You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
psblas3/base/modules/penv/psi_s_collective_mod.F90

2264 lines
68 KiB
Fortran

!
! Parallel Sparse BLAS version 3.5
! (C) Copyright 2006-2018
! Salvatore Filippone
! Alfredo Buttari
!
! Redistribution and use in source and binary forms, with or without
! modification, are permitted provided that the following conditions
! are met:
! 1. Redistributions of source code must retain the above copyright
! notice, this list of conditions and the following disclaimer.
! 2. Redistributions in binary form must reproduce the above copyright
! notice, this list of conditions, and the following disclaimer in the
! documentation and/or other materials provided with the distribution.
! 3. The name of the PSBLAS group or the names of its contributors may
! not be used to endorse or promote products derived from this
! software without specific written permission.
!
! THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
! ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
! TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
! PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE PSBLAS GROUP OR ITS CONTRIBUTORS
! BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
! CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
! SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
! INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
! CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
! ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
! POSSIBILITY OF SUCH DAMAGE.
!
!
module psi_s_collective_mod
use psi_penv_mod
use psb_desc_const_mod
interface psb_max
module procedure psb_smaxs, psb_smaxv, psb_smaxm
end interface
interface psb_min
module procedure psb_smins, psb_sminv, psb_sminm
end interface psb_min
interface psb_nrm2
module procedure psb_s_nrm2s, psb_s_nrm2v
end interface psb_nrm2
interface psb_gather
module procedure psb_sgather_s, psb_sgather_v
end interface psb_gather
interface psb_gatherv
module procedure psb_sgatherv_v
end interface
interface psb_sum
module procedure psb_ssums, psb_ssumv, psb_ssumm
end interface
interface psb_amx
module procedure psb_samxs, psb_samxv, psb_samxm
end interface
interface psb_amn
module procedure psb_samns, psb_samnv, psb_samnm
end interface
interface psb_bcast
module procedure psb_sbcasts, psb_sbcastv, psb_sbcastm
end interface psb_bcast
interface psb_scan_sum
module procedure psb_sscan_sums, psb_sscan_sumv
end interface psb_scan_sum
interface psb_exscan_sum
module procedure psb_sexscan_sums, psb_sexscan_sumv
end interface psb_exscan_sum
interface psb_simple_a2av
module procedure psb_s_simple_a2av
end interface psb_simple_a2av
interface psb_simple_triad_a2av
module procedure psb_s_e_simple_triad_a2av, psb_s_m_simple_triad_a2av
end interface psb_simple_triad_a2av
contains
! !!!!!!!!!!!!!!!!!!!!!!
!
! Reduction operations
!
! !!!!!!!!!!!!!!!!!!!!!!
! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!
! MAX
!
! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
subroutine psb_smaxs(ctxt,dat,root,mode,request)
#ifdef MPI_MOD
use mpi
#endif
implicit none
#ifdef MPI_H
include 'mpif.h'
#endif
type(psb_ctxt_type), intent(in) :: ctxt
real(psb_spk_), intent(inout) :: dat
integer(psb_mpk_), intent(in), optional :: root
integer(psb_ipk_), intent(in), optional :: mode
integer(psb_mpk_), intent(inout), optional :: request
integer(psb_mpk_) :: root_
integer(psb_mpk_) :: iam, np, info
integer(psb_mpk_) :: icomm
integer(psb_mpk_) :: status(mpi_status_size)
logical :: collective_start, collective_end, collective_sync
real(psb_spk_) :: dat_
#if !defined(SERIAL_MPI)
call psb_info(ctxt,iam,np)
if (present(root)) then
root_ = root
else
root_ = -1
endif
icomm = psb_get_mpi_comm(ctxt)
if (present(mode)) then
collective_sync = .false.
collective_start = iand(mode,psb_collective_start_) /= 0
collective_end = iand(mode,psb_collective_end_) /= 0
if (.not.present(request)) then
collective_sync = .true.
collective_start = .false.
collective_end = .false.
end if
else
collective_sync = .true.
collective_start = .false.
collective_end = .false.
end if
if (collective_sync) then
if (root_ == -1) then
call mpi_allreduce(mpi_in_place,dat,1,psb_mpi_r_spk_,mpi_max,icomm,info)
else
if (iam==root_) then
call mpi_reduce(mpi_in_place,dat,1,psb_mpi_r_spk_,mpi_max,root_,icomm,info)
else
call mpi_reduce(dat,dat,1,psb_mpi_r_spk_,mpi_max,root_,icomm,info)
end if
endif
else
if (collective_start) then
if (root_ == -1) then
call mpi_iallreduce(mpi_in_place,dat,1,&
& psb_mpi_r_spk_,mpi_max,icomm,request,info)
else
if (iam==root_) then
call mpi_ireduce(mpi_in_place,dat,1,&
& psb_mpi_r_spk_,mpi_max,root_,icomm,request,info)
else
call mpi_ireduce(dat,dat,1,&
& psb_mpi_r_spk_,mpi_max,root_,icomm,request,info)
end if
end if
else if (collective_end) then
call mpi_wait(request,status,info)
end if
end if
#endif
end subroutine psb_smaxs
subroutine psb_smaxv(ctxt,dat,root,mode,request)
#ifdef MPI_MOD
use mpi
#endif
implicit none
#ifdef MPI_H
include 'mpif.h'
#endif
type(psb_ctxt_type), intent(in) :: ctxt
real(psb_spk_), intent(inout) :: dat(:)
integer(psb_mpk_), intent(in), optional :: root
integer(psb_ipk_), intent(in), optional :: mode
integer(psb_mpk_), intent(inout), optional :: request
integer(psb_mpk_) :: root_
integer(psb_mpk_) :: iam, np, info
integer(psb_mpk_) :: icomm
integer(psb_mpk_) :: status(mpi_status_size)
logical :: collective_start, collective_end, collective_sync
real(psb_spk_) :: dat_(1) ! This is a dummy
#if !defined(SERIAL_MPI)
call psb_info(ctxt,iam,np)
if (present(root)) then
root_ = root
else
root_ = -1
endif
icomm = psb_get_mpi_comm(ctxt)
if (present(mode)) then
collective_sync = .false.
collective_start = iand(mode,psb_collective_start_) /= 0
collective_end = iand(mode,psb_collective_end_) /= 0
if (.not.present(request)) then
collective_sync = .true.
collective_start = .false.
collective_end = .false.
end if
else
collective_sync = .true.
collective_start = .false.
collective_end = .false.
end if
if (collective_sync) then
if (root_ == -1) then
call mpi_allreduce(mpi_in_place,dat,size(dat),&
& psb_mpi_r_spk_,mpi_max,icomm,info)
else
if(iam==root_) then
call mpi_reduce(mpi_in_place,dat,size(dat),&
& psb_mpi_r_spk_,mpi_max,root_,icomm,info)
else
call mpi_reduce(dat,dat,size(dat),&
& psb_mpi_r_spk_,mpi_max,root_,icomm,info)
end if
endif
else
if (collective_start) then
if (root_ == -1) then
call mpi_iallreduce(mpi_in_place,dat,size(dat),&
& psb_mpi_r_spk_,mpi_max,icomm,request,info)
else
if(iam==root_) then
call mpi_ireduce(mpi_in_place,dat,size(dat),&
& psb_mpi_r_spk_,mpi_max,root_,icomm,request,info)
else
call mpi_ireduce(dat,dat,size(dat),&
& psb_mpi_r_spk_,mpi_max,root_,icomm,request,info)
end if
end if
else if (collective_end) then
call mpi_wait(request,status,info)
end if
end if
#endif
end subroutine psb_smaxv
subroutine psb_smaxm(ctxt,dat,root,mode,request)
#ifdef MPI_MOD
use mpi
#endif
implicit none
#ifdef MPI_H
include 'mpif.h'
#endif
type(psb_ctxt_type), intent(in) :: ctxt
real(psb_spk_), intent(inout) :: dat(:,:)
integer(psb_mpk_), intent(in), optional :: root
integer(psb_ipk_), intent(in), optional :: mode
integer(psb_mpk_), intent(inout), optional :: request
integer(psb_mpk_) :: root_
integer(psb_mpk_) :: iam, np, info
integer(psb_mpk_) :: icomm
integer(psb_mpk_) :: status(mpi_status_size)
logical :: collective_start, collective_end, collective_sync
real(psb_spk_) :: dat_(1,1) ! this is a dummy
#if !defined(SERIAL_MPI)
call psb_info(ctxt,iam,np)
if (present(root)) then
root_ = root
else
root_ = -1
endif
icomm = psb_get_mpi_comm(ctxt)
if (present(mode)) then
collective_sync = .false.
collective_start = iand(mode,psb_collective_start_) /= 0
collective_end = iand(mode,psb_collective_end_) /= 0
if (.not.present(request)) then
collective_sync = .true.
collective_start = .false.
collective_end = .false.
end if
else
collective_sync = .true.
collective_start = .false.
collective_end = .false.
end if
if (collective_sync) then
if (root_ == -1) then
call mpi_allreduce(mpi_in_place,dat,size(dat),&
& psb_mpi_r_spk_,mpi_max,icomm,info)
else
if(iam==root_) then
call mpi_reduce(mpi_in_place,dat,size(dat),&
& psb_mpi_r_spk_,mpi_max,root_,icomm,info)
else
call mpi_reduce(dat,dat,size(dat),&
& psb_mpi_r_spk_,mpi_max,root_,icomm,info)
endif
end if
else
if (collective_start) then
if (root_ == -1) then
call mpi_iallreduce(mpi_in_place,dat,size(dat),&
& psb_mpi_r_spk_,mpi_max,icomm,request,info)
else
if(iam==root_) then
call mpi_ireduce(mpi_in_place,dat,size(dat),&
& psb_mpi_r_spk_,mpi_max,root_,icomm,request,info)
else
call mpi_ireduce(dat,dat,size(dat),&
& psb_mpi_r_spk_,mpi_max,root_,icomm,request,info)
end if
end if
else if (collective_end) then
call mpi_wait(request,status,info)
end if
end if
#endif
end subroutine psb_smaxm
!
