|
|
|
!
|
|
|
|
! Parallel Sparse BLAS version 3.5
|
|
|
|
! (C) Copyright 2006-2018
|
|
|
|
! Salvatore Filippone
|
|
|
|
! Alfredo Buttari
|
|
|
|
!
|
|
|
|
! Redistribution and use in source and binary forms, with or without
|
|
|
|
! modification, are permitted provided that the following conditions
|
|
|
|
! are met:
|
|
|
|
! 1. Redistributions of source code must retain the above copyright
|
|
|
|
! notice, this list of conditions and the following disclaimer.
|
|
|
|
! 2. Redistributions in binary form must reproduce the above copyright
|
|
|
|
! notice, this list of conditions, and the following disclaimer in the
|
|
|
|
! documentation and/or other materials provided with the distribution.
|
|
|
|
! 3. The name of the PSBLAS group or the names of its contributors may
|
|
|
|
! not be used to endorse or promote products derived from this
|
|
|
|
! software without specific written permission.
|
|
|
|
!
|
|
|
|
! THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
|
|
! ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
|
|
! TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
|
|
! PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE PSBLAS GROUP OR ITS CONTRIBUTORS
|
|
|
|
! BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
|
|
! CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
|
|
! SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
|
|
! INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
|
|
! CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
|
|
! ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
|
|
! POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
!
|
|
|
|
!
|
|
|
|
!
|
|
|
|
!
|
|
|
|
! File: psi_graph_fnd_owner.f90
|
|
|
|
!
|
|
|
|
! Subroutine: psi_graph_fnd_owner
|
|
|
|
! Figure out who owns global indices.
|
|
|
|
!
|
|
|
|
! Arguments:
|
|
|
|
! idx(:) - integer Required indices on the calling process.
|
|
|
|
!
|
|
|
|
! iprc(:) - integer(psb_ipk_), allocatable Output: process identifiers
|
|
|
|
! for the corresponding indices
|
|
|
|
! ladj(:) - integer(psb_ipk_), allocatable Output: A list of adjacent processes
|
|
|
|
!
|
|
|
|
! idxmap - class(psb_indx_map). The index map
|
|
|
|
! info - integer. return code.
|
|
|
|
!
|
|
|
|
! This is the method to find out who owns a set of indices.
|
|
|
|
! In principle we could do the following:
|
|
|
|
! 1. Do an allgatherv of IDX
|
|
|
|
! 2. For each of the collected indices figure out if current proces owns it
|
|
|
|
! 3. Scatter the results
|
|
|
|
! 4. Loop through the answers
|
|
|
|
! This method is guaranteed to find the owner, unless an input index has
|
|
|
|
! an invalid value, however it could easily require too much additional space
|
|
|
|
! because each block of indices is replicated to all processes.
|
|
|
|
! Therefore the current routine takes a different approach:
|
|
|
|
! -1. Figure out a maximum size for a buffer to collect the IDX; the buffer
|
|
|
|
! should allow for at least one index from each process (i.e. min size NP); also
|
|
|
|
! check if we have an adjacency list of processes on input;
|
|
|
|
! 0. If the initial adjacency list is not empty, use psi_adj_fnd_sweep to go
|
|
|
|
! through all indices and use multiple calls to psi_adjcncy_fnd_owner
|
|
|
|
! (up to the buffer size) to see if the owning processes are in the
|
|
|
|
! initial neighbours list;
|
|
|
|
! 1. Extract a sample from IDX, up to the buffer size, and do a call
|
|
|
|
! to psi_a2a_fnd_owner. This is guaranteed to find the owners of all indices
|
|
|
|
! in the sample;
|
|
|
|
! 2. Build the list of processes that own the sample indices; these are
|
|
|
|
! (a subset of) the topological neighbours, and store the list in IDXMAP
|
|
|
|
! 3. Use psi_adj_fnd_sweep to go through all remaining indices and use
|
|
|
|
! multiple calls to psi_adjcncy_fnd_owner (up to the buffer size)
|
|
|
|
! to see if the owning processes are in the current neighbours list;
|
|
|
|
! 4. If the input indices IDX have not been exhausted, cycle to 1.
