|
|
|
!
|
|
|
|
! Parallel Sparse BLAS version 3.5
|
|
|
|
! (C) Copyright 2006-2018
|
|
|
|
! Salvatore Filippone
|
|
|
|
! Alfredo Buttari
|
|
|
|
!
|
|
|
|
! Redistribution and use in source and binary forms, with or without
|
|
|
|
! modification, are permitted provided that the following conditions
|
|
|
|
! are met:
|
|
|
|
! 1. Redistributions of source code must retain the above copyright
|
|
|
|
! notice, this list of conditions and the following disclaimer.
|
|
|
|
! 2. Redistributions in binary form must reproduce the above copyright
|
|
|
|
! notice, this list of conditions, and the following disclaimer in the
|
|
|
|
! documentation and/or other materials provided with the distribution.
|
|
|
|
! 3. The name of the PSBLAS group or the names of its contributors may
|
|
|
|
! not be used to endorse or promote products derived from this
|
|
|
|
! software without specific written permission.
|
|
|
|
!
|
|
|
|
! THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
|
|
! ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
|
|
! TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
|
|
! PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE PSBLAS GROUP OR ITS CONTRIBUTORS
|
|
|
|
! BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
|
|
! CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
|
|
! SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
|
|
! INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
|
|
! CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
|
|
! ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
|
|
! POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
!
|
|
|
|
!
|
|
|
|
module psb_serial_mod
|
|
|
|
use psb_const_mod
|
|
|
|
use psb_error_mod
|
|
|
|
use psb_realloc_mod
|
|
|
|
use psb_string_mod
|
|
|
|
use psb_sort_mod
|
|
|
|
|
|
|
|
use psi_serial_mod, &
|
|
|
|
& psb_gth => psi_gth,&
|
|
|
|
& psb_sct => psi_sct
|
|
|
|
|
|
|
|
use psb_s_serial_mod
|
|
|
|
use psb_d_serial_mod
|
|
|
|
use psb_c_serial_mod
|
|
|
|
use psb_z_serial_mod
|
|
|
|
|
|
|
|
interface psb_nrm1
|
|
|
|
module procedure psb_snrm1, psb_dnrm1, psb_cnrm1, psb_znrm1
|
|
|
|
end interface psb_nrm1
|
|
|
|
|
|
|
|
interface psb_minreal
|
|
|
|
module procedure psb_sminreal, psb_dminreal, psb_cminreal, psb_zminreal
|
|
|
|
end interface psb_minreal
|
|
|
|
|
|
|
|
|
|
|
|
interface psb_nspaxpby
|
|
|
|
subroutine psb_d_nspaxpby(nz,iz,z,alpha, nx, ix, x, beta, ny,iy,y,info)
|
|
|
|
use psb_const_mod, only : psb_ipk_, psb_spk_, psb_dpk_
|
|
|
|
integer(psb_ipk_), intent(out) :: nz
|
|
|
|
integer(psb_ipk_), intent(out) :: iz(:)
|
|
|
|
real(psb_dpk_), intent (out) :: z(:)
|
|
|
|
integer(psb_ipk_), intent(in) :: nx, ny
|
|
|
|
integer(psb_ipk_), intent(in) :: ix(:), iy(:)
|
|
|
|
real(psb_dpk_), intent (in) :: x(:), y(:)
|
|
|
|
real(psb_dpk_), intent (in) :: alpha, beta
|
|
|
|
integer(psb_ipk_), intent(out) :: info
|
|
|
|
