You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
170 lines
3.8 KiB
Plaintext
170 lines
3.8 KiB
Plaintext
1 year ago
|
/*
|
||
|
* spGPU - Sparse matrices on GPU library.
|
||
|
*
|
||
|
* Copyright (C) 2010 - 2012
|
||
|
* Davide Barbieri - University of Rome Tor Vergata
|
||
|
*
|
||
|
* This program is free software; you can redistribute it and/or
|
||
|
* modify it under the terms of the GNU General Public License
|
||
|
* version 3 as published by the Free Software Foundation.
|
||
|
*
|
||
|
* This program is distributed in the hope that it will be useful,
|
||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
* GNU General Public License for more details.
|
||
|
*/
|
||
|
|
||
|
#include "stdio.h"
|
||
|
#include "cudalang.h"
|
||
|
#include "cudadebug.h"
|
||
|
#include "cuComplex.h"
|
||
|
|
||
|
|
||
|
extern "C"
|
||
|
{
|
||
|
#include "core.h"
|
||
|
#include "vector.h"
|
||
|
}
|
||
|
|
||
|
//#define USE_CUBLAS
|
||
|
|
||
|
#define BLOCK_SIZE 320
|
||
|
//#define BLOCK_SIZE 512
|
||
|
|
||
|
//#define ASSUME_LOCK_SYNC_PARALLELISM
|
||
|
|
||
|
static __device__ float snrm2ReductionResult[128];
|
||
|
|
||
|
__global__ void spgpuCnrm2_kern(int n, cuFloatComplex* x)
|
||
|
{
|
||
|
__shared__ float sSum[BLOCK_SIZE];
|
||
|
|
||
|
float res = 0;
|
||
|
|
||
|
cuFloatComplex* lastX = x + n;
|
||
|
|
||
|
x += threadIdx.x + blockIdx.x*BLOCK_SIZE;
|
||
|
|
||
|
int blockOffset = gridDim.x*BLOCK_SIZE;
|
||
|
|
||
|
int numSteps = (lastX - x + blockOffset - 1)/blockOffset;
|
||
|
|
||
|
// prefetching
|
||
|
for (int j = 0; j < numSteps / 2; j++)
|
||
|
{
|
||
|
// Probably, there's a more precise method to do this..
|
||
|
|
||
|
cuFloatComplex x1 = x[0]; x += blockOffset;
|
||
|
cuFloatComplex x2 = x[0]; x += blockOffset;
|
||
|
|
||
|
res = res + cuCrealf(cuCmulf(x1,cuConjf(x1)));
|
||
|
res = res + cuCrealf(cuCmulf(x2,cuConjf(x2)));
|
||
|
|
||
|
}
|
||
|
|
||
|
if (numSteps % 2)
|
||
|
{
|
||
|
cuFloatComplex x1 = x[0];
|
||
|
res = res + cuCrealf(cuCmulf(x1,cuConjf(x1)));
|
||
|
}
|
||
|
|
||
|
if (threadIdx.x >= 32)
|
||
|
sSum[threadIdx.x] = res;
|
||
|
|
||
|
__syncthreads();
|
||
|
|
||
|
|
||
|
// Start reduction!
|
||
|
|
||
|
if (threadIdx.x < 32)
|
||
|
{
|
||
|
for (int i=1; i<BLOCK_SIZE/32; ++i)
|
||
|
{
|
||
|
res += sSum[i*32 + threadIdx.x];
|
||
|
}
|
||
|
|
||
|
//useless (because inter-warp)
|
||
|
#ifndef ASSUME_LOCK_SYNC_PARALLELISM
|
||
|
}
|
||
|
__syncthreads();
|
||
|
|
||
|
if (threadIdx.x < 32)
|
||
|
{
|
||
|
#endif
|
||
|
|
||
|
#ifdef ASSUME_LOCK_SYNC_PARALLELISM
|
||
|
volatile float* vsSum = sSum;
|
||
|
vsSum[threadIdx.x] = res;
|
||
|
|
||
|
if (threadIdx.x < 16) vsSum[threadIdx.x] += vsSum[threadIdx.x + 16];
|
||
|
if (threadIdx.x < 8) vsSum[threadIdx.x] += vsSum[threadIdx.x + 8];
|
||
|
if (threadIdx.x < 4) vsSum[threadIdx.x] += vsSum[threadIdx.x + 4];
|
||
|
if (threadIdx.x < 2) vsSum[threadIdx.x] += vsSum[threadIdx.x + 2];
|
||
|
if (threadIdx.x == 0)
|
||
|
snrm2ReductionResult[blockIdx.x] = vsSum[0] + vsSum[1];
|
||
|
|
||
|
#else
|
||
|
float* vsSum = sSum;
|
||
|
vsSum[threadIdx.x] = res;
|
||
|
|
||
|
if (threadIdx.x < 16) vsSum[threadIdx.x] += vsSum[threadIdx.x + 16];
|
||
|
__syncthreads();
|
||
|
if (threadIdx.x < 8) vsSum[threadIdx.x] += vsSum[threadIdx.x + 8];
|
||
|
__syncthreads();
|
||
|
if (threadIdx.x < 4) vsSum[threadIdx.x] += vsSum[threadIdx.x + 4];
|
||
|
__syncthreads();
|
||
|
if (threadIdx.x < 2) vsSum[threadIdx.x] += vsSum[threadIdx.x + 2];
|
||
|
__syncthreads();
|
||
|
if (threadIdx.x == 0)
|
||
|
snrm2ReductionResult[blockIdx.x] = vsSum[0] + vsSum[1];
|
||
|
#endif
|
||
|
}
|
||
|
}
|
||
|
|
||
|
float spgpuCnrm2(spgpuHandle_t handle, int n, __device cuFloatComplex* x)
|
||
|
{
|
||
|
#ifdef USE_CUBLAS
|
||
|
float res;
|
||
|
cublasSnrm2(n,x,1,&res);
|
||
|
cudaDeviceSynchronize();
|
||
|
|
||
|
return res;
|
||
|
#else
|
||
|
float res = 0;
|
||
|
|
||
|
#if 0
|
||
|
int device;
|
||
|
cudaGetDevice(&device);
|
||
|
struct cudaDeviceProp prop;
|
||
|
cudaGetDeviceProperties(&prop,device);
|
||
|
|
||
|
int blocks = min(128, min(prop.multiProcessorCount, (n+BLOCK_SIZE-1)/BLOCK_SIZE));
|
||
|
#else
|
||
|
int blocks = min(128, min(handle->multiProcessorCount, (n+BLOCK_SIZE-1)/BLOCK_SIZE));
|
||
|
#endif
|
||
|
|
||
|
float tRes[128];
|
||
|
|
||
|
spgpuCnrm2_kern<<<blocks, BLOCK_SIZE, 0, handle->currentStream>>>(n, x);
|
||
|
cudaMemcpyFromSymbol(tRes, snrm2ReductionResult,blocks*sizeof(float));
|
||
|
|
||
|
for (int i=0; i<blocks; ++i)
|
||
|
{
|
||
|
res += tRes[i];
|
||
|
}
|
||
|
|
||
|
cudaCheckError("CUDA error on snrm2");
|
||
|
|
||
|
return sqrtf(res);
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
void spgpuCmnrm2(spgpuHandle_t handle, float *y, int n, __device cuFloatComplex *x, int count, int pitch)
|
||
|
{
|
||
|
for (int i=0; i < count; ++i)
|
||
|
{
|
||
|
y[i] = spgpuCnrm2(handle, n, x);
|
||
|
x += pitch;
|
||
|
}
|
||
|
}
|