|
|
|
|
!
|
|
|
|
! Thus, we are alternating between asking all processes for a subset of indices,
|
|
|
|
! and asking a subset of processes for all the indices,
|
|
|
|
! thereby limiting the memory footprint to a predefined maximum
|
|
|
|
! (that the user can force with psb_cd_set_maxspace()).
|
|
|
|
!
|
|
|
|
subroutine psi_graph_fnd_owner(idx,iprc,ladj,idxmap,info)
|
|
|
|
use psb_serial_mod
|
|
|
|
use psb_const_mod
|
|
|
|
use psb_error_mod
|
|
|
|
use psb_penv_mod
|
|
|
|
use psb_realloc_mod
|
|
|
|
use psb_timers_mod
|
|
|
|
use psb_desc_mod, psb_protect_name => psi_graph_fnd_owner
|
|
|
|
#ifdef MPI_MOD
|
|
|
|
use mpi
|
|
|
|
#endif
|
|
|
|
|
|
|
|
implicit none
|
|
|
|
#ifdef MPI_H
|
|
|
|
include 'mpif.h'
|
|
|
|
#endif
|
|
|
|
integer(psb_lpk_), intent(in) :: idx(:)
|
|
|
|
integer(psb_ipk_), allocatable, intent(out) :: iprc(:), ladj(:)
|
|
|
|
class(psb_indx_map), intent(in) :: idxmap
|
|
|
|
integer(psb_ipk_), intent(out) :: info
|
|
|
|
|
|
|
|
|
|
|
|
integer(psb_lpk_), allocatable :: tidx(:)
|
|
|
|
integer(psb_ipk_), allocatable :: tprc(:), tsmpl(:)
|
|
|
|
integer(psb_mpk_) :: icomm, minfo
|
|
|
|
integer(psb_ipk_) :: i,n_row,n_col,err_act,ip,j, nsampl_out,&
|
|
|
|
& nv, n_answers, nqries, nsampl_in, locr_max, ist, iend,&
|
|
|
|
& nqries_max, nadj, maxspace, nsampl, nlansw
|
|
|
|
integer(psb_lpk_) :: mglob, ih
|
|
|
|
type(psb_ctxt_type) :: ctxt
|
|
|
|
integer(psb_ipk_) :: np,me, nresp
|
|
|
|
integer(psb_ipk_), parameter :: nt=4
|
|
|
|
integer(psb_ipk_) :: tmpv(4)
|
|
|
|
logical, parameter :: do_timings=.false., trace=.false., debugsz=.false.
|
|
|
|
integer(psb_ipk_), save :: idx_sweep0=-1, idx_loop_a2a=-1, idx_loop_neigh=-1
|
|
|
|
real(psb_dpk_) :: t0, t1, t2, t3, t4
|
|
|
|
character(len=20) :: name
|
|
|
|
|
|
|
|
info = psb_success_
|
|
|
|
name = 'psi_graph_fnd_owner'
|
|
|
|
call psb_erractionsave(err_act)
|
|
|
|
|
|
|
|
ctxt = idxmap%get_ctxt()
|
|
|
|
icomm = idxmap%get_mpic()
|
|
|
|
mglob = idxmap%get_gr()
|
|
|
|
n_row = idxmap%get_lr()
|
|
|
|
n_col = idxmap%get_lc()
|
|
|
|
|
|
|
|
if ((do_timings).and.(idx_sweep0==-1)) &
|
|
|
|
& idx_sweep0 = psb_get_timer_idx("GRPH_FND_OWN: Outer sweep")
|
|
|
|
if ((do_timings).and.(idx_loop_a2a==-1)) &
|
|
|
|
& idx_loop_a2a = psb_get_timer_idx("GRPH_FND_OWN: Loop a2a")
|
|
|
|
if ((do_timings).and.(idx_loop_neigh==-1)) &
|
|
|
|
& idx_loop_neigh = psb_get_timer_idx("GRPH_FND_OWN: Loop neigh")
|
|
|
|
|
|
|
|
|
|
|
|
call psb_info(ctxt, me, np)
|
|
|
|
|
|
|
|
if (np == -1) then
|
|
|
|
info = psb_err_context_error_
|
|
|
|
call psb_errpush(info,name)
|
|
|
|
goto 9999
|
|
|
|
endif
|
|
|
|
|
|
|
|
if (.not.(idxmap%is_valid())) then
|
|
|
|
call psb_errpush(psb_err_from_subroutine_,name,a_err='invalid idxmap')
|
|
|
|
goto 9999
|
|
|
|
end if
|
|
|
|
|
|
|
|
!