end subroutine psb_d_nspaxpby
|
|
|
|
subroutine psb_s_nspaxpby(nz,iz,z,alpha, nx, ix, x, beta, ny,iy,y,info)
|
|
|
|
use psb_const_mod
|
|
|
|
integer(psb_ipk_), intent(out) :: nz
|
|
|
|
integer(psb_ipk_), intent(out) :: iz(:)
|
|
|
|
real(psb_spk_), intent (out) :: z(:)
|
|
|
|
integer(psb_ipk_), intent(in) :: nx, ny
|
|
|
|
integer(psb_ipk_), intent(in) :: ix(:), iy(:)
|
|
|
|
real(psb_spk_), intent (in) :: x(:), y(:)
|
|
|
|
real(psb_spk_), intent (in) :: alpha, beta
|
|
|
|
integer(psb_ipk_), intent(out) :: info
|
|
|
|
end subroutine psb_s_nspaxpby
|
|
|
|
subroutine psb_c_nspaxpby(nz,iz,z,alpha, nx, ix, x, beta, ny,iy,y,info)
|
|
|
|
use psb_const_mod
|
|
|
|
integer(psb_ipk_), intent(out) :: nz
|
|
|
|
integer(psb_ipk_), intent(out) :: iz(:)
|
|
|
|
complex(psb_spk_), intent (out) :: z(:)
|
|
|
|
integer(psb_ipk_), intent(in) :: nx, ny
|
|
|
|
integer(psb_ipk_), intent(in) :: ix(:), iy(:)
|
|
|
|
complex(psb_spk_), intent (in) :: x(:), y(:)
|
|
|
|
complex(psb_spk_), intent (in) :: alpha, beta
|
|
|
|
integer(psb_ipk_), intent(out) :: info
|
|
|
|
end subroutine psb_c_nspaxpby
|
|
|
|
subroutine psb_z_nspaxpby(nz,iz,z,alpha, nx, ix, x, beta, ny,iy,y,info)
|
|
|
|
use psb_const_mod
|
|
|
|
integer(psb_ipk_), intent(out) :: nz
|
|
|
|
integer(psb_ipk_), intent(out) :: iz(:)
|
|
|
|
complex(psb_dpk_), intent (out) :: z(:)
|
|
|
|
integer(psb_ipk_), intent(in) :: nx, ny
|
|
|
|
integer(psb_ipk_), intent(in) :: ix(:), iy(:)
|
|
|
|
complex(psb_dpk_), intent (in) :: x(:), y(:)
|
|
|
|
complex(psb_dpk_), intent (in) :: alpha, beta
|
|
|
|
integer(psb_ipk_), intent(out) :: info
|
|
|
|
end subroutine psb_z_nspaxpby
|
|
|
|
end interface psb_nspaxpby
|
|
|
|
|
|
|
|
interface
|
|
|
|
subroutine symbmm (n, m, l, ia, ja, diaga, &
|
|
|
|
& ib, jb, diagb, ic, jc, diagc, index)
|
|
|
|
import :: psb_ipk_
|
|
|
|
integer(psb_ipk_) :: n,m,l, ia(*), ja(*), diaga, ib(*), jb(*), diagb,&
|
|
|
|
& diagc, index(*)
|
|
|
|
integer(psb_ipk_), allocatable :: ic(:),jc(:)
|
|
|
|
end subroutine symbmm
|
|
|
|
subroutine lsymbmm (n, m, l, ia, ja, diaga, &
|
|
|
|
& ib, jb, diagb, ic, jc, diagc, index)
|
|
|
|
import :: psb_ipk_, psb_lpk_
|
|
|
|
integer(psb_lpk_) :: n,m,l, ia(*), ja(*), diaga, ib(*), jb(*), diagb,&
|
|
|
|
& diagc, index(*)
|
|
|
|
integer(psb_lpk_), allocatable :: ic(:),jc(:)
|
|
|
|
end subroutine lsymbmm
|
|
|
|
end interface
|
|
|
|
|
|
|
|
|
|
|
|
contains
|
|
|
|
|
|
|
|
elemental function psb_snrm1(x) result(res)
|
|
|
|
real(psb_spk_), intent(in) :: x
|
|
|
|
real(psb_spk_) :: res
|
|
|
|
res = abs( x )
|
|
|
|
end function psb_snrm1
|
|
|
|
|
|
|
|
elemental function psb_dnrm1(x) result(res)
|
|
|
|
real(psb_dpk_), intent(in) :: x
|
|
|
|
real(psb_dpk_) :: res
|
|
|
|
res = abs( x )
|
|
|
|
end function psb_dnrm1
|
|
|
|
|
|
|
|
elemental function psb_cnrm1(x) result(res)
|
|
|
|
complex(psb_spk_), intent(in) :: x
|
|
|
|
real(psb_spk_) :: res
|
|
|
|
res = abs( real( x ) ) + abs( aimag( x ) )
