You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
psblas3/base/serial/dp/dcrcr.f

317 lines
11 KiB
FortranFixed

C
C Parallel Sparse BLAS version 2.2
C (C) Copyright 2006/2007/2008
C Salvatore Filippone University of Rome Tor Vergata
C Alfredo Buttari University of Rome Tor Vergata
C
C Redistribution and use in source and binary forms, with or without
C modification, are permitted provided that the following conditions
C are met:
C 1. Redistributions of source code must retain the above copyright
C notice, this list of conditions and the following disclaimer.
C 2. Redistributions in binary form must reproduce the above copyright
C notice, this list of conditions, and the following disclaimer in the
C documentation and/or other materials provided with the distribution.
C 3. The name of the PSBLAS group or the names of its contributors may
C not be used to endorse or promote products derived from this
C software without specific written permission.
C
C THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
C ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
C TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
C PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE PSBLAS GROUP OR ITS CONTRIBUTORS
C BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
C CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
C SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
C INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
C CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
C ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
C POSSIBILITY OF SUCH DAMAGE.
C
C
20 years ago
C SUBROUTINE DCRCR(TRANS,M,N,UNITD,D,DESCRA,A,IA1,IA2,INFOA,IP1,
C DESCRN,AN,IAN1,IAN2,INFON,IP2,LAN,LIAN1,LIAN2,
C WORK,LWORK,IERROR)
C
C Purpose: CSR to CSR format conversion
C =======
C
C Parameter:
C =========
C
C TRANS - CHARACTER*1
C On entry TRANS specifies whether the routine will convert
C matrix A or the transpose of A as follows:
C TRANS = 'N' -> convert matrix A
C TRANS = 'T' or 'C' -> convert A' (the transpose of A)
C Unchanged on exit.
C
C M - INTEGER
C On entry: number of rows of matrix A (A')
C and number of rows of matrix H
C Unchanged on exit.
C
C N - INTEGER
C On entry: number of columns of matrix A (A')
C and number of columns of matrix H
C Unchanged on exit.
C
C UNITD - CHARACTER*1
C On entry UNITD specifies whether the diagonal matrix is unit
C or whether row or column scaling has to be performed, as follows:
C UNITD = 'U' -> unit matrix (no scaling)
C UNITD = 'L' -> scale on the left (row scaling)
C UNITD = 'R' -> scale on the right (column scaling)
C UNITD = 'B' -> scale on the right and on the left
C with D^1/2
C Unchanged on exit.
C
C D - DOUBLE PRECISION array of dimension (M)
C On entry D specifies the main diagonal of the matrix used
C for scaling.
C Unchanged on exit.
C
C DESCRA - CHARACTER*1 array of DIMENSION (9)
C On entry DESCRA describes the characteristics of the input
C sparse matrix.
C Unchanged on exit.
C
C A - DOUBLE PRECISION array of DIMENSION (*)
C On entry A specifies the values of the input sparse
C matrix.
C Unchanged on exit.
C
C IA1 - INTEGER array of dimension (*)
C On entry IA1 holds integer information on input sparse
C matrix. Actual information will depend on data format used.
C Unchanged on exit.
C
C IA2 - INTEGER array of dimension (*)
C On entry IA2 holds integer information on input sparse
C matrix. Actual information will depend on data format used.
C Unchanged on exit.
C
C INFOA - INTEGER array of dimension (10)
C On entry can hold auxiliary information on input matrices
C formats or environment of subsequent calls.
C Might be changed on exit.
C
C IP1 - INTEGER array of dimension (M)
C On exit IP1 specifies the row permutation of matrix AN
C (IP1(1) == 0 if no permutation).
C
C DESCRN - CHARACTER*1 array of DIMENSION (9)
C On exit DESCRN describes the characteristics of the input
C sparse matrix.
C Unchanged on exit.
