(M+1)-1) *
* VALUES: ANY *
* DESCRIPTION: Array containing the non zero coefficients of *
* the sparse matrix op(A). *
* *
* SYMBOLIC NAME: JA *
* POSITION: PARAMETER NO 7. *
* ATTRIBUTES: INTEGER*4: ARRAY(IA(M+1)-1) *
* VALUES: 0 < JA(I) <= M *
* DESCRIPTION: Array containing the column number of the *
* nonzero coefficients stored in array AS. *
* *
* SYMBOLIC NAME: IA *
* POSITION: PARAMETER NO 8. *
* ATTRIBUTES: INTEGER*4: ARRAY(*) *
* VALUES: IA(I) > 0 *
* DESCRIPTION: Contains the pointers for the beginning of *
* each rows. *
* *
* *
* SYMBOLIC NAME: X *
* POSITION: PARAMETER NO 9. *
* ATTRIBUTES: REAL*8 ARRAY(N) (or ARRAY(M) when op(A) = A') *
* VALUES: any. *
* DESCRIPTION: Contains the values of the vector to be *
* multiplied by the matrix A. *
* *
* SYMBOLIC NAME: BETA *
* POSITION: PARAMETER NO 10. *
* ATTRIBUTES: REAL*8. *
* VALUES: any. *
* DESCRIPTION: Specifies the scalar beta. *
* *
* SYMBOLIC NAME: Y *
* POSITION: PARAMETER NO 11. *
* ATTRIBUTES: REAL*8 ARRAY(M) (or ARRAY(N) when op(A) = A') *
* VALUES: any. *
* DESCRIPTION: Contains the values of the vector to be *
* updated by the matrix-vector multiplication. *
* *
* SYMBOLIC NAME: WORK *
* POSITION: PARAMETER NO 12. *
* ATTRIBUTES: REAL*8 ARRAY(M) (or ARRAY(N) when op(A) = A') *
* VALUES: any. *
* DESCRIPTION: Work area available to the program. It is used *
* only when TRANS = 'T'. *
* *
* OUTPUT = *
* *
* *
* SYMBOLIC NAME: Y *
* POSITION: PARAMETER NO 11. *
* ATTRIBUTES: REAL*8 ARRAY(M) (or ARRAY(N) when op(A) = A') *
* VALUES: any. *
* DESCRIPTION: Contains the values of the vector *
* updated by the matrix-vector multiplication. *
* *
* *
***********************************************************************
SUBROUTINE DCOOMV (TRANS,DIAG,M,N,ALPHA,AS,IA,JA,INFOA,X,
+ BETA,Y,WORK,IERROR)
C .. Parameters ..
DOUBLE PRECISION ONE, ZERO
PARAMETER (ONE=1.0D0,ZERO=0.0D0)
C .. Scalar Arguments ..
DOUBLE PRECISION ALPHA, BETA
INTEGER M, N, IERROR
CHARACTER DIAG, TRANS
C .. Array Arguments ..
DOUBLE PRECISION AS(*), WORK(*), X(*), Y(*)
INTEGER IA(*), JA(*),infoa(*)
C .. Local Scalars ..
DOUBLE PRECISION ACC, TX
INTEGER I, J, K, NNZ, IR, JC
LOGICAL SYM, TRA, UNI
C .. Executable Statements ..
C
IERROR=0
UNI = (DIAG.EQ.'U')
TRA = (TRANS.EQ.'T')
C Symmetric matrix upper or lower
SYM = ((TRANS.EQ.'L').OR.(TRANS.EQ.'U'))
C
IF (ALPHA.EQ.ZERO) THEN
IF (BETA.EQ.ZERO) THEN
DO I = 1, M
Y(I) = ZERO
ENDDO
ELSE
DO 20 I = 1, M
Y(I) = BETA*Y(I)
20 CONTINUE
ENDIF
RETURN
END IF
NNZ = INFOA(1)
C
IF (SYM) THEN
IF (UNI) THEN
C
C ......Symmetric with unitary diagonal.......
C ....OK!!
C To be optimized
IF (BETA.NE.ZERO) THEN
DO I = 1, M
C
C Product for diagonal elements
C
Y(I) = BETA*Y(I) + ALPHA*X(I)
ENDDO
ELSE
DO I = 1, M
Y(I) = ALPHA*X(I)
ENDDO
ENDIF
C Product for other elements
I = 1
J = I
DO WHILE (I.LE.NNZ)
DO WHILE ((IA(J).EQ.IA(I)).AND.
+ (J.LE.NNZ))
J = J+1
ENDDO
ACC = ZERO
IR = IA(I)
TX = X(IR)
DO K = I, J-1
JC = JA(K)
ACC = ACC + AS(K)*X(JC)
Y(JC) = Y(JC) + ALPHA * AS(K)*TX
ENDDO
Y(IR) = Y(IR) + ALPHA * ACC
I = J
ENDDO
C
ELSE IF ( .NOT. UNI) THEN
C
C Check if matrix is lower or upper
C
IF (TRANS.EQ.'L') THEN
C
C LOWER CASE: diagonal element is the last element of row
C ....OK!