|
|
|
|
end function psb_cnrm1
|
|
|
|
|
|
|
|
elemental function psb_znrm1(x) result(res)
|
|
|
|
complex(psb_dpk_), intent(in) :: x
|
|
|
|
real(psb_dpk_) :: res
|
|
|
|
res = abs( real( x ) ) + abs( aimag( x ) )
|
|
|
|
end function psb_znrm1
|
|
|
|
|
|
|
|
elemental function psb_sminreal(x) result(res)
|
|
|
|
real(psb_spk_), intent(in) :: x
|
|
|
|
real(psb_spk_) :: res
|
|
|
|
res = ( x )
|
|
|
|
end function psb_sminreal
|
|
|
|
|
|
|
|
elemental function psb_dminreal(x) result(res)
|
|
|
|
real(psb_dpk_), intent(in) :: x
|
|
|
|
real(psb_dpk_) :: res
|
|
|
|
res = ( x )
|
|
|
|
end function psb_dminreal
|
|
|
|
|
|
|
|
elemental function psb_cminreal(x) result(res)
|
|
|
|
complex(psb_spk_), intent(in) :: x
|
|
|
|
real(psb_spk_) :: res
|
|
|
|
res = min( real( x ) , aimag( x ) )
|
|
|
|
end function psb_cminreal
|
|
|
|
|
|
|
|
elemental function psb_zminreal(x) result(res)
|
|
|
|
complex(psb_dpk_), intent(in) :: x
|
|
|
|
real(psb_dpk_) :: res
|
|
|
|
res = min( real( x ) , aimag( x ) )
|
|
|
|
end function psb_zminreal
|
|
|
|
|
|
|
|
|
|
|
|
subroutine crot( n, cx, incx, cy, incy, c, s )
|
|
|
|
!
|
|
|
|
! -- lapack auxiliary routine (version 3.0) --
|
|
|
|
! univ. of tennessee, univ. of california berkeley, nag ltd.,
|
|
|
|
! courant institute, argonne national lab, and rice university
|
|
|
|
! october 31, 1992
|
|
|
|
!
|
|
|
|
! .. scalar arguments ..
|
|
|
|
integer(psb_mpk_) :: incx, incy, n
|
|
|
|
real(psb_spk_) c
|
|
|
|
complex(psb_spk_) s
|
|
|
|
! ..
|
|
|
|
! .. array arguments ..
|
|
|
|
complex(psb_spk_) cx( * ), cy( * )
|
|
|
|
! ..
|
|
|
|
!
|
|
|
|
! purpose
|
|
|
|
! == = ====
|
|
|
|
!
|
|
|
|
! zrot applies a plane rotation, where the cos (c) is real and the
|
|
|
|
! sin (s) is complex, and the vectors cx and cy are complex.
|
|
|
|
!
|
|
|
|
! arguments
|
|
|
|
! == = ======
|
|
|
|
!
|
|
|
|
! n (input) integer
|
|
|
|
! the number of elements in the vectors cx and cy.
|
|
|
|
!
|
|
|
|
! cx (input/output) complex*16 array, dimension (n)
|
|
|
|
! on input, the vector x.
|
|
|
|
! on output, cx is overwritten with c*x + s*y.
|
|
|
|
!
|
|
|
|
! incx (input) integer
|
|
|
|
! the increment between successive values of cy. incx <> 0.
|
|
|
|
!
|
|
|
|
! cy (input/output) complex*16 array, dimension (n)
|
|
|
|
! on input, the vector y.
|
|
|
|
! on output, cy is overwritten with -conjg(s)*x + c*y.
|
|
|
|
!
|
|
|
|
! incy (input) integer
|
|
|
|
! the increment between successive values of cy. incx <> 0.
|
|
|
|
!
|
|
|
|
! c (input) double precision
|
|
|
|
! s (input) complex*16
|
|
|
|
! c and s define a rotation
|
|
|
|
! [ c s ]
|
|
|
|
! [ -conjg(s) c ]
|
|
|
|
! where c*c + s*conjg(s) = 1.0.
|
|
|
|
!
|
|
|
|
! == = ==================================================================
|
|
|
|
!
|
|
|
|
! .. local scalars ..
|
|
|
|
integer(psb_mpk_) :: i, ix, iy
|
|
|
|
complex(psb_spk_) stemp
|
|
|
|
! ..
