psblas3/prec/impl/psb_c_ilu0_fact.f90

699 lines
26 KiB
Fortran

!
! Parallel Sparse BLAS version 3.5
! (C) Copyright 2006-2018
! Salvatore Filippone
! Alfredo Buttari
!
! Redistribution and use in source and binary forms, with or without
! modification, are permitted provided that the following conditions
! are met:
! 1. Redistributions of source code must retain the above copyright
! notice, this list of conditions and the following disclaimer.
! 2. Redistributions in binary form must reproduce the above copyright
! notice, this list of conditions, and the following disclaimer in the
! documentation and/or other materials provided with the distribution.
! 3. The name of the PSBLAS group or the names of its contributors may
! not be used to endorse or promote products derived from this
! software without specific written permission.
!
! THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
! ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
! TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
! PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE PSBLAS GROUP OR ITS CONTRIBUTORS
! BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
! CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
! SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
! INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
! CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
! ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
! POSSIBILITY OF SUCH DAMAGE.
!
! Moved here from MLD2P4, original copyright below.
!
!
!
! MLD2P4 version 2.2
! MultiLevel Domain Decomposition Parallel Preconditioners Package
! based on PSBLAS (Parallel Sparse BLAS version 3.5)
!
! (C) Copyright 2008-2018
!
! Salvatore Filippone
! Pasqua D'Ambra
! Daniela di Serafino
!
! Redistribution and use in source and binary forms, with or without
! modification, are permitted provided that the following conditions
! are met:
! 1. Redistributions of source code must retain the above copyright
! notice, this list of conditions and the following disclaimer.
! 2. Redistributions in binary form must reproduce the above copyright
! notice, this list of conditions, and the following disclaimer in the
! documentation and/or other materials provided with the distribution.
! 3. The name of the MLD2P4 group or the names of its contributors may
! not be used to endorse or promote products derived from this
! software without specific written permission.
!
! THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
! ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
! TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
! PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE MLD2P4 GROUP OR ITS CONTRIBUTORS
! BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
! CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
! SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
! INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
! CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
! ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
! POSSIBILITY OF SUCH DAMAGE.
!
!
! File: psb_cilu0_fact.f90
!
! Subroutine: psb_cilu0_fact
! Version: complex
! Contains: psb_cilu0_factint, ilu_copyin
!
! This routine computes either the ILU(0) or the MILU(0) factorization of
! the diagonal blocks of a distributed matrix. These factorizations are used
! to build the 'base preconditioner' (block-Jacobi preconditioner/solver,
! Additive Schwarz preconditioner) corresponding to a given level of a
! multilevel preconditioner.
!
! Details on the above factorizations can be found in
! Y. Saad, Iterative Methods for Sparse Linear Systems, Second Edition,
! SIAM, 2003, Chapter 10.
!
! The local matrix is stored into a and blck, as specified in the description
! of the arguments below. The storage format for both the L and U factors is CSR.
! The diagonal of the U factor is stored separately (actually, the inverse of the
! diagonal entries is stored; this is then managed in the solve stage associated
! to the ILU(0)/MILU(0) factorization).
!
! The routine copies and factors "on the fly" from a and blck into l (L factor),
! u (U factor, except its diagonal) and d (diagonal of U).
!
! This implementation of ILU(0)/MILU(0) is faster than the implementation in
! psb_ziluk_fct (the latter routine performs the more general ILU(k)/MILU(k)).
!
!
! Arguments:
! ialg - integer, input.
! The type of incomplete factorization to be performed.
! The MILU(0) factorization is computed if ialg = 2 (= psb_milu_n_);
! the ILU(0) factorization otherwise.
! a - type(psb_cspmat_type), input.
! The sparse matrix structure containing the local matrix.
! Note that if the 'base' Additive Schwarz preconditioner
! has overlap greater than 0 and the matrix has not been reordered
! (see psb_as_bld), then a contains only the 'original' local part
! of the distributed matrix, i.e. the rows of the matrix held
! by the calling process according to the initial data distribution.
! l - type(psb_cspmat_type), input/output.
! The L factor in the incomplete factorization.
! Note: its allocation is managed by the calling routine psb_ilu_bld,
! hence it cannot be only intent(out).
! u - type(psb_cspmat_type), input/output.
! The U factor (except its diagonal) in the incomplete factorization.
! Note: its allocation is managed by the calling routine psb_ilu_bld,
! hence it cannot be only intent(out).
