You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
161 lines
3.8 KiB
Plaintext
161 lines
3.8 KiB
Plaintext
1 year ago
|
/*
|
||
|
* spGPU - Sparse matrices on GPU library.
|
||
|
*
|
||
|
* Copyright (C) 2010 - 2012
|
||
|
* Davide Barbieri - University of Rome Tor Vergata
|
||
|
*
|
||
|
* This program is free software; you can redistribute it and/or
|
||
|
* modify it under the terms of the GNU General Public License
|
||
|
* version 3 as published by the Free Software Foundation.
|
||
|
*
|
||
|
* This program is distributed in the hope that it will be useful,
|
||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
* GNU General Public License for more details.
|
||
|
*/
|
||
|
|
||
|
#include "stdio.h"
|
||
|
#include "cudalang.h"
|
||
|
#include "cudadebug.h"
|
||
|
#include "cuComplex.h"
|
||
|
|
||
|
|
||
|
extern "C"
|
||
|
{
|
||
|
#include "core.h"
|
||
|
#include "vector.h"
|
||
|
}
|
||
|
|
||
|
//#define USE_CUBLAS
|
||
|
|
||
|
#define BLOCK_SIZE 320
|
||
|
//#define BLOCK_SIZE 512
|
||
|
|
||
|
//#define ASSUME_LOCK_SYNC_PARALLELISM
|
||
|
|
||
|
|
||
|
static __device__ cuFloatComplex sdotReductionResult[128];
|
||
|
|
||
|
__global__ void spgpuCdot_kern(int n, cuFloatComplex* x, cuFloatComplex* y)
|
||
|
{
|
||
|
__shared__ cuFloatComplex sSum[BLOCK_SIZE];
|
||
|
|
||
|
cuFloatComplex res = make_cuFloatComplex(0.0f, 0.0f);
|
||
|
|
||
|
cuFloatComplex* lastX = x + n;
|
||
|
|
||
|
x += threadIdx.x + blockIdx.x*BLOCK_SIZE;
|
||
|
y += threadIdx.x + blockIdx.x*BLOCK_SIZE;
|
||
|
|
||
|
int blockOffset = gridDim.x*BLOCK_SIZE;
|
||
|
|
||
|
int numSteps = (lastX - x + blockOffset - 1)/blockOffset;
|
||
|
|
||
|
// prefetching
|
||
|
for (int j = 0; j < numSteps / 2; j++)
|
||
|
{
|
||
|
cuFloatComplex x1 = x[0]; x += blockOffset;
|
||
|
cuFloatComplex y1 = y[0]; y += blockOffset;
|
||
|
cuFloatComplex x2 = x[0]; x += blockOffset;
|
||
|
cuFloatComplex y2 = y[0]; y += blockOffset;
|
||
|
|
||
|
res = cuCfmaf(x1, y1, res);
|
||
|
res = cuCfmaf(x2, y2, res);
|
||
|
|
||
|
}
|
||
|
|
||
|
if (numSteps % 2)
|
||
|
{
|
||
|
res = cuCfmaf(*x, *y, res);
|
||
|
}
|
||
|
|
||
|
if (threadIdx.x >= 32)
|
||
|
sSum[threadIdx.x] = res;
|
||
|
|
||
|
__syncthreads();
|
||
|
|
||
|
|
||
|
// Start reduction!
|
||
|
|
||
|
if (threadIdx.x < 32)
|
||
|
{
|
||
|
for (int i=1; i<BLOCK_SIZE/32; ++i)
|
||
|
{
|
||
|
res = cuCaddf(res, sSum[i*32 + threadIdx.x]);
|
||
|
}
|
||
|
|
||
|
//useless (because inter-warp)
|
||
|
#ifndef ASSUME_LOCK_SYNC_PARALLELISM
|
||
|
}
|
||
|
__syncthreads();
|
||
|
|
||
|
if (threadIdx.x < 32)
|
||
|
{
|
||
|
#endif
|
||
|
|
||
|
cuFloatComplex* vsSum = sSum;
|
||
|
vsSum[threadIdx.x] = res;
|
||
|
|
||
|
if (threadIdx.x < 16) vsSum[threadIdx.x] = cuCaddf(vsSum[threadIdx.x], vsSum[threadIdx.x + 16]);
|
||
|
__syncthreads();
|
||
|
if (threadIdx.x < 8) vsSum[threadIdx.x] = cuCaddf(vsSum[threadIdx.x], vsSum[threadIdx.x + 8]);
|
||
|
__syncthreads();
|
||
|
if (threadIdx.x < 4) vsSum[threadIdx.x] = cuCaddf(vsSum[threadIdx.x], vsSum[threadIdx.x + 4]);
|
||
|
__syncthreads();
|
||
|
if (threadIdx.x < 2) vsSum[threadIdx.x] = cuCaddf(vsSum[threadIdx.x], vsSum[threadIdx.x + 2]);
|
||
|
__syncthreads();
|
||
|
if (threadIdx.x == 0)
|
||
|
sdotReductionResult[blockIdx.x] = cuCaddf(vsSum[0], vsSum[1]);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
cuFloatComplex spgpuCdot(spgpuHandle_t handle, int n, __device cuFloatComplex* a, __device cuFloatComplex* b)
|
||
|
{
|
||
|
|
||
|
#ifdef USE_CUBLAS
|
||
|
cuFloatComplex res;
|
||
|
cublasSdot(n,x,1,y,1,&res);
|
||
|
cudaDeviceSynchronize();
|
||
|
|
||
|
return res;
|
||
|
#else
|
||
|
cuFloatComplex res = make_cuFloatComplex(0.0f, 0.0f);
|
||
|
|
||
|
#if 0
|
||
|
int device;
|
||
|
cudaGetDevice(&device);
|
||
|
struct cudaDeviceProp prop;
|
||
|
cudaGetDeviceProperties(&prop,device);
|
||
|
|
||
|
int blocks = min(128, min(prop.multiProcessorCount, (n+BLOCK_SIZE-1)/BLOCK_SIZE));
|
||
|
#else
|
||
|
int blocks = min(128, min(handle->multiProcessorCount, (n+BLOCK_SIZE-1)/BLOCK_SIZE));
|
||
|
#endif
|
||
|
|
||
|
|
||
|
cuFloatComplex tRes[128];
|
||
|
|
||
|
spgpuCdot_kern<<<blocks, (BLOCK_SIZE), 0, handle->currentStream>>>(n, a, b);
|
||
|
cudaMemcpyFromSymbol(tRes, sdotReductionResult, blocks*sizeof(cuFloatComplex));
|
||
|
|
||
|
for (int i=0; i<blocks; ++i)
|
||
|
{
|
||
|
res = cuCaddf(res, tRes[i]);
|
||
|
}
|
||
|
|
||
|
cudaCheckError("CUDA error on sdot (blocks: %i, regs per block: %i)\n", blocks, prop.regsPerBlock);
|
||
|
|
||
|
return res;
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
void spgpuCmdot(spgpuHandle_t handle, cuFloatComplex* y, int n, __device cuFloatComplex* a, __device cuFloatComplex* b, int count, int pitch)
|
||
|
{
|
||
|
for (int i=0; i<count; ++i)
|
||
|
{
|
||
|
y[i] = spgpuCdot(handle, n, a, b);
|
||
|
a += pitch;
|
||
|
b += pitch;
|
||
|
}
|
||
|
}
|