! MIN: Minimum Value
!
subroutine psb_smins(ctxt,dat,root,mode,request)
#ifdef MPI_MOD
use mpi
#endif
implicit none
#ifdef MPI_H
include 'mpif.h'
#endif
type(psb_ctxt_type), intent(in) :: ctxt
real(psb_spk_), intent(inout) :: dat
integer(psb_mpk_), intent(in), optional :: root
integer(psb_ipk_), intent(in), optional :: mode
integer(psb_mpk_), intent(inout), optional :: request
integer(psb_mpk_) :: root_
integer(psb_mpk_) :: iam, np, info
integer(psb_mpk_) :: icomm
integer(psb_mpk_) :: status(mpi_status_size)
logical :: collective_start, collective_end, collective_sync
#if !defined(SERIAL_MPI)
call psb_info(ctxt,iam,np)
if (present(root)) then
root_ = root
else
root_ = -1
endif
icomm = psb_get_mpi_comm(ctxt)
if (present(mode)) then
collective_sync = .false.
collective_start = iand(mode,psb_collective_start_) /= 0
collective_end = iand(mode,psb_collective_end_) /= 0
if (.not.present(request)) then
collective_sync = .true.
collective_start = .false.
collective_end = .false.
end if
else
collective_sync = .true.
collective_start = .false.
collective_end = .false.
end if
if (collective_sync) then
if (root_ == -1) then
call mpi_allreduce(mpi_in_place,dat,1,psb_mpi_r_spk_,mpi_min,icomm,info)
else
if(iam==root_) then
call mpi_reduce(mpi_in_place,dat,1,psb_mpi_r_spk_,mpi_min,root_,icomm,info)
else
call mpi_reduce(dat,dat,1,psb_mpi_r_spk_,mpi_min,root_,icomm,info)
end if
endif
else
if (collective_start) then
if (root_ == -1) then
call mpi_iallreduce(mpi_in_place,dat,1,&
& psb_mpi_r_spk_,mpi_min,icomm,request,info)
else
if(iam==root_) then
call mpi_ireduce(mpi_in_place,dat,1,&
& psb_mpi_r_spk_,mpi_min,root_,icomm,request,info)
else
call mpi_ireduce(dat,dat,1,&
& psb_mpi_r_spk_,mpi_min,root_,icomm,request,info)
end if
end if
else if (collective_end) then
call mpi_wait(request,status,info)
end if
end if
#endif
end subroutine psb_smins
subroutine psb_sminv(ctxt,dat,root,mode,request)
#ifdef MPI_MOD
use mpi
#endif
implicit none
#ifdef MPI_H
include 'mpif.h'
#endif
type(psb_ctxt_type), intent(in) :: ctxt
real(psb_spk_), intent(inout) :: dat(:)
integer(psb_mpk_), intent(in), optional :: root
integer(psb_ipk_), intent(in), optional :: mode
integer(psb_mpk_), intent(inout), optional :: request
integer(psb_mpk_) :: root_
integer(psb_mpk_) :: iam, np, info
integer(psb_mpk_) :: icomm
integer(psb_mpk_) :: status(mpi_status_size)
logical :: collective_start, collective_end, collective_sync
#if !defined(SERIAL_MPI)
call psb_info(ctxt,iam,np)
if (present(root)) then
root_ = root
else
root_ = -1
endif
icomm = psb_get_mpi_comm(ctxt)
if (present(mode)) then
collective_sync = .false.
collective_start = iand(mode,psb_collective_start_) /= 0
collective_end = iand(mode,psb_collective_end_) /= 0
if (.not.present(request)) then
collective_sync = .true.
collective_start = .false.
collective_end = .false.
end if
else
collective_sync = .true.
collective_start = .false.
collective_end = .false.
end if
if (collective_sync) then
if (root_ == -1) then
call mpi_allreduce(mpi_in_place,dat,size(dat),&
& psb_mpi_r_spk_,mpi_min,icomm,info)
else
if(iam==root_) then
call mpi_reduce(mpi_in_place,dat,size(dat),&
& psb_mpi_r_spk_,mpi_min,root_,icomm,info)
else
call mpi_reduce(dat,dat,size(dat),&
& psb_mpi_r_spk_,mpi_min,root_,icomm,info)
end if
endif
else
if (collective_start) then
if (root_ == -1) then
call mpi_iallreduce(mpi_in_place,dat,size(dat),&
& psb_mpi_r_spk_,mpi_min,icomm,request,info)
else
if(iam==root_) then
call mpi_ireduce(mpi_in_place,dat,size(dat),&
& psb_mpi_r_spk_,mpi_min,root_,icomm,request,info)
else
call mpi_ireduce(dat,dat,size(dat),&
& psb_mpi_r_spk_,mpi_min,root_,icomm,request,info)
end if
end if
else if (collective_end) then
call mpi_wait(request,status,info)
end if
end if
#endif
end subroutine psb_sminv
subroutine psb_sminm(ctxt,dat,root,mode,request)
#ifdef MPI_MOD
use mpi
#endif
implicit none
#ifdef MPI_H
include 'mpif.h'
#endif
type(psb_ctxt_type), intent(in) :: ctxt
real(psb_spk_), intent(inout) :: dat(:,:)
integer(psb_mpk_), intent(in), optional :: root
integer(psb_ipk_), intent(in), optional :: mode
integer(psb_mpk_), intent(inout), optional :: request
integer(psb_mpk_) :: root_
integer(psb_mpk_) :: iam, np, info
integer(psb_mpk_) :: icomm
integer(psb_mpk_) :: status(mpi_status_size)
logical :: collective_start, collective_end, collective_sync
#if !defined(SERIAL_MPI)
call psb_info(ctxt,iam,np)
if (present(root)) then
root_ = root
else
root_ = -1
endif
icomm = psb_get_mpi_comm(ctxt)
if (present(mode)) then
collective_sync = .false.
collective_start = iand(mode,psb_collective_start_) /= 0
collective_end = iand(mode,psb_collective_end_) /= 0
if (.not.present(request)) then
collective_sync = .true.
collective_start = .false.
collective_end = .false.
end if
else
collective_sync = .true.
collective_start = .false.
collective_end = .false.
end if
if (collective_sync) then
if (root_ == -1) then
call mpi_allreduce(mpi_in_place,dat,size(dat),&
& psb_mpi_r_spk_,mpi_min,icomm,info)
else
if(iam==root_) then
call mpi_reduce(mpi_in_place,dat,size(dat),&
& psb_mpi_r_spk_,mpi_min,root_,icomm,info)
else
call mpi_reduce(dat,dat,size(dat),&
& psb_mpi_r_spk_,mpi_min,root_,icomm,info)
end if
end if
else
if (collective_start) then
if (root_ == -1) then
call mpi_iallreduce(mpi_in_place,dat,size(dat),&
& psb_mpi_r_spk_,mpi_min,icomm,request,info)
else
if(iam==root_) then
call mpi_ireduce(mpi_in_place,dat,size(dat),&
& psb_mpi_r_spk_,mpi_min,root_,icomm,request,info)
else
call mpi_ireduce(dat,dat,size(dat),&
& psb_mpi_r_spk_,mpi_min,root_,icomm,request,info)
end if
end if
else if (collective_end) then
call mpi_wait(request,status,info)
end if
end if
#endif
end subroutine psb_sminm
! !!!!!!!!!!!!
!
! Norm 2, only for reals
!