|
|
|
|
! .. intrinsic functions ..
|
|
|
|
! ..
|
|
|
|
! .. executable statements ..
|
|
|
|
!
|
|
|
|
if( n <= 0 ) return
|
|
|
|
if( incx == 1 .and. incy == 1 ) then
|
|
|
|
!
|
|
|
|
! code for both increments equal to 1
|
|
|
|
!
|
|
|
|
do i = 1, n
|
|
|
|
stemp = c*cx(i) + s*cy(i)
|
|
|
|
cy(i) = c*cy(i) - conjg(s)*cx(i)
|
|
|
|
cx(i) = stemp
|
|
|
|
end do
|
|
|
|
else
|
|
|
|
!
|
|
|
|
! code for unequal increments or equal increments not equal to 1
|
|
|
|
!
|
|
|
|
ix = 1
|
|
|
|
iy = 1
|
|
|
|
if( incx < 0 )ix = ( -n+1 )*incx + 1
|
|
|
|
if( incy < 0 )iy = ( -n+1 )*incy + 1
|
|
|
|
do i = 1, n
|
|
|
|
stemp = c*cx(ix) + s*cy(iy)
|
|
|
|
cy(iy) = c*cy(iy) - conjg(s)*cx(ix)
|
|
|
|
cx(ix) = stemp
|
|
|
|
ix = ix + incx
|
|
|
|
iy = iy + incy
|
|
|
|
end do
|
|
|
|
end if
|
|
|
|
return
|
|
|
|
end subroutine crot
|
|
|
|
!
|
|
|
|
!
|
|
|
|
subroutine crotg(ca,cb,c,s)
|
|
|
|
complex(psb_spk_) ca,cb,s
|
|
|
|
real(psb_spk_) c
|
|
|
|
real(psb_spk_) norm,scale
|
|
|
|
complex(psb_spk_) alpha
|
|
|
|
!
|
|
|
|
if (cabs(ca) == 0.0) then
|
|
|
|
!
|
|
|
|
c = 0.0d0
|
|
|
|
s = (1.0,0.0)
|
|
|
|
ca = cb
|
|
|
|
return
|
|
|
|
end if
|
|
|
|
!
|
|
|
|
|
|
|
|
scale = cabs(ca) + cabs(cb)
|
|
|
|
norm = scale*sqrt((cabs(ca/cmplx(scale,0.0)))**2 +&
|
|
|
|
& (cabs(cb/cmplx(scale,0.0)))**2)
|
|
|
|
alpha = ca /cabs(ca)
|
|
|
|
c = cabs(ca) / norm
|
|
|
|
s = alpha * conjg(cb) / norm
|
|
|
|
ca = alpha * norm
|
|
|
|
!
|
|
|
|
|
|
|
|
return
|
|
|
|
end subroutine crotg
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
subroutine zrot( n, cx, incx, cy, incy, c, s )
|
|
|
|
!
|
|
|
|
! -- lapack auxiliary routine (version 3.0) --
|
|
|
|
! univ. of tennessee, univ. of california berkeley, nag ltd.,
|
|
|
|
! courant institute, argonne national lab, and rice university
|
|
|
|
! october 31, 1992
|
|
|
|
!
|
|
|
|
! .. scalar arguments ..
|
|
|
|
integer(psb_mpk_) :: incx, incy, n
|
|
|
|
real(psb_dpk_) c
|
|
|
|
complex(psb_dpk_) s
|
|
|
|
! ..
|
|
|
|
! .. array arguments ..
|
|
|
|
complex(psb_dpk_) cx( * ), cy( * )
|
|
|
|
! ..
|
|
|
|
!
|
|
|
|
! purpose
|
|
|
|
! == = ====
|
|
|
|
!
|
|
|
|
! zrot applies a plane rotation, where the cos (c) is real and the
|
|
|
|
! sin (s) is complex, and the vectors cx and cy are complex.
|
|
|
|
!
|
|
|
|
! arguments
|
|
|
|
! == = ======
|
|
|
|
!
|
|
|
|
! n (input) integer
|
|
|
|
! the number of elements in the vectors cx and cy.
|
|
|
|
!
|
|
|
|
! cx (input/output) complex*16 array, dimension (n)
|
|
|
|
! on input, the vector x.