! d - complex(psb_spk_), dimension(:), input/output.
! The inverse of the diagonal entries of the U factor in the incomplete
! factorization.
! Note: its allocation is managed by the calling routine psb_ilu_bld,
! hence it cannot be only intent(out).
! info - integer, output.
! Error code.
! blck - type(psb_cspmat_type), input, optional, target.
! The sparse matrix structure containing the remote rows of the
! distributed matrix, that have been retrieved by psb_as_bld
! to build an Additive Schwarz base preconditioner with overlap
! greater than 0. If the overlap is 0 or the matrix has been reordered
! (see psb_fact_bld), then blck is empty.
!
subroutine psb_cilu0_fact(ialg,a,l,u,d,info,blck, upd)
use psb_base_mod
use psb_c_ilu_fact_mod, psb_protect_name => psb_cilu0_fact
implicit none
! Arguments
integer(psb_ipk_), intent(in) :: ialg
type(psb_cspmat_type),intent(in) :: a
type(psb_cspmat_type),intent(inout) :: l,u
complex(psb_spk_), intent(inout) :: d(:)
integer(psb_ipk_), intent(out) :: info
type(psb_cspmat_type),intent(in), optional, target :: blck
character, intent(in), optional :: upd
! Local variables
integer(psb_ipk_) :: l1, l2, m, err_act
type(psb_cspmat_type), pointer :: blck_
type(psb_c_csr_sparse_mat) :: ll, uu
character :: upd_
character(len=20) :: name, ch_err
name='psb_cilu0_fact'
info = psb_success_
call psb_erractionsave(err_act)
!
! Point to / allocate memory for the incomplete factorization
!
if (present(blck)) then
blck_ => blck
else
allocate(blck_,stat=info)
if (info == psb_success_) call blck_%csall(izero,izero,info,ione)
if (info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='csall'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
endif
if (present(upd)) then
upd_ = psb_toupper(upd)
else
upd_ = 'F'
end if
m = a%get_nrows() + blck_%get_nrows()
if ((m /= l%get_nrows()).or.(m /= u%get_nrows()).or.&
& (m > size(d)) ) then
write(0,*) 'Wrong allocation status for L,D,U? ',&
& l%get_nrows(),size(d),u%get_nrows()
info = -1
return
end if
call l%mv_to(ll)
call u%mv_to(uu)
!
! Compute the ILU(0) or the MILU(0) factorization, depending on ialg
!
call psb_cilu0_factint(ialg,a,blck_,&
& d,ll%val,ll%ja,ll%irp,uu%val,uu%ja,uu%irp,l1,l2,upd_,info)
if(info.ne.0) then
info=psb_err_from_subroutine_
ch_err='psb_cilu0_factint'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
!
! Store information on the L and U sparse matrices
!
call l%mv_from(ll)
call l%set_triangle()
call l%set_unit()
call l%set_lower()
call u%mv_from(uu)
call u%set_triangle()
call u%set_unit()
call u%set_upper()
!
! Nullify pointer / deallocate memory
!
if (present(blck)) then
blck_ => null()
else
call blck_%free()
if(info.ne.0) then
info=psb_err_from_subroutine_
ch_err='psb_sp_free'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
deallocate(blck_)
endif
call psb_erractionrestore(err_act)
return
9999 call psb_error_handler(err_act)
return
contains
!
! Subroutine: psb_cilu0_factint
! Version: complex
! Note: internal subroutine of psb_cilu0_fact.
!
! This routine computes either the ILU(0) or the MILU(0) factorization of the
! diagonal blocks of a distributed matrix.
! These factorizations are used to build the 'base preconditioner'
! (block-Jacobi preconditioner/solver, Additive Schwarz
! preconditioner) corresponding to a given level of a multilevel preconditioner.
!
! The local matrix is stored into a and b, as specified in the
! description of the arguments below. The storage format for both the L and U
! factors is CSR. The diagonal of the U factor is stored separately (actually,
! the inverse of the diagonal entries is stored; this is then managed in the
! solve stage associated to the ILU(0)/MILU(0) factorization).
!
! The routine copies and factors "on the fly" from the sparse matrix structures a
! and b into the arrays lval, uval, d (L, U without its diagonal, diagonal of U).
!
!
! Arguments:
! ialg - integer, input.
! The type of incomplete factorization to be performed.
! The ILU(0) factorization is computed if ialg = 1 (= psb_ilu_n_),
! the MILU(0) one if ialg = 2 (= psb_milu_n_); other values
! are not allowed.