C
C AN - DOUBLE PRECISION array of DIMENSION (LAN)
C On exit AN specifies the values of the output sparse
C matrix. If LAN=0, INT(AN(1)) is the minimum value for LAN
C satisfying DSPDP memory requirements.
C
C IAN1 - INTEGER array of dimension (LIAN1)
C On exit IAN1 holds integer information on output sparse
C matrix. Actual information will depend on data format used.
C If LIAN1=0, INT(IAN1(1)) is the minimum value for LIAN1
C satisfying DSPDP memory requirements.
C
C IAN2 - INTEGER array of dimension (LIAN2)
C On exit IAN2 holds integer information on output sparse
C matrix. Actual information will depend on data format used.
C If LIAN2=0, INT(IAN2(1)) is the minimum value for LIAN2
C satisfying DSPDP memory requirements.
C
C INFON - INTEGER array of dimension (10)
C On exit can hold auxiliary information on output matrices
C formats or environment of subsequent calls.
C
C IP2 - INTEGER array of dimension (M)
C On exit IP2 specifies the column permutation of matrix AN
C (IP2(1) == 0 if no permutation).
C
C LAN - INTEGER
C On entry LAN specifies the dimension of AN
C LAN must satisfy memory required from the new data structure.
C Unchanged on exit.
C
C LIAN1 - INTEGER
C On entry LH1 specifies the dimension of IAN1
C LH1 must satisfy memory required from the new data structure.
C Unchanged on exit.
C
C LIAN2 - INTEGER
C On entry LIAN2 specifies the dimension of IAN2
C LIAN2 must satisfy memory required from the new data structure.
C Unchanged on exit.
C
C WORK - DOUBLE PRECISION array of dimension (LWORK)
C On entry: work area.
C On exit INT(WORK(1)) contains the minimum value
C for LWORK satisfying DSPDP memory requirements.
C
C LWORK - INTEGER
C On entry LWORK specifies the dimension of WORK
C LWORK must satisfy memory necessary for the data conversion.
C Unchanged on exit.
C
C IERROR - INTEGER
C On exit IERROR contains the value of error flag as follows:
C IERROR = 0 no error
C IERROR > 0 error
C
C
SUBROUTINE DCRCR(TRANS,M,N,UNITD,D,DESCRA,A,IA1,IA2,INFOA,IP1,
* DESCRN,AN,IAN1,IAN2,INFON,IP2,LAN,LIAN1,LIAN2,
* WORK,LWORK,IERROR)
use psb_string_mod
20 years ago
IMPLICIT NONE
C
C .. Scalar Arguments ..
INTEGER M, N, LAN, LIAN1, LIAN2, LWORK, IERROR
CHARACTER TRANS, UNITD
C .. Array Arguments ..
DOUBLE PRECISION A(*), AN(*), D(*), WORK(LWORK)
INTEGER IA1(*), IA2(*), IAN1(*), IAN2(*), IP1(*), IP2(*),
* INFOA(*), INFON(*)
CHARACTER DESCRA*11, DESCRN*11
C .. Local Scalars ..
INTEGER I, J, ERR_ACT
20 years ago
LOGICAL EXIT
c .. Local Arrays ..
character idescra*11
20 years ago
CHARACTER*20 NAME
INTEGER INT_VAL(5)
C .. Intrinsic Functions ..
INTRINSIC DBLE, DSQRT
C .. Executable Statements ..
C
EXIT=.FALSE.
NAME = 'DCRCR'
20 years ago
IERROR = 0
CALL FCPSB_ERRACTIONSAVE(ERR_ACT)
C
C Check for argument errors
C
idescra=toupper(descra)
IF (((idescra(1:1) .EQ. 'S' .OR. idescra(1:1) .EQ. 'H' .OR.
& idescra(1:1) .EQ. 'A') .AND. (toupper(unitd) .NE. 'B'))
+ .OR.