! !!!!!!!!!!!!
subroutine psb_s_nrm2s(ctxt,dat,root,mode,request)
#ifdef MPI_MOD
use mpi
#endif
implicit none
#ifdef MPI_H
include 'mpif.h'
#endif
type(psb_ctxt_type), intent(in) :: ctxt
real(psb_spk_), intent(inout) :: dat
integer(psb_mpk_), intent(in), optional :: root
integer(psb_ipk_), intent(in), optional :: mode
integer(psb_mpk_), intent(inout), optional :: request
integer(psb_mpk_) :: root_
integer(psb_mpk_) :: iam, np, info
integer(psb_mpk_) :: icomm
integer(psb_mpk_) :: status(mpi_status_size)
logical :: collective_start, collective_end, collective_sync
#if !defined(SERIAL_MPI)
call psb_info(ctxt,iam,np)
if (present(root)) then
root_ = root
else
root_ = -1
endif
icomm = psb_get_mpi_comm(ctxt)
if (present(mode)) then
collective_sync = .false.
collective_start = iand(mode,psb_collective_start_) /= 0
collective_end = iand(mode,psb_collective_end_) /= 0
if (.not.present(request)) then
collective_sync = .true.
collective_start = .false.
collective_end = .false.
end if
else
collective_sync = .true.
collective_start = .false.
collective_end = .false.
end if
if (collective_sync) then
if (root_ == -1) then
call mpi_allreduce(mpi_in_place,dat,1,&
& psb_mpi_r_spk_,mpi_snrm2_op,icomm,info)
else
if(iam==root_) then
call mpi_reduce(mpi_in_place,dat,1,&
& psb_mpi_r_spk_,mpi_snrm2_op,root_,icomm,info)
else
call mpi_reduce(dat,dat,1,&
& psb_mpi_r_spk_,mpi_snrm2_op,root_,icomm,info)
end if
endif
else
if (collective_start) then
if (root_ == -1) then
call mpi_iallreduce(mpi_in_place,dat,1,&
& psb_mpi_r_spk_,mpi_snrm2_op,icomm,request,info)
else
if(iam==root_) then
call mpi_ireduce(mpi_in_place,dat,1,&
& psb_mpi_r_spk_,mpi_snrm2_op,root_,icomm,request,info)
else
call mpi_ireduce(dat,dat,1,&
& psb_mpi_r_spk_,mpi_snrm2_op,root_,icomm,request,info)
end if
end if
else if (collective_end) then
call mpi_wait(request,status,info)
end if
end if
#endif
end subroutine psb_s_nrm2s
subroutine psb_s_nrm2v(ctxt,dat,root,mode,request)
#ifdef MPI_MOD
use mpi
#endif
implicit none
#ifdef MPI_H
include 'mpif.h'
#endif
type(psb_ctxt_type), intent(in) :: ctxt
real(psb_spk_), intent(inout) :: dat(:)
integer(psb_mpk_), intent(in), optional :: root
integer(psb_ipk_), intent(in), optional :: mode
integer(psb_mpk_), intent(inout), optional :: request
integer(psb_mpk_) :: root_
integer(psb_mpk_) :: iam, np, info
integer(psb_mpk_) :: icomm
integer(psb_mpk_) :: status(mpi_status_size)
logical :: collective_start, collective_end, collective_sync
#if !defined(SERIAL_MPI)
call psb_info(ctxt,iam,np)
if (present(root)) then
root_ = root
else
root_ = -1
endif
icomm = psb_get_mpi_comm(ctxt)
if (present(mode)) then
collective_sync = .false.
collective_start = iand(mode,psb_collective_start_) /= 0
collective_end = iand(mode,psb_collective_end_) /= 0
if (.not.present(request)) then
collective_sync = .true.
collective_start = .false.
collective_end = .false.
end if
else
collective_sync = .true.
collective_start = .false.
collective_end = .false.
end if
if (collective_sync) then
if (root_ == -1) then
call mpi_allreduce(mpi_in_place,dat,size(dat),psb_mpi_r_spk_,&
& mpi_snrm2_op,icomm,info)
else
if(iam==root_) then
call mpi_reduce(mpi_in_place,dat,size(dat),psb_mpi_r_spk_,&
& mpi_snrm2_op,root_,icomm,info)
else
call mpi_reduce(dat,dat,size(dat),psb_mpi_r_spk_,&
& mpi_snrm2_op,root_,icomm,info)
end if
endif
else
if (collective_start) then
if (root_ == -1) then
call mpi_iallreduce(mpi_in_place,dat,size(dat),&
& psb_mpi_r_spk_,mpi_snrm2_op,icomm,request,info)
else
if(iam==root_) then
call mpi_ireduce(mpi_in_place,dat,size(dat),&
& psb_mpi_r_spk_,mpi_snrm2_op,root_,icomm,request,info)
else
call mpi_ireduce(dat,dat,size(dat),&
& psb_mpi_r_spk_,mpi_snrm2_op,root_,icomm,request,info)
end if
end if
else if (collective_end) then
call mpi_wait(request,status,info)
end if
end if
#endif
end subroutine psb_s_nrm2v
!
! gather
!
subroutine psb_sgather_s(ctxt,dat,resv,root,mode,request)
#ifdef MPI_MOD
use mpi
#endif
implicit none
#ifdef MPI_H
include 'mpif.h'
#endif
type(psb_ctxt_type), intent(in) :: ctxt
real(psb_spk_), intent(inout) :: dat, resv(:)
integer(psb_mpk_), intent(in), optional :: root
integer(psb_ipk_), intent(in), optional :: mode
integer(psb_mpk_), intent(inout), optional :: request
integer(psb_mpk_) :: root_
integer(psb_mpk_) :: iam, np, info
integer(psb_mpk_) :: icomm
integer(psb_mpk_) :: status(mpi_status_size)
logical :: collective_start, collective_end, collective_sync
#if defined(SERIAL_MPI)
resv(1) = dat
#else
call psb_info(ctxt,iam,np)
if (present(root)) then
root_ = root
else
root_ = -1
endif
icomm = psb_get_mpi_comm(ctxt)
if (present(mode)) then
collective_sync = .false.
collective_start = iand(mode,psb_collective_start_) /= 0
collective_end = iand(mode,psb_collective_end_) /= 0
if (.not.present(request)) then
collective_sync = .true.
collective_start = .false.
collective_end = .false.
end if
else
collective_sync = .true.
collective_start = .false.
collective_end = .false.
end if
if (collective_sync) then
if (root_ == -1) then
call mpi_allgather(dat,1,psb_mpi_r_spk_,&
& resv,1,psb_mpi_r_spk_,icomm,info)
else
call mpi_gather(dat,1,psb_mpi_r_spk_,&
& resv,1,psb_mpi_r_spk_,root_,icomm,info)
endif
else
if (collective_start) then
if (root_ == -1) then
call mpi_iallgather(dat,1,psb_mpi_r_spk_,&
& resv,1,psb_mpi_r_spk_,icomm,request,info)
else
call mpi_igather(dat,1,psb_mpi_r_spk_,&
& resv,1,psb_mpi_r_spk_,root_,icomm,request,info)
endif
else if (collective_end) then
call mpi_wait(request,status,info)
end if
end if
#endif
end subroutine psb_sgather_s
subroutine psb_sgather_v(ctxt,dat,resv,root,mode,request)
#ifdef MPI_MOD
use mpi
#endif
implicit none
1 year ago
#ifdef MPI_H
include 'mpif.h'
#endif
type(psb_ctxt_type), intent(in) :: ctxt
real(psb_spk_), intent(inout) :: dat(:), resv(:)
integer(psb_mpk_), intent(in), optional :: root
integer(psb_ipk_), intent(in), optional :: mode
integer(psb_mpk_), intent(inout), optional :: request
integer(psb_mpk_) :: root_
integer(psb_mpk_) :: iam, np, info
integer(psb_mpk_) :: icomm
integer(psb_mpk_) :: status(mpi_status_size)
logical :: collective_start, collective_end, collective_sync
#if defined(SERIAL_MPI)
resv(:) = dat(:)
#else
call psb_info(ctxt,iam,np)
if (present(root)) then
root_ = root
else
root_ = -1
endif
icomm = psb_get_mpi_comm(ctxt)
if (present(mode)) then
collective_sync = .false.
collective_start = iand(mode,psb_collective_start_) /= 0
collective_end = iand(mode,psb_collective_end_) /= 0
if (.not.present(request)) then
collective_sync = .true.
collective_start = .false.
collective_end = .false.
end if
else
collective_sync = .true.
collective_start = .false.
collective_end = .false.
end if
if (collective_sync) then
if (root_ == -1) then
call mpi_allgather(dat,size(dat),psb_mpi_r_spk_,&
& resv,size(dat),psb_mpi_r_spk_,icomm,info)
else
call mpi_gather(dat,size(dat),psb_mpi_r_spk_,&
& resv,size(dat),psb_mpi_r_spk_,root_,icomm,info)
endif
else
if (collective_start) then
if (root_ == -1) then
call mpi_iallgather(dat,size(dat),psb_mpi_r_spk_,&
& resv,size(dat),psb_mpi_r_spk_,icomm,request,info)
else
call mpi_igather(dat,size(dat),psb_mpi_r_spk_,&
& resv,size(dat),psb_mpi_r_spk_,root_,icomm,request,info)
endif
else if (collective_end) then
call mpi_wait(request,status,info)
end if
end if
#endif
end subroutine psb_sgather_v
subroutine psb_sgatherv_v(ctxt,dat,resv,szs,root,mode,request)
#ifdef MPI_MOD
use mpi
#endif
implicit none
#ifdef MPI_H
include 'mpif.h'
#endif
type(psb_ctxt_type), intent(in) :: ctxt
real(psb_spk_), intent(inout) :: dat(:), resv(:)
integer(psb_mpk_), intent(in), optional :: root
integer(psb_mpk_), intent(in), optional :: szs(:)
integer(psb_ipk_), intent(in), optional :: mode
integer(psb_mpk_), intent(inout), optional :: request
integer(psb_mpk_) :: root_
integer(psb_mpk_) :: iam, np, info,i
integer(psb_mpk_) :: icomm
integer(psb_mpk_) :: status(mpi_status_size)
integer(psb_mpk_), allocatable :: displs(:)
logical :: collective_start, collective_end, collective_sync
#if defined(SERIAL_MPI)
resv(:) = dat(:)
#else
call psb_info(ctxt,iam,np)
if (present(root)) then
root_ = root
else
root_ = -1
endif
icomm = psb_get_mpi_comm(ctxt)
if (present(mode)) then
collective_sync = .false.