|
|
|
|
! on output, cx is overwritten with c*x + s*y.
|
|
|
|
!
|
|
|
|
! incx (input) integer
|
|
|
|
! the increment between successive values of cy. incx <> 0.
|
|
|
|
!
|
|
|
|
! cy (input/output) complex*16 array, dimension (n)
|
|
|
|
! on input, the vector y.
|
|
|
|
! on output, cy is overwritten with -conjg(s)*x + c*y.
|
|
|
|
!
|
|
|
|
! incy (input) integer
|
|
|
|
! the increment between successive values of cy. incx <> 0.
|
|
|
|
!
|
|
|
|
! c (input) double precision
|
|
|
|
! s (input) complex*16
|
|
|
|
! c and s define a rotation
|
|
|
|
! [ c s ]
|
|
|
|
! [ -conjg(s) c ]
|
|
|
|
! where c*c + s*conjg(s) = 1.0.
|
|
|
|
!
|
|
|
|
! == = ==================================================================
|
|
|
|
!
|
|
|
|
! .. local scalars ..
|
|
|
|
integer(psb_mpk_) :: i, ix, iy
|
|
|
|
complex(psb_dpk_) stemp
|
|
|
|
! ..
|
|
|
|
! .. intrinsic functions ..
|
|
|
|
intrinsic dconjg
|
|
|
|
! ..
|
|
|
|
! .. executable statements ..
|
|
|
|
!
|
|
|
|
if( n <= 0 ) return
|
|
|
|
if( incx == 1 .and. incy == 1 ) then
|
|
|
|
!
|
|
|
|
! code for both increments equal to 1
|
|
|
|
!
|
|
|
|
do i = 1, n
|
|
|
|
stemp = c*cx(i) + s*cy(i)
|
|
|
|
cy(i) = c*cy(i) - dconjg(s)*cx(i)
|
|
|
|
cx(i) = stemp
|
|
|
|
end do
|
|
|
|
else
|
|
|
|
!
|
|
|
|
! code for unequal increments or equal increments not equal to 1
|
|
|
|
!
|
|
|
|
ix = 1
|
|
|
|
iy = 1
|
|
|
|
if( incx < 0 )ix = ( -n+1 )*incx + 1
|
|
|
|
if( incy < 0 )iy = ( -n+1 )*incy + 1
|
|
|
|
do i = 1, n
|
|
|
|
stemp = c*cx(ix) + s*cy(iy)
|
|
|
|
cy(iy) = c*cy(iy) - dconjg(s)*cx(ix)
|
|
|
|
cx(ix) = stemp
|
|
|
|
ix = ix + incx
|
|
|
|
iy = iy + incy
|
|
|
|
end do
|
|
|
|
end if
|
|
|
|
return
|
|
|
|
end subroutine zrot
|
|
|
|
!
|
|
|
|
!
|
|
|
|
subroutine zrotg(ca,cb,c,s)
|
|
|
|
complex(psb_dpk_) ca,cb,s
|
|
|
|
real(psb_dpk_) c
|
|
|
|
real(psb_dpk_) norm,scale
|
|
|
|
complex(psb_dpk_) alpha
|
|
|
|
!
|
|
|
|
if (cdabs(ca) == 0.0d0) then
|
|
|
|
!
|
|
|
|
c = 0.0d0
|
|
|
|
s = (1.0d0,0.0d0)
|
|
|
|
ca = cb
|
|
|
|
return
|
|
|
|
end if
|
|
|
|
!
|
|
|
|
|
|
|
|
scale = cdabs(ca) + cdabs(cb)
|
|
|
|
norm = scale*dsqrt((cdabs(ca/cmplx(scale,0.0d0,kind=psb_dpk_)))**2 +&
|
|
|
|
& (cdabs(cb/cmplx(scale,0.0d0,kind=psb_dpk_)))**2)
|
|
|
|
alpha = ca /cdabs(ca)
|
|
|
|
c = cdabs(ca) / norm
|
|
|
|
s = alpha * conjg(cb) / norm
|
|
|
|
ca = alpha * norm
|
|
|
|
!
|
|
|
|
|
|
|
|
return
|
|
|
|
end subroutine zrotg
|
|
|
|
|
|
|
|
|
|
|
|
end module psb_serial_mod
|