! m - integer, output.
! The total number of rows of the local matrix to be factorized,
! i.e. ma+mb.
! ma - integer, input
! The number of rows of the local submatrix stored into a.
! a - type(psb_cspmat_type), input.
! The sparse matrix structure containing the local matrix.
! Note that, if the 'base' Additive Schwarz preconditioner
! has overlap greater than 0 and the matrix has not been reordered
! (see psb_fact_bld), then a contains only the 'original' local part
! of the distributed matrix, i.e. the rows of the matrix held
! by the calling process according to the initial data distribution.
! mb - integer, input.
! The number of rows of the local submatrix stored into b.
! b - type(psb_cspmat_type), input.
! The sparse matrix structure containing the remote rows of the
! distributed matrix, that have been retrieved by psb_as_bld
! to build an Additive Schwarz base preconditioner with overlap
! greater than 0. If the overlap is 0 or the matrix has been
! reordered (see psb_fact_bld), then b does not contain any row.
! d - complex(psb_spk_), dimension(:), output.
! The inverse of the diagonal entries of the U factor in the
! incomplete factorization.
! lval - complex(psb_spk_), dimension(:), input/output.
! The entries of U are stored according to the CSR format.
! The L factor in the incomplete factorization.
! lja - integer, dimension(:), input/output.
! The column indices of the nonzero entries of the L factor,
! according to the CSR storage format.
! lirp - integer, dimension(:), input/output.
! The indices identifying the first nonzero entry of each row
! of the L factor in lval, according to the CSR storage format.
! uval - complex(psb_spk_), dimension(:), input/output.
! The U factor in the incomplete factorization.
! The entries of U are stored according to the CSR format.
! uja - integer, dimension(:), input/output.
! The column indices of the nonzero entries of the U factor,
! according to the CSR storage format.
! uirp - integer, dimension(:), input/output.
! The indices identifying the first nonzero entry of each row
! of the U factor in uval, according to the CSR storage format.
! l1 - integer, output.
! The number of nonzero entries in lval.
! l2 - integer, output.
! The number of nonzero entries in uval.
! info - integer, output.
! Error code.
!
subroutine psb_cilu0_factint(ialg,a,b,&
& d,lval,lja,lirp,uval,uja,uirp,l1,l2,upd,info)
implicit none
! Arguments
integer(psb_ipk_), intent(in) :: ialg
type(psb_cspmat_type),intent(in) :: a,b
integer(psb_ipk_),intent(inout) :: l1,l2,info
integer(psb_ipk_), intent(inout) :: lja(:),lirp(:),uja(:),uirp(:)
complex(psb_spk_), intent(inout) :: lval(:),uval(:),d(:)
character, intent(in) :: upd
! Local variables
integer(psb_ipk_) :: i,j,k,l,low1,low2,kk,jj,ll, ktrw,err_act, m
integer(psb_ipk_) :: ma,mb
complex(psb_spk_) :: dia,temp
integer(psb_ipk_), parameter :: nrb=16
type(psb_c_coo_sparse_mat) :: trw
integer(psb_ipk_) :: int_err(5)
character(len=20) :: name, ch_err
name='psb_cilu0_factint'
info=psb_success_
call psb_erractionsave(err_act)
if (psb_errstatus_fatal()) then
info = psb_err_internal_error_; goto 9999
end if
ma = a%get_nrows()
mb = b%get_nrows()
select case(ialg)
case(psb_ilu_n_,psb_milu_n_)
! Ok
case default
info=psb_err_input_asize_invalid_i_
call psb_errpush(info,name,&
& i_err=(/ione,ialg,izero,izero,izero/))
goto 9999
end select
call trw%allocate(izero,izero,ione)
if(info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='psb_sp_all'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
m = ma+mb
if (psb_toupper(upd) == 'F' ) then
lirp(1) = 1
uirp(1) = 1
l1 = 0
l2 = 0
!
! Cycle over the matrix rows
!
do i = 1, m
d(i) = czero
if (i <= ma) then
!
! Copy the i-th local row of the matrix, stored in a,
! into lval/d(i)/uval
!
call ilu_copyin(i,ma,a,i,ione,m,l1,lja,lval,&
& d(i),l2,uja,uval,ktrw,trw,upd)
else
!