collective_start = iand(mode,psb_collective_start_) /= 0
collective_end = iand(mode,psb_collective_end_) /= 0
if (.not.present(request)) then
collective_sync = .true.
collective_start = .false.
collective_end = .false.
end if
else
collective_sync = .true.
collective_start = .false.
collective_end = .false.
end if
if (collective_sync) then
if (root_ == -1) then
if (size(szs) < np) write(0,*) 'Error: bad input sizes'
allocate(displs(np))
displs(1) = 0
do i=2, np
displs(i) = displs(i-1) + szs(i-1)
end do
call mpi_allgatherv(dat,size(dat),psb_mpi_r_spk_,&
& resv,szs,displs,psb_mpi_r_spk_,icomm,info)
else
if (iam == root_) then
if (size(szs) < np) write(0,*) 'Error: bad input sizes'
allocate(displs(np))
displs(1) = 0
do i=2, np
displs(i) = displs(i-1) + szs(i-1)
end do
else
allocate(displs(0))
end if
call mpi_gatherv(dat,size(dat),psb_mpi_r_spk_,&
& resv,szs,displs,psb_mpi_r_spk_,root_,icomm,info)
endif
else
if (collective_start) then
if (root_ == -1) then
if (size(szs) < np) write(0,*) 'Error: bad input sizes'
allocate(displs(np))
displs(1) = 0
do i=2, np
displs(i) = displs(i-1) + szs(i-1)
end do
call mpi_iallgatherv(dat,size(dat),psb_mpi_r_spk_,&
& resv,szs,displs,psb_mpi_r_spk_,icomm,request,info)
else
if (iam == root_) then
if (size(szs) < np) write(0,*) 'Error: bad input sizes'
allocate(displs(np))
displs(1) = 0
do i=2, np
displs(i) = displs(i-1) + szs(i-1)
end do
else
allocate(displs(0))
end if
call mpi_igatherv(dat,size(dat),psb_mpi_r_spk_,&
& resv,szs,displs,psb_mpi_r_spk_,root_,icomm,request,info)
endif
else if (collective_end) then
call mpi_wait(request,status,info)
end if
end if
#endif
end subroutine psb_sgatherv_v
!
! SUM
!
subroutine psb_ssums(ctxt,dat,root,mode,request)
#ifdef MPI_MOD
use mpi
#endif
implicit none
#ifdef MPI_H
include 'mpif.h'
#endif
type(psb_ctxt_type), intent(in) :: ctxt
real(psb_spk_), intent(inout) :: dat
integer(psb_mpk_), intent(in), optional :: root
integer(psb_ipk_), intent(in), optional :: mode
integer(psb_mpk_), intent(inout), optional :: request
integer(psb_mpk_) :: root_
integer(psb_mpk_) :: iam, np, info
integer(psb_mpk_) :: icomm
integer(psb_mpk_) :: status(mpi_status_size)
logical :: collective_start, collective_end, collective_sync
#if !defined(SERIAL_MPI)
call psb_info(ctxt,iam,np)
if (present(root)) then
root_ = root
else
root_ = -1
endif
icomm = psb_get_mpi_comm(ctxt)
if (present(mode)) then
collective_sync = .false.
collective_start = iand(mode,psb_collective_start_) /= 0
collective_end = iand(mode,psb_collective_end_) /= 0
if (.not.present(request)) then
collective_sync = .true.
collective_start = .false.
collective_end = .false.
end if
else
collective_sync = .true.
collective_start = .false.
collective_end = .false.
end if
if (collective_sync) then
if (root_ == -1) then
call mpi_allreduce(mpi_in_place,dat,1,&
& psb_mpi_r_spk_,mpi_sum,icomm,info)
else
if(iam==root_) then
call mpi_reduce(mpi_in_place,dat,1,&
& psb_mpi_r_spk_,mpi_sum,root_,icomm,info)
else
call mpi_reduce(dat,dat,1,&
& psb_mpi_r_spk_,mpi_sum,root_,icomm,info)
end if
endif
else
if (collective_start) then
if (root_ == -1) then
call mpi_iallreduce(mpi_in_place,dat,1,&
& psb_mpi_r_spk_,mpi_sum,icomm,request,info)
else
if(iam==root_) then
call mpi_ireduce(mpi_in_place,dat,1,&
& psb_mpi_r_spk_,mpi_sum,root_,icomm,request,info)
else
call mpi_ireduce(dat,dat,1,&
& psb_mpi_r_spk_,mpi_sum,root_,icomm,request,info)
end if
end if
else if (collective_end) then
call mpi_wait(request,status,info)
end if
end if
#endif
end subroutine psb_ssums
subroutine psb_ssumv(ctxt,dat,root,mode,request)
#ifdef MPI_MOD
use mpi
#endif
implicit none
#ifdef MPI_H
include 'mpif.h'
#endif
type(psb_ctxt_type), intent(in) :: ctxt
real(psb_spk_), intent(inout) :: dat(:)
integer(psb_mpk_), intent(in), optional :: root
integer(psb_ipk_), intent(in), optional :: mode
integer(psb_mpk_), intent(inout), optional :: request
integer(psb_mpk_) :: root_
integer(psb_mpk_) :: iam, np, info
integer(psb_mpk_) :: icomm
integer(psb_mpk_) :: status(mpi_status_size)
logical :: collective_start, collective_end, collective_sync
#if !defined(SERIAL_MPI)
call psb_info(ctxt,iam,np)
if (present(root)) then
root_ = root
else
root_ = -1
endif
icomm = psb_get_mpi_comm(ctxt)
if (present(mode)) then
collective_sync = .false.
collective_start = iand(mode,psb_collective_start_) /= 0
collective_end = iand(mode,psb_collective_end_) /= 0
if (.not.present(request)) then
collective_sync = .true.
collective_start = .false.
collective_end = .false.
end if
else
collective_sync = .true.
collective_start = .false.
collective_end = .false.
end if
if (collective_sync) then
if (root_ == -1) then
call mpi_allreduce(mpi_in_place,dat,size(dat),&
& psb_mpi_r_spk_,mpi_sum,icomm,info)
else
if(iam==root_) then
call mpi_reduce(mpi_in_place,dat,size(dat),&
& psb_mpi_r_spk_,mpi_sum,root_,icomm,info)
else
call mpi_reduce(dat,dat,size(dat),&
& psb_mpi_r_spk_,mpi_sum,root_,icomm,info)
end if
end if
else
if (collective_start) then
if (root_ == -1) then
call mpi_iallreduce(mpi_in_place,dat,size(dat),&
& psb_mpi_r_spk_,mpi_sum,icomm,request,info)
else
if(iam==root_) then
call mpi_ireduce(mpi_in_place,dat,size(dat),&
& psb_mpi_r_spk_,mpi_sum,root_,icomm,request,info)
else
call mpi_ireduce(dat,dat,size(dat),&
& psb_mpi_r_spk_,mpi_sum,root_,icomm,request,info)
end if
end if
else if (collective_end) then
call mpi_wait(request,status,info)
endif
end if
#endif
end subroutine psb_ssumv
subroutine psb_ssumm(ctxt,dat,root,mode,request)
#ifdef MPI_MOD
use mpi
#endif
implicit none
#ifdef MPI_H
include 'mpif.h'
#endif
type(psb_ctxt_type), intent(in) :: ctxt
real(psb_spk_), intent(inout) :: dat(:,:)
integer(psb_mpk_), intent(in), optional :: root
integer(psb_ipk_), intent(in), optional :: mode
integer(psb_mpk_), intent(inout), optional :: request
integer(psb_mpk_) :: root_
integer(psb_mpk_) :: iam, np, info
integer(psb_mpk_) :: icomm
integer(psb_mpk_) :: status(mpi_status_size)
logical :: collective_start, collective_end, collective_sync
#if !defined(SERIAL_MPI)
call psb_info(ctxt,iam,np)
if (present(root)) then
root_ = root
else
root_ = -1
endif
icomm = psb_get_mpi_comm(ctxt)
if (present(mode)) then
collective_sync = .false.
collective_start = iand(mode,psb_collective_start_) /= 0
collective_end = iand(mode,psb_collective_end_) /= 0
if (.not.present(request)) then
collective_sync = .true.
collective_start = .false.
collective_end = .false.
end if
else
collective_sync = .true.
collective_start = .false.
collective_end = .false.
end if
if (collective_sync) then
if (root_ == -1) then
call mpi_allreduce(mpi_in_place,dat,size(dat),&
& psb_mpi_r_spk_,mpi_sum,icomm,info)
else
if(iam==root_) then
call mpi_reduce(mpi_in_place,dat,size(dat),&
& psb_mpi_r_spk_,mpi_sum,root_,icomm,info)
else
call mpi_reduce(dat,dat,size(dat),&
& psb_mpi_r_spk_,mpi_sum,root_,icomm,info)
end if
end if
else
if (collective_start) then
if (root_ == -1) then
call mpi_iallreduce(mpi_in_place,dat,size(dat),&
& psb_mpi_r_spk_,mpi_sum,icomm,request,info)
else
if(iam==root_) then
call mpi_ireduce(mpi_in_place,dat,size(dat),&
& psb_mpi_r_spk_,mpi_sum,root_, icomm,request,info)
else
call mpi_ireduce(dat,dat,size(dat),&
& psb_mpi_r_spk_,mpi_sum,root_, icomm,request,info)
end if
end if
else if (collective_end) then
call mpi_wait(request,status,info)
endif
end if
#endif
end subroutine psb_ssumm
!