|
|
|
|
!
|
|
|
|
!
|
|
|
|
nv = size(idx)
|
|
|
|
call psb_realloc(nv,iprc,info)
|
|
|
|
#if defined(SERIAL_MPI)
|
|
|
|
iprc(:) = 0
|
|
|
|
#else
|
|
|
|
if (info == psb_success_) call psb_realloc(nv,tidx,info)
|
|
|
|
if (info == psb_success_) call psb_realloc(nv,tprc,info)
|
|
|
|
if (info == psb_success_) call psb_realloc(nv,tsmpl,info)
|
|
|
|
if (info /= psb_success_) then
|
|
|
|
call psb_errpush(psb_err_from_subroutine_,name,a_err='psb_realloc')
|
|
|
|
goto 9999
|
|
|
|
end if
|
|
|
|
iprc(:) = -1
|
|
|
|
!
|
|
|
|
! Start from the adjacncy list
|
|
|
|
!
|
|
|
|
call psb_safe_ab_cpy(idxmap%p_adjcncy,ladj,info)
|
|
|
|
nadj = psb_size(ladj)
|
|
|
|
! This makes ladj allocated with size 0 if needed, as opposed to unallocated
|
|
|
|
call psb_realloc(nadj,ladj,info)
|
|
|
|
!
|
|
|
|
! Throughout the subroutine, nqries is the number of local inquiries
|
|
|
|
! that have not been answered yet, n_answers is the number of queries
|
|
|
|
! that have been resolved. The queries/answers may be scattered
|
|
|
|
! through idx/iprc
|
|
|
|
!
|
|
|
|
n_answers = 0
|
|
|
|
nqries = nv - n_answers
|
|
|
|
nqries_max = nqries
|
|
|
|
|
|
|
|
!
|
|
|
|
! Choice of maxspace should be adjusted to account for a default
|
|
|
|
! "sensible" size and/or a user-specified value
|
|
|
|
! Currently:
|
|
|
|
! 1. Use psb_cd_get_max_space()
|
|
|
|
! 2. If nt*locr_max > maxspace, use nt_loc_max
|
|
|
|
! 3. Should be at least NP
|
|
|
|
!
|
|
|
|
tmpv(1) = nadj
|
|
|
|
tmpv(2) = nqries_max
|
|
|
|
tmpv(3) = n_row
|
|
|
|
tmpv(4) = psb_cd_get_maxspace()
|
|
|
|
call psb_max(ctxt,tmpv)
|
|
|
|
nqries_max = tmpv(2)
|
|
|
|
locr_max = tmpv(3)
|
|
|
|
maxspace = nt*locr_max
|
|
|
|
if (tmpv(4) > nt*locr_max) maxspace = tmpv(4)
|
|
|
|
maxspace = max(maxspace,np)
|
|
|
|
if (trace.and.(me == 0)) write(0,*) ' Through graph_fnd_owner with maxspace:',&
|
|
|
|
& maxspace, maxspace/np, nt*locr_max, psb_cd_get_maxspace()
|
|
|
|
if (do_timings) call psb_tic(idx_sweep0)
|
|
|
|
if ((tmpv(1) > 0).and.(tmpv(2) >0)) then
|
|
|
|
!
|
|
|
|
! Do a preliminary run on the user-defined adjacency lists
|
|
|
|
!