IF (BETA.NE.ZERO) THEN
DO I = 1, M
Y(I) = BETA*Y(I)
ENDDO
ELSE
DO I = 1, M
Y(I) = ZERO
ENDDO
ENDIF
I = 1
J = I
DO WHILE (I.LE.NNZ)
DO WHILE ((IA(J).EQ.IA(I)).AND.
+ (J.LE.NNZ))
J = J+1
ENDDO
ACC = ZERO
IR = IA(I)
TX = X(IR)
DO K = I, J-1
JC = JA(K)
ACC = ACC + AS(K)*X(JC)
IF (IR.NE.JC) THEN
Y(JC) = Y(JC) + ALPHA * AS(K)*TX
ENDIF
ENDDO
Y(IR) = Y(IR) + ALPHA * ACC
I = J
ENDDO
ELSE ! ....Trans<>L
C
C UPPER CASE
C ....OK!! (Actually it's just the same as above!)
C
IF (BETA.NE.ZERO) THEN
DO I = 1, M
Y(I) = BETA*Y(I)
ENDDO
ELSE
DO I = 1, M
Y(I) = ZERO
ENDDO
ENDIF
I = 1
J = I
DO WHILE (I.LE.NNZ)
DO WHILE ((IA(J).EQ.IA(I)).AND.
+ (J.LE.NNZ))
J = J+1
ENDDO
ACC = ZERO
IR = IA(I)
TX = X(IR)
DO K = I, J-1
JC = JA(K)
ACC = ACC + AS(K)*X(JC)
IF (IR.NE.JC) THEN
Y(JC) = Y(JC) + ALPHA * AS(K)*TX
ENDIF
ENDDO
Y(IR) = Y(IR) + ALPHA * ACC
I = J
ENDDO
END IF ! ......TRANS=='L'
END IF ! ......Not UNI
C
ELSE IF ( .NOT. TRA) THEN !......NOT SYM
IF ( .NOT. UNI) THEN
C
C .......General Not Unit, No Traspose
C
IF (BETA.NE.ZERO) THEN
DO I = 1, M
Y(I) = BETA*Y(I)
ENDDO
ELSE
DO I = 1, M
Y(I) = ZERO
ENDDO
ENDIF
I = 1
J = I
IF (nnz > 0) then
IR = IA(1)
ACC = zero
DO
if (i>nnz) then
Y(IR) = Y(IR) + ALPHA * ACC
exit
endif
IF (IA(I) /= IR) THEN
Y(IR) = Y(IR) + ALPHA * ACC
IR = IA(I)
ACC = ZERO
ENDIF
ACC = ACC + AS(I) * X(JA(I))
I = I + 1
ENDDO
endif
C
ELSE IF (UNI) THEN
C
IF (BETA.NE.ZERO) THEN
DO I = 1, M
Y(I) = BETA*Y(I)+ALPHA*X(I)
ENDDO
ELSE
DO I = 1, M
Y(I) = ALPHA*X(I)
ENDDO
ENDIF
I = 1
J = I
DO WHILE (I.LE.NNZ)
DO WHILE ((IA(J).EQ.IA(I)).AND.
+ (J.LE.NNZ))
J = J+1
ENDDO
ACC = ZERO
IR = IA(I)
DO K = I, J-1
JC = JA(K)
ACC = ACC + AS(K)*X(JC)
ENDDO
Y(IR) = Y(IR) + ALPHA * ACC
I = J
ENDDO
END IF !....End Testing on UNI
C
ELSE IF (TRA) THEN !....Else on SYM (swapped M and N)
C
IF ( .NOT. UNI) THEN
C
IF (BETA.NE.ZERO) THEN
DO I = 1, M
Y(I) = BETA*Y(I)
ENDDO
ELSE
DO I = 1, M
Y(I) = ZERO
ENDDO
ENDIF
C
ELSE IF (UNI) THEN
C
IF (BETA.NE.ZERO) THEN
DO I = 1, M
Y(I) = BETA*Y(I)+ALPHA*X(I)
ENDDO
ELSE
DO I = 1, M
Y(I) = ALPHA*X(I)
ENDDO
ENDIF
C
END IF !....UNI
C
IF (ALPHA.EQ.ONE) THEN
C
I = 1
DO I=1,NNZ
IR = JA(I)
JC = IA(I)
Y(IR) = Y(IR) + AS(I)*X(JC)
ENDDO
C
ELSE IF (ALPHA.EQ.-ONE) THEN
C
DO I=1,NNZ
IR = JA(I)
JC = IA(I)
Y(IR) = Y(IR) - AS(I)*X(JC)
ENDDO
C
ELSE !.....Else on TRA
DO I=1,M
WORK(I) = ALPHA*X(I)
ENDDO
DO I=1,NNZ
IR = JA(I)
JC = IA(I)
Y(IR) = Y(IR) + AS(I)*WORK(JC)
ENDDO
END IF !.....End testing on ALPHA
END IF !.....End testing on SYM
C
RETURN
C
C END OF DSRMV
C
END