! AMX: Maximum Absolute Value
!
subroutine psb_samxs(ctxt,dat,root,mode,request)
#ifdef MPI_MOD
use mpi
#endif
implicit none
#ifdef MPI_H
include 'mpif.h'
#endif
type(psb_ctxt_type), intent(in) :: ctxt
real(psb_spk_), intent(inout) :: dat
integer(psb_mpk_), intent(in), optional :: root
integer(psb_ipk_), intent(in), optional :: mode
integer(psb_mpk_), intent(inout), optional :: request
integer(psb_mpk_) :: root_
integer(psb_mpk_) :: iam, np, info
integer(psb_mpk_) :: icomm
integer(psb_mpk_) :: status(mpi_status_size)
logical :: collective_start, collective_end, collective_sync
#if !defined(SERIAL_MPI)
call psb_info(ctxt,iam,np)
if (present(root)) then
root_ = root
else
root_ = -1
endif
icomm = psb_get_mpi_comm(ctxt)
if (present(mode)) then
collective_sync = .false.
collective_start = iand(mode,psb_collective_start_) /= 0
collective_end = iand(mode,psb_collective_end_) /= 0
if (.not.present(request)) then
collective_sync = .true.
collective_start = .false.
collective_end = .false.
end if
else
collective_sync = .true.
collective_start = .false.
collective_end = .false.
end if
if (collective_sync) then
if (root_ == -1) then
call mpi_allreduce(mpi_in_place,dat,1,&
& psb_mpi_r_spk_,mpi_samx_op,icomm,info)
else
if(iam==root_) then
call mpi_reduce(mpi_in_place,dat,1,&
& psb_mpi_r_spk_,mpi_samx_op,root_,icomm,info)
else
call mpi_reduce(dat,dat,1,&
& psb_mpi_r_spk_,mpi_samx_op,root_,icomm,info)
end if
endif
else
if (collective_start) then
if (root_ == -1) then
call mpi_iallreduce(mpi_in_place,dat,1,&
& psb_mpi_r_spk_,mpi_samx_op,icomm,request,info)
else
if(iam==root_) then
call mpi_ireduce(mpi_in_place,dat,1,&
& psb_mpi_r_spk_,mpi_samx_op,root_,icomm,request,info)
else
call mpi_ireduce(dat,dat,1,&
& psb_mpi_r_spk_,mpi_samx_op,root_,icomm,request,info)
end if
end if
else if (collective_end) then
call mpi_wait(request,status,info)
end if
end if
#endif
end subroutine psb_samxs
subroutine psb_samxv(ctxt,dat,root,mode,request)
#ifdef MPI_MOD
use mpi
#endif
implicit none
#ifdef MPI_H
include 'mpif.h'
#endif
type(psb_ctxt_type), intent(in) :: ctxt
real(psb_spk_), intent(inout) :: dat(:)
integer(psb_mpk_), intent(in), optional :: root
integer(psb_ipk_), intent(in), optional :: mode
integer(psb_mpk_), intent(inout), optional :: request
integer(psb_mpk_) :: root_
integer(psb_mpk_) :: iam, np, info
integer(psb_mpk_) :: icomm
integer(psb_mpk_) :: status(mpi_status_size)
logical :: collective_start, collective_end, collective_sync
#if !defined(SERIAL_MPI)
call psb_info(ctxt,iam,np)
if (present(root)) then
root_ = root
else
root_ = -1
endif
icomm = psb_get_mpi_comm(ctxt)
if (present(mode)) then
collective_sync = .false.
collective_start = iand(mode,psb_collective_start_) /= 0
collective_end = iand(mode,psb_collective_end_) /= 0
if (.not.present(request)) then
collective_sync = .true.
collective_start = .false.
collective_end = .false.
end if
else
collective_sync = .true.
collective_start = .false.
collective_end = .false.
end if
if (collective_sync) then
if (root_ == -1) then
call mpi_allreduce(mpi_in_place,dat,size(dat),&
psb_mpi_r_spk_,mpi_samx_op,icomm,info)
else
if(iam==root_) then
call mpi_reduce(mpi_in_place,dat,size(dat),&
& psb_mpi_r_spk_,mpi_samx_op,root_,icomm,info)
else
call mpi_reduce(dat,dat,size(dat),&
& psb_mpi_r_spk_,mpi_samx_op,root_,icomm,info)
end if
endif
else
if (collective_start) then
if (root_ == -1) then
call mpi_iallreduce(mpi_in_place,dat,size(dat),&
& psb_mpi_r_spk_,mpi_samx_op,icomm,request,info)
else
if(iam==root_) then
call mpi_ireduce(mpi_in_place,dat,size(dat),&
& psb_mpi_r_spk_,mpi_samx_op,root_,icomm,request,info)
else
call mpi_ireduce(dat,dat,size(dat),&
& psb_mpi_r_spk_,mpi_samx_op,root_,icomm,request,info)
end if
end if
else if (collective_end) then
call mpi_wait(request,status,info)
end if
end if
#endif
end subroutine psb_samxv
subroutine psb_samxm(ctxt,dat,root,mode,request)
#ifdef MPI_MOD
use mpi
#endif
implicit none
#ifdef MPI_H
include 'mpif.h'
#endif
type(psb_ctxt_type), intent(in) :: ctxt
real(psb_spk_), intent(inout) :: dat(:,:)
integer(psb_mpk_), intent(in), optional :: root
integer(psb_ipk_), intent(in), optional :: mode
integer(psb_mpk_), intent(inout), optional :: request
integer(psb_mpk_) :: root_
integer(psb_mpk_) :: iam, np, info
integer(psb_mpk_) :: icomm
integer(psb_mpk_) :: status(mpi_status_size)
logical :: collective_start, collective_end, collective_sync
#if !defined(SERIAL_MPI)
call psb_info(ctxt,iam,np)
if (present(root)) then
root_ = root
else
root_ = -1
endif
icomm = psb_get_mpi_comm(ctxt)
if (present(mode)) then
collective_sync = .false.
collective_start = iand(mode,psb_collective_start_) /= 0
collective_end = iand(mode,psb_collective_end_) /= 0
if (.not.present(request)) then
collective_sync = .true.
collective_start = .false.
collective_end = .false.
end if
else
collective_sync = .true.
collective_start = .false.
collective_end = .false.
end if
if (collective_sync) then
if (root_ == -1) then
call mpi_allreduce(mpi_in_place,dat,size(dat),&
& psb_mpi_r_spk_,mpi_samx_op,icomm,info)
else
if(iam==root_) then
call mpi_reduce(mpi_in_place,dat,size(dat),&
& psb_mpi_r_spk_,mpi_samx_op,root_,icomm,info)
else
call mpi_reduce(dat,dat,size(dat),&
& psb_mpi_r_spk_,mpi_samx_op,root_,icomm,info)
end if
endif
else
if (collective_start) then
if (root_ == -1) then
call mpi_iallreduce(mpi_in_place,dat,size(dat),&
& psb_mpi_r_spk_,mpi_samx_op,icomm,request,info)
else
if(iam==root_) then
call mpi_ireduce(mpi_in_place,dat,size(dat),&
& psb_mpi_r_spk_,mpi_samx_op,root_,icomm,request,info)
else
call mpi_ireduce(dat,dat,size(dat),&
& psb_mpi_r_spk_,mpi_samx_op,root_,icomm,request,info)
end if
end if
else if (collective_end) then
call mpi_wait(request,status,info)
end if
end if
#endif
end subroutine psb_samxm
!