|
|
|
|
if (debugsz) write(0,*) me,' Initial sweep on user-defined topology',nqries
|
|
|
|
nsampl_in = min(nqries,max(1,(maxspace+max(1,nadj)-1))/(max(1,nadj)))
|
|
|
|
if (trace.and.(me == 0)) write(0,*) ' Initial sweep on user-defined topology',&
|
|
|
|
& nsampl_in
|
|
|
|
call psi_adj_fnd_sweep(idx,iprc,ladj,idxmap,nsampl_in,n_answers)
|
|
|
|
|
|
|
|
nqries = nv - n_answers
|
|
|
|
nqries_max = nqries
|
|
|
|
call psb_max(ctxt,nqries_max)
|
|
|
|
if (trace.and.(me == 0)) write(0,*) ' After initial sweep:',nqries_max
|
|
|
|
if (debugsz) write(0,*) me,' After sweep on user-defined topology',nqries_max
|
|
|
|
end if
|
|
|
|
if (do_timings) call psb_toc(idx_sweep0)
|
|
|
|
|
|
|
|
fnd_owner_loop: do while (nqries_max>0)
|
|
|
|
if (do_timings) call psb_tic(idx_loop_a2a)
|
|
|
|
if (debugsz) write(0,*) me,' fnd_owner_loop',nqries_max
|
|
|
|
!
|
|
|
|
! The basic idea of this loop is to alternate between
|
|
|
|
! searching through all processes and searching
|
|
|
|
! in the neighbourood.
|
|
|
|
!
|
|
|
|
! 1. Select a sample such that the total size is <= maxspace
|
|
|
|
! sample query is then sent to all processes
|
|
|
|
!
|
|
|
|
if (trace.and.(me == 0)) write(0,*) 'Looping in graph_fnd_owner: ', nqries_max
|
|
|
|
nsampl_in = nqries
|
|
|
|
nsampl_in = min(max(1,(maxspace+np-1)/np),nsampl_in)
|
|
|
|
!
|
|
|
|
! Choose a sample, should it be done in this simplistic way?
|
|
|
|
! Note: nsampl_in is a hint, not an absolute, hence nsampl_out
|
|
|
|
!
|
|
|
|
call psi_get_sample(1,idx,iprc,tidx,tsmpl,iend,nsampl_in,nsampl_out)
|
|
|
|
nsampl = min(nsampl_out,nsampl_in)
|
|
|
|
if (debugsz) write(0,*) me,' From first sampling ',nsampl_in
|
|
|
|
!
|
|
|
|
! 2. Do a search on all processes; this is supposed to find
|
|
|
|
! the owning process for all inputs;
|
|
|
|
!
|
|
|
|
call psi_a2a_fnd_owner(tidx(1:nsampl),tprc,idxmap,info)
|
|
|
|
if (debugsz) write(0,*) me,' From a2a_fnd_owner ',info
|
|
|
|
|
|
|
|
call psi_cpy_out(iprc,tprc,tsmpl,nsampl,nlansw)
|
|
|
|
if (nlansw < nsampl) then
|
|
|
|
write(0,*) me,'Warning: indices not found by a2a_fnd_owner ',nlansw,nsampl
|
|
|
|
end if
|
|
|
|
|
|
|
|
n_answers = n_answers + nlansw
|
|
|
|
nqries = nv - n_answers
|
|
|
|
!
|
|
|
|
! 3. Extract the resulting adjacency list ? AND ADD IT TO THE EXISTING ONE ?
|
|
|
|
!
|
|
|
|
ladj = tprc(1:nlansw)
|
|
|
|
call psb_msort_unique(ladj,nadj)
|
|
|
|
call psb_realloc(nadj,ladj,info)
|
|
|
|
! call idxmap%xtnd_p_adjcncy(ladj)
|
|
|
|
if (do_timings) call psb_toc(idx_loop_a2a)
|
|
|
|
if (do_timings) call psb_tic(idx_loop_neigh)
|
|
|
|
!
|
|
|
|
! 4. Do a complete sweep over the queries using
|
|
|
|
! the adjacency list just computed.