& (.NOT.((idescra(3:3).EQ.'N').OR.(idescra(3:3).EQ.'L').OR.
+ (idescra(3:3).EQ.'U')))
+ .OR.
+ toupper(TRANS).NE.'N') THEN
20 years ago
IERROR = 20
ENDIF
IF(LAN.LT.(IA2(M+1)-1)) THEN
IF (LAN.LE.0) THEN
EXIT=.TRUE.
AN(1) = DBLE(IA2(M+1)-1)
ELSE
IERROR = 21
ENDIF
ENDIF
IF(LIAN1.LT.(IA2(M+1)-1)) THEN
IF (LAN.LE.0) THEN
EXIT=.TRUE.
IAN1(1) = IA2(M+1)-1
ELSE
IERROR = 22
ENDIF
ENDIF
IF(LIAN2.LT.(M+1)) THEN
IF (LAN.LE.0) THEN
EXIT=.TRUE.
IAN2(1) = M+1
ELSE
IERROR = 23
ENDIF
ENDIF
IF ((idescra(1:1) .EQ. 'S' .OR. idescra(1:1) .EQ. 'H' .OR.
& idescra(1:1) .EQ. 'A') .AND. (toupper(UNITD) .EQ. 'B')) THEN
20 years ago
IF (LWORK.LT.M) THEN
IF (LWORK.LE.0) THEN
EXIT=.TRUE.
ELSE
IERROR = 25
ENDIF
WORK(1) = DBLE(M)
ENDIF
ELSE
IF (LWORK.LT.0) THEN
WORK(1) = 0.D0
ENDIF
ENDIF
C
C Error handling
C
IF(IERROR.NE.0) THEN
CALL FCPSB_ERRPUSH(IERROR,NAME,INT_VAL)
GOTO 9999
END IF
IF (EXIT) goto 9998
C
C Set DESCRN, IP1, IP2
C
DESCRN(1:3) = idescra(1:3)
20 years ago
IP1(1)=0
IP2(1)=0
C
C Compute output matrix
C
DO 20 I = 1, M+1
IAN2(I) = IA2(I)
20 CONTINUE
IF ((idescra(1:1) .EQ. 'S' .OR. idescra(1:1) .EQ. 'H' .OR.
& idescra(1:1) .EQ. 'A') .AND. (toupper(UNITD) .EQ. 'B')) THEN
20 years ago
DO 30 I = 1, M
WORK(I) = DSQRT(D(I))
30 CONTINUE
DO 40 I = 1, M
DO 50 J = IA2(I), IA2(I+1)-1
AN(J) = WORK(I) * A(J) * WORK(IA1(J))
IAN1(J) = IA1(J)
50 CONTINUE
40 CONTINUE
ELSE IF (toupper(UNITD) .EQ. 'L') THEN
20 years ago
DO 60 I = 1, M
DO 70 J = IA2(I), IA2(I+1)-1
AN(J) = D(I) * A(J)
IAN1(J) = IA1(J)
70 CONTINUE
60 CONTINUE
ELSE IF (toupper(UNITD) .EQ. 'R') THEN
20 years ago
DO 80 I = 1, M
DO 90 J = IA2(I), IA2(I+1)-1
AN(J) = A(J) * D(IA1(J))
IAN1(J) = IA1(J)
90 CONTINUE
80 CONTINUE
ELSE IF (toupper(UNITD) .EQ. 'U') THEN
20 years ago
DO 100 J = 1, IA2(M+1)-1
AN(J) = A(J)
IAN1(J) = IA1(J)
100 CONTINUE
ENDIF
9998 CONTINUE
CALL FCPSB_ERRACTIONRESTORE(ERR_ACT)
RETURN
9999 CONTINUE
CALL FCPSB_ERRACTIONRESTORE(ERR_ACT)
IF ( ERR_ACT .NE. 0 ) THEN
CALL FCPSB_SERROR()
RETURN
ENDIF
RETURN
END