! AMN: Minimum Absolute Value
!
subroutine psb_samns(ctxt,dat,root,mode,request)
#ifdef MPI_MOD
use mpi
#endif
implicit none
#ifdef MPI_H
include 'mpif.h'
#endif
type(psb_ctxt_type), intent(in) :: ctxt
real(psb_spk_), intent(inout) :: dat
integer(psb_mpk_), intent(in), optional :: root
integer(psb_ipk_), intent(in), optional :: mode
integer(psb_mpk_), intent(inout), optional :: request
integer(psb_mpk_) :: root_
integer(psb_mpk_) :: iam, np, info
integer(psb_mpk_) :: icomm
integer(psb_mpk_) :: status(mpi_status_size)
logical :: collective_start, collective_end, collective_sync
#if !defined(SERIAL_MPI)
call psb_info(ctxt,iam,np)
if (present(root)) then
root_ = root
else
root_ = -1
endif
icomm = psb_get_mpi_comm(ctxt)
if (present(mode)) then
collective_sync = .false.
collective_start = iand(mode,psb_collective_start_) /= 0
collective_end = iand(mode,psb_collective_end_) /= 0
if (.not.present(request)) then
collective_sync = .true.
collective_start = .false.
collective_end = .false.
end if
else
collective_sync = .true.
collective_start = .false.
collective_end = .false.
end if
if (collective_sync) then
if (root_ == -1) then
call mpi_allreduce(mpi_in_place,dat,1,&
& psb_mpi_r_spk_,mpi_samn_op,icomm,info)
else
if(iam==root_) then
call mpi_reduce(mpi_in_place,dat,1,&
& psb_mpi_r_spk_,mpi_samn_op,root_,icomm,info)
else
call mpi_reduce(dat,dat,1,&
& psb_mpi_r_spk_,mpi_samn_op,root_,icomm,info)
end if
endif
else
if (collective_start) then
if (root_ == -1) then
call mpi_iallreduce(mpi_in_place,dat,1,&
& psb_mpi_r_spk_,mpi_samn_op,icomm,request,info)
else
if(iam==root_) then
call mpi_ireduce(mpi_in_place,dat,1,&
& psb_mpi_r_spk_,mpi_samn_op,root_,icomm,request,info)
else
call mpi_ireduce(dat,dat,1,&
& psb_mpi_r_spk_,mpi_samn_op,root_,icomm,request,info)
end if
end if
else if (collective_end) then
call mpi_wait(request,status,info)
end if
end if
#endif
end subroutine psb_samns
subroutine psb_samnv(ctxt,dat,root,mode,request)
#ifdef MPI_MOD
use mpi
#endif
implicit none
#ifdef MPI_H
include 'mpif.h'
#endif
type(psb_ctxt_type), intent(in) :: ctxt
real(psb_spk_), intent(inout) :: dat(:)
integer(psb_mpk_), intent(in), optional :: root
integer(psb_ipk_), intent(in), optional :: mode
integer(psb_mpk_), intent(inout), optional :: request
integer(psb_mpk_) :: root_
integer(psb_mpk_) :: iam, np, info
integer(psb_mpk_) :: icomm
integer(psb_mpk_) :: status(mpi_status_size)
logical :: collective_start, collective_end, collective_sync
#if !defined(SERIAL_MPI)
call psb_info(ctxt,iam,np)
if (present(root)) then
root_ = root
else
root_ = -1
endif
icomm = psb_get_mpi_comm(ctxt)
if (present(mode)) then
collective_sync = .false.
collective_start = iand(mode,psb_collective_start_) /= 0
collective_end = iand(mode,psb_collective_end_) /= 0
if (.not.present(request)) then
collective_sync = .true.
collective_start = .false.
collective_end = .false.
end if
else
collective_sync = .true.
collective_start = .false.
collective_end = .false.
end if
if (collective_sync) then
if (root_ == -1) then
call mpi_allreduce(mpi_in_place,dat,size(dat),&
& psb_mpi_r_spk_,mpi_samn_op,icomm,info)
else
if(iam==root_) then
call mpi_reduce(mpi_in_place,dat,size(dat),&
& psb_mpi_r_spk_,mpi_samn_op,root_,icomm,info)
else
call mpi_reduce(dat,dat,size(dat),&
& psb_mpi_r_spk_,mpi_samn_op,root_,icomm,info)
end if
endif
else
if (collective_start) then
if (root_ == -1) then
call mpi_iallreduce(mpi_in_place,dat,size(dat),&
& psb_mpi_r_spk_,mpi_samn_op,icomm,request,info)
else
if(iam==root_) then
call mpi_ireduce(mpi_in_place,dat,size(dat),&
& psb_mpi_r_spk_,mpi_samn_op,root_,icomm,request,info)
else
call mpi_ireduce(dat,dat,size(dat),&
& psb_mpi_r_spk_,mpi_samn_op,root_,icomm,request,info)
end if
end if
else if (collective_end) then
call mpi_wait(request,status,info)
end if
end if
#endif
end subroutine psb_samnv
subroutine psb_samnm(ctxt,dat,root,mode,request)
#ifdef MPI_MOD
use mpi
#endif
implicit none
#ifdef MPI_H
include 'mpif.h'
#endif
type(psb_ctxt_type), intent(in) :: ctxt
real(psb_spk_), intent(inout) :: dat(:,:)
integer(psb_mpk_), intent(in), optional :: root
integer(psb_ipk_), intent(in), optional :: mode
integer(psb_mpk_), intent(inout), optional :: request
integer(psb_mpk_) :: root_
integer(psb_mpk_) :: iam, np, info
integer(psb_mpk_) :: icomm
integer(psb_mpk_) :: status(mpi_status_size)
logical :: collective_start, collective_end, collective_sync
#if !defined(SERIAL_MPI)
call psb_info(ctxt,iam,np)
if (present(root)) then
root_ = root
else
root_ = -1
endif
icomm = psb_get_mpi_comm(ctxt)
if (present(mode)) then
collective_sync = .false.
collective_start = iand(mode,psb_collective_start_) /= 0
collective_end = iand(mode,psb_collective_end_) /= 0
if (.not.present(request)) then
collective_sync = .true.
collective_start = .false.
collective_end = .false.
end if
else
collective_sync = .true.
collective_start = .false.
collective_end = .false.
end if
if (collective_sync) then
if (root_ == -1) then
call mpi_allreduce(mpi_in_place,dat,size(dat),&
& psb_mpi_r_spk_,mpi_samn_op,icomm,info)
else
if(iam==root_) then
call mpi_reduce(mpi_in_place,dat,size(dat),&
& psb_mpi_r_spk_,mpi_samn_op,root_,icomm,info)
else
call mpi_reduce(dat,dat,size(dat),&
& psb_mpi_r_spk_,mpi_samn_op,root_,icomm,info)
end if
endif
else
if (collective_start) then
if (root_ == -1) then
call mpi_iallreduce(mpi_in_place,dat,size(dat),&
& psb_mpi_r_spk_,mpi_samn_op,icomm,request,info)
else
if(iam==root_) then
call mpi_ireduce(mpi_in_place,dat,size(dat),&
& psb_mpi_r_spk_,mpi_samn_op,root_,icomm,request,info)
else
call mpi_ireduce(dat,dat,size(dat),&
& psb_mpi_r_spk_,mpi_samn_op,root_,icomm,request,info)
end if
end if
else if (collective_end) then
call mpi_wait(request,status,info)
end if
end if
#endif
end subroutine psb_samnm
!
! BCAST Broadcast
!
subroutine psb_sbcasts(ctxt,dat,root,mode,request)
#ifdef MPI_MOD
use mpi
#endif
implicit none
#ifdef MPI_H
include 'mpif.h'
#endif
type(psb_ctxt_type), intent(in) :: ctxt
real(psb_spk_), intent(inout) :: dat
integer(psb_mpk_), intent(in), optional :: root
integer(psb_ipk_), intent(in), optional :: mode
integer(psb_mpk_), intent(inout), optional :: request
integer(psb_mpk_) :: root_
integer(psb_mpk_) :: iam, np, info
integer(psb_mpk_) :: icomm
integer(psb_mpk_) :: status(mpi_status_size)
logical :: collective_start, collective_end, collective_sync
#if !defined(SERIAL_MPI)
call psb_info(ctxt,iam,np)
if (present(root)) then
root_ = root
else
root_ = psb_root_
endif
icomm = psb_get_mpi_comm(ctxt)
if (present(mode)) then
collective_sync = .false.
collective_start = iand(mode,psb_collective_start_) /= 0
collective_end = iand(mode,psb_collective_end_) /= 0
if (.not.present(request)) then
collective_sync = .true.
collective_start = .false.
collective_end = .false.
end if
else
collective_sync = .true.
collective_start = .false.
collective_end = .false.
end if
if (collective_sync) then
call mpi_bcast(dat,1,psb_mpi_r_spk_,root_,icomm,info)
else
if (collective_start) then
call mpi_ibcast(dat,1,psb_mpi_r_spk_,root_,icomm,request,info)
else if (collective_end) then
call mpi_wait(request,status,info)
end if
end if
#endif
end subroutine psb_sbcasts
subroutine psb_sbcastv(ctxt,dat,root,mode,request)
#ifdef MPI_MOD
use mpi
#endif
implicit none
#ifdef MPI_H
include 'mpif.h'
#endif
type(psb_ctxt_type), intent(in) :: ctxt
real(psb_spk_), intent(inout) :: dat(:)
integer(psb_mpk_), intent(in), optional :: root
integer(psb_ipk_), intent(in), optional :: mode
integer(psb_mpk_), intent(inout), optional :: request
integer(psb_mpk_) :: root_
integer(psb_mpk_) :: iam, np, info
integer(psb_mpk_) :: icomm
integer(psb_mpk_) :: status(mpi_status_size)
logical :: collective_start, collective_end, collective_sync
#if !defined(SERIAL_MPI)
call psb_info(ctxt,iam,np)
if (present(root)) then
root_ = root
else
root_ = psb_root_
endif
icomm = psb_get_mpi_comm(ctxt)
if (present(mode)) then
collective_sync = .false.