|
|
|
|
! Rationale:
|
|
|
|
! 1. Only ask to the neighbours; any missing entries
|
|
|
|
! will eventually be found by the a2a step;
|
|
|
|
! 2. Only use the adjacency list just recomputed: any
|
|
|
|
! currently open queries have already been tested
|
|
|
|
! on previous adjacency lists, no need to try them again.
|
|
|
|
!
|
|
|
|
if (trace.and.(me == 0)) write(0,*) ' Further sweep',nsampl_in
|
|
|
|
call psi_adj_fnd_sweep(idx,iprc,ladj,&
|
|
|
|
& idxmap,nsampl_in,n_answers)
|
|
|
|
|
|
|
|
nqries = nv - n_answers
|
|
|
|
nqries_max = nqries
|
|
|
|
call psb_max(ctxt,nqries_max)
|
|
|
|
if (trace.and.(me == 0)) write(0,*) ' fnd_owner_loop remaining:',nqries_max
|
|
|
|
if (do_timings) call psb_toc(idx_loop_neigh)
|
|
|
|
end do fnd_owner_loop
|
|
|
|
#endif
|
|
|
|
|
|
|
|
call psb_erractionrestore(err_act)
|
|
|
|
return
|
|
|
|
|
|
|
|
9999 call psb_error_handler(ctxt,err_act)
|
|
|
|
|
|
|
|
return
|
|
|
|
#if !defined(SERIAL_MPI)
|
|
|
|
|
|
|
|
contains
|
|
|
|
|
|
|
|
!
|
|
|
|
! Get a sample.
|
|
|
|
! 1. Start from entry istart;
|
|
|
|
! 2. Collect unanswered queries
|
|
|
|
! 3. Up to ns_in sample size;
|
|
|
|
! 4. Record the actual sample size;
|
|
|
|
! 5. Record where the sample stopped in case
|
|
|
|
! you need to complete a sweep through the data
|
|
|
|
! 6. For each query, record where in the original vector
|
|
|
|
! it came from;
|
|
|
|
! 7. There could be scattered answered/unanswered queries,
|
|
|
|
! so the code needs to skip existing answers; hence, the
|
|
|
|
! number of items sampled and the index where it stops
|
|
|
|
! differ.
|
|
|
|
!
|
|
|
|
!
|
|
|
|
subroutine psi_get_sample(istart,idx,iprc,tidx,tsmpl,iend,ns_in,ns_out)
|
|
|
|
implicit none
|
|
|
|
|
|
|
|
integer(psb_lpk_), intent(in) :: idx(:)
|
|
|
|
integer(psb_ipk_), intent(in) :: ns_in, iprc(:),istart
|
|
|
|
integer(psb_lpk_), intent(out) :: tidx(:)
|
|
|
|
integer(psb_ipk_), intent(out) :: tsmpl(:), ns_out,iend
|
|
|
|
!
|
|
|
|
integer(psb_ipk_) :: nv, ns, k, ipnt
|
|
|
|
|
|
|
|
nv = size(idx)
|
|
|
|
ns = ns_in
|
|
|
|
!
|
|
|
|
! ns_in == 0 means that on the outside we figure there's
|
|
|
|
! nothing left, but we need to do something because the adj_sweep is
|
|
|
|
! sinchronized
|
|
|
|
! Make sure we sweep through the entire vector immediately.
|
|
|
|
! But also make sure we do not overrun tsmpl
|
|
|
|
!