! Copy the i-th local row of the matrix, stored in b
! (as (i-ma)-th row), into lval/d(i)/uval
!
call ilu_copyin(i-ma,mb,b,i,ione,m,l1,lja,lval,&
& d(i),l2,uja,uval,ktrw,trw,upd)
endif
lirp(i+1) = l1 + 1
uirp(i+1) = l2 + 1
dia = d(i)
do kk = lirp(i), lirp(i+1) - 1
!
! Compute entry l(i,k) (lower factor L) of the incomplete
! factorization
!
temp = lval(kk)
k = lja(kk)
lval(kk) = temp*d(k)
!
! Update the rest of row i (lower and upper factors L and U)
! using l(i,k)
!
low1 = kk + 1
low2 = uirp(i)
!
updateloop: do jj = uirp(k), uirp(k+1) - 1
!
j = uja(jj)
!
if (j < i) then
!
! search l(i,*) (i-th row of L) for a matching index j
!
do ll = low1, lirp(i+1) - 1
l = lja(ll)
if (l > j) then
low1 = ll
exit
else if (l == j) then
lval(ll) = lval(ll) - temp*uval(jj)
low1 = ll + 1
cycle updateloop
end if
enddo
else if (j == i) then
!
! j=i: update the diagonal
!
dia = dia - temp*uval(jj)
cycle updateloop
!
else if (j > i) then
!
! search u(i,*) (i-th row of U) for a matching index j
!
do ll = low2, uirp(i+1) - 1
l = uja(ll)
if (l > j) then
low2 = ll
exit
else if (l == j) then
uval(ll) = uval(ll) - temp*uval(jj)
low2 = ll + 1
cycle updateloop
end if
enddo
end if
!
! If we get here we missed the cycle updateloop, which means
! that this entry does not match; thus we accumulate on the
! diagonal for MILU(0).
!
if (ialg == psb_milu_n_) then
dia = dia - temp*uval(jj)
end if
enddo updateloop
enddo
!
! Check the pivot size
!
if (abs(dia) < s_epstol) then
!
! Too small pivot: unstable factorization
!
info = psb_err_pivot_too_small_
int_err(1) = i
write(ch_err,'(g20.10)') abs(dia)
call psb_errpush(info,name,i_err=int_err,a_err=ch_err)
goto 9999
else
!
! Compute 1/pivot
!
dia = cone/dia
end if
d(i) = dia
!
! Scale row i of upper triangle
!
do kk = uirp(i), uirp(i+1) - 1
uval(kk) = uval(kk)*dia
enddo
enddo
else
write(0,*) 'Update not implemented '
info = 31
call psb_errpush(info,name,&
& i_err=(/ione*13,izero,izero,izero,izero/),a_err=upd)
goto 9999
end if
call trw%free()
call psb_erractionrestore(err_act)
return
9999 call psb_error_handler(err_act)
return
end subroutine psb_cilu0_factint
!
! Subroutine: ilu_copyin
! Version: complex
! Note: internal subroutine of psb_cilu0_fact
!
! This routine copies a row of a sparse matrix A, stored in the psb_cspmat_type
! data structure a, into the arrays lval and uval and into the scalar variable
! dia, corresponding to the lower and upper triangles of A and to the diagonal
! entry of the row, respectively. The entries in lval and uval are stored
! according to the CSR format; the corresponding column indices are stored in
! the arrays lja and uja.
!
! If the sparse matrix is in CSR format, a 'straight' copy is performed;
! otherwise psb_sp_getblk is used to extract a block of rows, which is then
! copied into lval, dia, uval row by row, through successive calls to
! ilu_copyin.
!
! The routine is used by psb_cilu0_factint in the computation of the ILU(0)/MILU(0)
! factorization of a local sparse matrix.
!
! TODO: modify the routine to allow copying into output L and U that are
! already filled with indices; this would allow computing an ILU(k) pattern,
! then use the ILU(0) internal for subsequent calls with the same pattern.
!
! Arguments:
! i - integer, input.
! The local index of the row to be extracted from the
! sparse matrix structure a.
! m - integer, input.
! The number of rows of the local matrix stored into a.
! a - type(psb_cspmat_type), input.
! The sparse matrix structure containing the row to be copied.
! jd - integer, input.
! The column index of the diagonal entry of the row to be
! copied.
! jmin - integer, input.
! Minimum valid column index.
! jmax - integer, input.
! Maximum valid column index.
! The output matrix will contain a clipped copy taken from
! a(1:m,jmin:jmax).
! l1 - integer, input/output.
! Pointer to the last occupied entry of lval.
! lja - integer, dimension(:), input/output.