collective_start = iand(mode,psb_collective_start_) /= 0
collective_end = iand(mode,psb_collective_end_) /= 0
if (.not.present(request)) then
collective_sync = .true.
collective_start = .false.
collective_end = .false.
end if
else
collective_sync = .true.
collective_start = .false.
collective_end = .false.
end if
if (collective_sync) then
call mpi_bcast(dat,size(dat),psb_mpi_r_spk_,root_,icomm,info)
else
if (collective_start) then
call mpi_ibcast(dat,size(dat),psb_mpi_r_spk_,root_,icomm,request,info)
else if (collective_end) then
call mpi_wait(request,status,info)
end if
end if
#endif
end subroutine psb_sbcastv
subroutine psb_sbcastm(ctxt,dat,root,mode,request)
#ifdef MPI_MOD
use mpi
#endif
implicit none
#ifdef MPI_H
include 'mpif.h'
#endif
type(psb_ctxt_type), intent(in) :: ctxt
real(psb_spk_), intent(inout) :: dat(:,:)
integer(psb_mpk_), intent(in), optional :: root
integer(psb_ipk_), intent(in), optional :: mode
integer(psb_mpk_), intent(inout), optional :: request
integer(psb_mpk_) :: root_
integer(psb_mpk_) :: iam, np, info
integer(psb_mpk_) :: icomm
integer(psb_mpk_) :: status(mpi_status_size)
logical :: collective_start, collective_end, collective_sync
#if !defined(SERIAL_MPI)
call psb_info(ctxt,iam,np)
if (present(root)) then
root_ = root
else
root_ = psb_root_
endif
icomm = psb_get_mpi_comm(ctxt)
if (present(mode)) then
collective_sync = .false.
collective_start = iand(mode,psb_collective_start_) /= 0
collective_end = iand(mode,psb_collective_end_) /= 0
if (.not.present(request)) then
collective_sync = .true.
collective_start = .false.
collective_end = .false.
end if
else
collective_sync = .true.
collective_start = .false.
collective_end = .false.
end if
if (collective_sync) then
call mpi_bcast(dat,size(dat),psb_mpi_r_spk_,root_,icomm,info)
else
if (collective_start) then
call mpi_ibcast(dat,size(dat),psb_mpi_r_spk_,root_,icomm,request,info)
else if (collective_end) then
call mpi_wait(request,status,info)
end if
end if
#endif
end subroutine psb_sbcastm
! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!
! SCAN
!
! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
subroutine psb_sscan_sums(ctxt,dat,mode,request)
#ifdef MPI_MOD
use mpi
#endif
implicit none
#ifdef MPI_H
include 'mpif.h'
#endif
type(psb_ctxt_type), intent(in) :: ctxt
integer(psb_ipk_), intent(in), optional :: mode
integer(psb_mpk_), intent(inout), optional :: request
real(psb_spk_), intent(inout) :: dat
real(psb_spk_) :: dat_
integer(psb_ipk_) :: iam, np, info
integer(psb_mpk_) :: minfo
integer(psb_mpk_) :: icomm
integer(psb_mpk_) :: status(mpi_status_size)
logical :: collective_start, collective_end, collective_sync
#if !defined(SERIAL_MPI)
call psb_info(ctxt,iam,np)
icomm = psb_get_mpi_comm(ctxt)
if (present(mode)) then
collective_sync = .false.
collective_start = iand(mode,psb_collective_start_) /= 0
collective_end = iand(mode,psb_collective_end_) /= 0
if (.not.present(request)) then
collective_sync = .true.
collective_start = .false.
collective_end = .false.
end if
else
collective_sync = .true.
collective_start = .false.
collective_end = .false.
end if
dat_ = dat
if (collective_sync) then
call mpi_scan(dat_,dat,1,&
& psb_mpi_r_spk_,mpi_sum,icomm,minfo)
else
if (collective_start) then
call mpi_iscan(dat_,dat,1,&
& psb_mpi_r_spk_,mpi_sum,icomm,request,minfo)
else if (collective_end) then
call mpi_wait(request,status,minfo)
end if
end if
#endif
end subroutine psb_sscan_sums
subroutine psb_sexscan_sums(ctxt,dat,mode,request)
#ifdef MPI_MOD
use mpi
#endif
implicit none
#ifdef MPI_H
include 'mpif.h'
#endif
type(psb_ctxt_type), intent(in) :: ctxt
real(psb_spk_), intent(inout) :: dat
integer(psb_ipk_), intent(in), optional :: mode
integer(psb_mpk_), intent(inout), optional :: request
real(psb_spk_) :: dat_
integer(psb_ipk_) :: iam, np, info
integer(psb_mpk_) :: minfo
integer(psb_mpk_) :: icomm
integer(psb_mpk_) :: status(mpi_status_size)
logical :: collective_start, collective_end, collective_sync
#if !defined(SERIAL_MPI)
call psb_info(ctxt,iam,np)
icomm = psb_get_mpi_comm(ctxt)
if (present(mode)) then
collective_sync = .false.
collective_start = iand(mode,psb_collective_start_) /= 0
collective_end = iand(mode,psb_collective_end_) /= 0
if (.not.present(request)) then
collective_sync = .true.
collective_start = .false.
collective_end = .false.
end if
else
collective_sync = .true.
collective_start = .false.
collective_end = .false.
end if
dat_ = dat
if (collective_sync) then
call mpi_exscan(dat_,dat,1,&
& psb_mpi_r_spk_,mpi_sum,icomm,minfo)
else
if (collective_start) then
call mpi_iexscan(dat_,dat,1,&
& psb_mpi_r_spk_,mpi_sum,icomm,request,minfo)
else if (collective_end) then
call mpi_wait(request,status,minfo)
end if
end if
#else
dat = szero
#endif
end subroutine psb_sexscan_sums
subroutine psb_sscan_sumv(ctxt,dat,mode,request)
#ifdef MPI_MOD
use mpi
#endif
implicit none
#ifdef MPI_H
include 'mpif.h'
#endif
type(psb_ctxt_type), intent(in) :: ctxt
real(psb_spk_), intent(inout) :: dat(:)
integer(psb_ipk_), intent(in), optional :: mode
integer(psb_mpk_), intent(inout), optional :: request
integer(psb_ipk_) :: iam, np, info
integer(psb_mpk_) :: minfo
integer(psb_mpk_) :: icomm
integer(psb_mpk_) :: status(mpi_status_size)
logical :: collective_start, collective_end, collective_sync
real(psb_spk_), allocatable :: dat_(:)
#if !defined(SERIAL_MPI)
call psb_info(ctxt,iam,np)
icomm = psb_get_mpi_comm(ctxt)
if (present(mode)) then
collective_sync = .false.
collective_start = iand(mode,psb_collective_start_) /= 0
collective_end = iand(mode,psb_collective_end_) /= 0
if (.not.present(request)) then
collective_sync = .true.
collective_start = .false.
collective_end = .false.
end if
else
collective_sync = .true.
collective_start = .false.
collective_end = .false.
end if
dat_ = dat
if (collective_sync) then
call mpi_scan(dat_,dat,size(dat),&
& psb_mpi_r_spk_,mpi_sum,icomm,minfo)
else
if (collective_start) then
call mpi_iscan(dat_,dat,size(dat),&
& psb_mpi_r_spk_,mpi_sum,icomm,request,info)
else if (collective_end) then
call mpi_wait(request,status,info)
end if
end if
#endif
end subroutine psb_sscan_sumv
subroutine psb_sexscan_sumv(ctxt,dat,mode,request)
#ifdef MPI_MOD
use mpi
#endif
implicit none
#ifdef MPI_H
include 'mpif.h'
#endif
type(psb_ctxt_type), intent(in) :: ctxt
real(psb_spk_), intent(inout) :: dat(:)
integer(psb_ipk_), intent(in), optional :: mode
integer(psb_mpk_), intent(inout), optional :: request
integer(psb_ipk_) :: iam, np, info
integer(psb_mpk_) :: minfo
integer(psb_mpk_) :: icomm
integer(psb_mpk_) :: status(mpi_status_size)
logical :: collective_start, collective_end, collective_sync
real(psb_spk_), allocatable :: dat_(:)
#if !defined(SERIAL_MPI)
call psb_info(ctxt,iam,np)
icomm = psb_get_mpi_comm(ctxt)
if (present(mode)) then
collective_sync = .false.
collective_start = iand(mode,psb_collective_start_) /= 0
collective_end = iand(mode,psb_collective_end_) /= 0
if (.not.present(request)) then
collective_sync = .true.