|
|
|
|
ns = min(ns,size(tsmpl))
|
|
|
|
ns_out = 0
|
|
|
|
ipnt = istart-1
|
|
|
|
do while(ipnt<nv)
|
|
|
|
ipnt = ipnt+1
|
|
|
|
if (iprc(ipnt) == -1) then
|
|
|
|
ns_out = ns_out + 1
|
|
|
|
tsmpl(ns_out) = ipnt
|
|
|
|
tidx(ns_out) = idx(ipnt)
|
|
|
|
end if
|
|
|
|
if (ns_out >= ns) exit
|
|
|
|
end do
|
|
|
|
iend = ipnt
|
|
|
|
end subroutine psi_get_sample
|
|
|
|
|
|
|
|
subroutine psi_cpy_out(iprc,tprc,tsmpl,ns_in,ns_out)
|
|
|
|
implicit none
|
|
|
|
integer(psb_ipk_), intent(out) :: iprc(:)
|
|
|
|
integer(psb_ipk_), intent(in) :: ns_in
|
|
|
|
integer(psb_ipk_), intent(in) :: tprc(:), tsmpl(:)
|
|
|
|
integer(psb_ipk_), intent(out) :: ns_out
|
|
|
|
|
|
|
|
integer(psb_ipk_) :: j
|
|
|
|
|
|
|
|
ns_out = 0
|
|
|
|
do j=1, ns_in
|
|
|
|
if (tprc(j) /= -1) then
|
|
|
|
ns_out = ns_out + 1
|
|
|
|
iprc(tsmpl(j)) = tprc(j)
|
|
|
|
end if
|
|
|
|
end do
|
|
|
|
end subroutine psi_cpy_out
|
|
|
|
|
|
|
|
subroutine psi_adj_fnd_sweep(idx,iprc,adj,idxmap,n_samples,n_answers)
|
|
|
|
implicit none
|
|
|
|
integer(psb_lpk_), intent(in) :: idx(:)
|
|
|
|
integer(psb_ipk_), intent(in) :: n_samples
|
|
|
|
integer(psb_ipk_), intent(inout) :: iprc(:), n_answers
|
|
|
|
integer(psb_ipk_), intent(in) :: adj(:)
|
|
|
|
class(psb_indx_map), intent(in) :: idxmap
|
|
|
|
!
|
|
|
|
type(psb_ctxt_type) :: ctxt
|
|
|
|
integer(psb_ipk_) :: ipnt, ns_in, ns_out, n_rem, me, np, isw, n_reml,iend, nv
|
|
|
|
integer(psb_lpk_), allocatable :: tidx(:)
|
|
|
|
integer(psb_ipk_), allocatable :: tsmpl(:)
|
|
|
|
|
|
|
|
ctxt = idxmap%get_ctxt()
|
|
|
|
call psb_info(ctxt,me,np)
|
|
|
|
call psb_realloc(n_samples,tidx,info)
|
|
|
|
call psb_realloc(n_samples,tsmpl,info)
|
|
|
|
ipnt = 1
|
|
|
|
isw = 1
|
|
|
|
nv = size(idx)
|
|
|
|
do
|
|
|
|
! Sweep through the vector, one section at a time,
|
|
|
|
! up to N_SAMPLES samples. The sections are unpredictable, because
|
|
|
|
! the queries are scattered; hence the need for get_sample
|
|
|
|
! to tell us where the current section ends
|
|
|
|
!
|
|
|
|
call psi_get_sample(ipnt,idx,iprc,tidx,tsmpl,iend,n_samples,ns_out)
|
|
|
|
ns_in = min(n_samples,ns_out)
|
|
|
|
!
|
|
|
|
call psi_adjcncy_fnd_owner(tidx(1:ns_in),tprc,ladj,idxmap,info)
|
|
|
|
call psi_cpy_out(iprc,tprc,tsmpl,ns_in,ns_out)
|
|
|
|
!
|
|
|
|
! Update starting point of next sweep and number of remaining
|
|
|
|
! queries to check for end of loop.
|
|
|
|
!
|
|
|
|
n_answers = n_answers + ns_out
|
|
|
|
ipnt = iend + 1
|
|
|
|
n_reml = nv - ipnt + 1
|
|
|
|
n_rem = n_reml
|
|
|
|
call psb_max(ctxt,n_rem)
|
|
|
|
! if (me == 0) write(0,*) me,' fnd_sweep Sweep ',isw,n_rem, ipnt, n_samples, n_reml
|
|
|
|
isw = isw + 1
|
|
|
|
if (n_rem <= 0) exit
|
|
|
|
end do
|
|
|
|
! if (me == 0) write(0,*)'adj_fnd_sweep: sweeps: ',isw
|
|
|
|
|
|
|
|
end subroutine psi_adj_fnd_sweep
|
|
|
|
#endif
|
|
|
|
end subroutine psi_graph_fnd_owner
|