! The column indices of the nonzero entries of the lower triangle
! copied in lval row by row (see psb_cilu0_factint), according
! to the CSR storage format.
! lval - complex(psb_spk_), dimension(:), input/output.
! The array where the entries of the row corresponding to the
! lower triangle are copied.
! dia - complex(psb_spk_), output.
! The diagonal entry of the copied row.
! l2 - integer, input/output.
! Pointer to the last occupied entry of uval.
! uja - integer, dimension(:), input/output.
! The column indices of the nonzero entries of the upper triangle
! copied in uval row by row (see psb_cilu0_factint), according
! to the CSR storage format.
! uval - complex(psb_spk_), dimension(:), input/output.
! The array where the entries of the row corresponding to the
! upper triangle are copied.
! ktrw - integer, input/output.
! The index identifying the last entry taken from the
! staging buffer trw. See below.
! trw - type(psb_cspmat_type), input/output.
! A staging buffer. If the matrix A is not in CSR format, we use
! the psb_sp_getblk routine and store its output in trw; when we
! need to call psb_sp_getblk we do it for a block of rows, and then
! we consume them from trw in successive calls to this routine,
! until we empty the buffer. Thus we will make a call to psb_sp_getblk
! every nrb calls to copyin. If A is in CSR format it is unused.
!
subroutine ilu_copyin(i,m,a,jd,jmin,jmax,l1,lja,lval,&
& dia,l2,uja,uval,ktrw,trw,upd)
use psb_base_mod
implicit none
! Arguments
type(psb_cspmat_type), intent(in) :: a
type(psb_c_coo_sparse_mat), intent(inout) :: trw
integer(psb_ipk_), intent(in) :: i,m,jd,jmin,jmax
integer(psb_ipk_), intent(inout) :: ktrw,l1,l2
integer(psb_ipk_), intent(inout) :: lja(:), uja(:)
complex(psb_spk_), intent(inout) :: lval(:), uval(:), dia
character, intent(in) :: upd
! Local variables
integer(psb_ipk_) :: k,j,info,irb, nz
integer(psb_ipk_), parameter :: nrb=40
character(len=20), parameter :: name='ilu_copyin'
character(len=20) :: ch_err
info=psb_success_
call psb_erractionsave(err_act)
if (psb_errstatus_fatal()) then
info = psb_err_internal_error_; goto 9999
end if
if (psb_toupper(upd) == 'F') then
select type(aa => a%a)
type is (psb_c_csr_sparse_mat)
!
! Take a fast shortcut if the matrix is stored in CSR format
!
do j = aa%irp(i), aa%irp(i+1) - 1
k = aa%ja(j)
! write(0,*)'KKKKK',k
if ((k < jd).and.(k >= jmin)) then
l1 = l1 + 1
lval(l1) = aa%val(j)
lja(l1) = k
else if (k == jd) then
dia = aa%val(j)
else if ((k > jd).and.(k <= jmax)) then
l2 = l2 + 1
uval(l2) = aa%val(j)
uja(l2) = k
end if
enddo
class default
!
! Otherwise use psb_sp_getblk, slower but able (in principle) of
! handling any format. In this case, a block of rows is extracted
! instead of a single row, for performance reasons, and these
! rows are copied one by one into lval, dia, uval, through
! successive calls to ilu_copyin.
!
if ((mod(i,nrb) == 1).or.(nrb == 1)) then
irb = min(m-i+1,nrb)
call aa%csget(i,i+irb-1,trw,info)
if(info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='csget'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
ktrw=1
end if
nz = trw%get_nzeros()
do
if (ktrw > nz) exit
if (trw%ia(ktrw) > i) exit
k = trw%ja(ktrw)
if ((k < jd).and.(k >= jmin)) then
l1 = l1 + 1
lval(l1) = trw%val(ktrw)
lja(l1) = k
else if (k == jd) then
dia = trw%val(ktrw)
else if ((k > jd).and.(k <= jmax)) then
l2 = l2 + 1
uval(l2) = trw%val(ktrw)
uja(l2) = k
end if
ktrw = ktrw + 1
enddo
end select
else
write(0,*) 'Update not implemented '
info = 31
call psb_errpush(info,name,&
& i_err=(/ione*13,izero,izero,izero,izero/),a_err=upd)
goto 9999
end if
call psb_erractionrestore(err_act)
return
9999 call psb_error_handler(err_act)
return
end subroutine ilu_copyin
end subroutine psb_cilu0_fact