collective_start = .false.
collective_end = .false.
end if
else
collective_sync = .true.
collective_start = .false.
collective_end = .false.
end if
dat_ = dat
if (collective_sync) then
call mpi_exscan(dat_,dat,size(dat),&
& psb_mpi_r_spk_,mpi_sum,icomm,minfo)
else
if (collective_start) then
call mpi_iexscan(dat_,dat,size(dat),&
& psb_mpi_r_spk_,mpi_sum,icomm,request,info)
else if (collective_end) then
call mpi_wait(request,status,info)
end if
end if
#else
dat = szero
#endif
end subroutine psb_sexscan_sumv
subroutine psb_s_simple_a2av(valsnd,sdsz,bsdindx,&
& valrcv,rvsz,brvindx,ctxt,info)
use psi_s_p2p_mod
implicit none
real(psb_spk_), intent(in) :: valsnd(:)
real(psb_spk_), intent(out) :: valrcv(:)
integer(psb_mpk_), intent(in) :: bsdindx(:), brvindx(:), sdsz(:), rvsz(:)
type(psb_ctxt_type), intent(in) :: ctxt
integer(psb_ipk_), intent(out) :: info
integer(psb_ipk_) :: iam, np, i,j,k, ip, ipx, idx, sz
call psb_info(ctxt,iam,np)
if (min(size(bsdindx),size(brvindx),size(sdsz),size(rvsz))<np) then
info = psb_err_internal_error_
return
end if
do ip = 0, np-1
sz = sdsz(ip+1)
if (sz > 0) then
idx = bsdindx(ip+1)
call psb_snd(ctxt,valsnd(idx+1:idx+sz),ip)
end if
end do
do ip = 0, np-1
sz = rvsz(ip+1)
if (sz > 0) then
idx = brvindx(ip+1)
call psb_rcv(ctxt,valrcv(idx+1:idx+sz),ip)
end if
end do
end subroutine psb_s_simple_a2av
subroutine psb_s_m_simple_triad_a2av(valsnd,iasnd,jasnd,sdsz,bsdindx,&
& valrcv,iarcv,jarcv,rvsz,brvindx,ctxt,info)
#ifdef MPI_MOD
use mpi
#endif
implicit none
#ifdef MPI_H
include 'mpif.h'
#endif
real(psb_spk_), intent(in) :: valsnd(:)
integer(psb_mpk_), intent(in) :: iasnd(:), jasnd(:)
real(psb_spk_), intent(out) :: valrcv(:)
integer(psb_mpk_), intent(out) :: iarcv(:), jarcv(:)
integer(psb_mpk_), intent(in) :: bsdindx(:), brvindx(:), sdsz(:), rvsz(:)
type(psb_ctxt_type), intent(in) :: ctxt
integer(psb_ipk_), intent(out) :: info
!Local variables
integer(psb_ipk_) :: iam, np, i,j,k, ip, ipx, idx, sz, counter
integer(psb_mpk_) :: proc_to_comm, p2ptag, p2pstat(mpi_status_size), iret, icomm
integer(psb_mpk_), allocatable :: prcid(:), rvhd(:,:)
call psb_info(ctxt,iam,np)
icomm = psb_get_mpi_comm(ctxt)
if (min(size(bsdindx),size(brvindx),size(sdsz),size(rvsz))<np) then
info = psb_err_internal_error_
return
end if
allocate(prcid(np),rvhd(np,3))
prcid = -1
do ip = 0, np-1
sz = rvsz(ip+1)
if (sz > 0) then
prcid(ip+1) = psb_get_mpi_rank(ctxt,ip)
idx = brvindx(ip+1)
p2ptag = psb_real_tag
call mpi_irecv(valrcv(idx+1:idx+sz),sz,&
& psb_mpi_r_spk_,prcid(ip+1),&
& p2ptag, icomm,rvhd(ip+1,1),iret)
p2ptag = psb_int_swap_tag
call mpi_irecv(iarcv(idx+1:idx+sz),sz,&
& psb_mpi_mpk_,prcid(ip+1),&
& p2ptag, icomm,rvhd(ip+1,2),iret)
call mpi_irecv(jarcv(idx+1:idx+sz),sz,&
& psb_mpi_mpk_,prcid(ip+1),&
& p2ptag, icomm,rvhd(ip+1,3),iret)
end if
Enddo
do ip = 0, np-1
sz = sdsz(ip+1)
if (sz > 0) then
if (prcid(ip+1)<0) prcid(ip+1) = psb_get_mpi_rank(ctxt,ip)
idx = bsdindx(ip+1)
p2ptag = psb_real_tag
call mpi_send(valsnd(idx+1:idx+sz),sz,&
& psb_mpi_r_spk_,prcid(ip+1),&
& p2ptag, icomm,iret)
p2ptag = psb_int_swap_tag
call mpi_send(iasnd(idx+1:idx+sz),sz,&
& psb_mpi_mpk_,prcid(ip+1),&
& p2ptag, icomm,iret)
call mpi_send(jasnd(idx+1:idx+sz),sz,&
& psb_mpi_mpk_,prcid(ip+1),&
& p2ptag, icomm,iret)
end if
Enddo
do ip = 0, np-1
sz = rvsz(ip+1)
if (sz > 0) then
call mpi_wait(rvhd(ip+1,1),p2pstat,iret)
call mpi_wait(rvhd(ip+1,2),p2pstat,iret)
call mpi_wait(rvhd(ip+1,3),p2pstat,iret)
end if
Enddo
end subroutine psb_s_m_simple_triad_a2av
subroutine psb_s_e_simple_triad_a2av(valsnd,iasnd,jasnd,sdsz,bsdindx,&
& valrcv,iarcv,jarcv,rvsz,brvindx,ctxt,info)
#ifdef MPI_MOD
use mpi
#endif
implicit none
#ifdef MPI_H
include 'mpif.h'
#endif
real(psb_spk_), intent(in) :: valsnd(:)
integer(psb_epk_), intent(in) :: iasnd(:), jasnd(:)
real(psb_spk_), intent(out) :: valrcv(:)
integer(psb_epk_), intent(out) :: iarcv(:), jarcv(:)
integer(psb_mpk_), intent(in) :: bsdindx(:), brvindx(:), sdsz(:), rvsz(:)
type(psb_ctxt_type), intent(in) :: ctxt
integer(psb_ipk_), intent(out) :: info
!Local variables
integer(psb_ipk_) :: iam, np, i,j,k, ip, ipx, idx, sz, counter
integer(psb_mpk_) :: proc_to_comm, p2ptag, p2pstat(mpi_status_size), iret, icomm
integer(psb_mpk_), allocatable :: prcid(:), rvhd(:,:)
call psb_info(ctxt,iam,np)
icomm = psb_get_mpi_comm(ctxt)
if (min(size(bsdindx),size(brvindx),size(sdsz),size(rvsz))<np) then
info = psb_err_internal_error_
return
end if
allocate(prcid(np),rvhd(np,3))
prcid = -1
do ip = 0, np-1
sz = rvsz(ip+1)
if (sz > 0) then
prcid(ip+1) = psb_get_mpi_rank(ctxt,ip)
idx = brvindx(ip+1)
p2ptag = psb_real_tag
call mpi_irecv(valrcv(idx+1:idx+sz),sz,&
& psb_mpi_r_spk_,prcid(ip+1),&
& p2ptag, icomm,rvhd(ip+1,1),iret)
p2ptag = psb_int_swap_tag
call mpi_irecv(iarcv(idx+1:idx+sz),sz,&
& psb_mpi_epk_,prcid(ip+1),&
& p2ptag, icomm,rvhd(ip+1,2),iret)
call mpi_irecv(jarcv(idx+1:idx+sz),sz,&
& psb_mpi_epk_,prcid(ip+1),&
& p2ptag, icomm,rvhd(ip+1,3),iret)
end if
Enddo
do ip = 0, np-1
sz = sdsz(ip+1)
if (sz > 0) then
if (prcid(ip+1)<0) prcid(ip+1) = psb_get_mpi_rank(ctxt,ip)
idx = bsdindx(ip+1)
p2ptag = psb_real_tag
call mpi_send(valsnd(idx+1:idx+sz),sz,&
& psb_mpi_r_spk_,prcid(ip+1),&
& p2ptag, icomm,iret)
p2ptag = psb_int_swap_tag
call mpi_send(iasnd(idx+1:idx+sz),sz,&
& psb_mpi_epk_,prcid(ip+1),&
& p2ptag, icomm,iret)
call mpi_send(jasnd(idx+1:idx+sz),sz,&
& psb_mpi_epk_,prcid(ip+1),&
& p2ptag, icomm,iret)
end if
Enddo
do ip = 0, np-1
sz = rvsz(ip+1)
if (sz > 0) then
call mpi_wait(rvhd(ip+1,1),p2pstat,iret)
call mpi_wait(rvhd(ip+1,2),p2pstat,iret)
call mpi_wait(rvhd(ip+1,3),p2pstat,iret)
end if
Enddo
end subroutine psb_s_e_simple_triad_a2av
end module psi_s_collective_mod