psblas3/base/serial/csr/dcsrmv3.f

529 lines
21 KiB
FortranFixed

C
C Parallel Sparse BLAS v2.0
C (C) Copyright 2006 Salvatore Filippone University of Rome Tor Vergata
C Alfredo Buttari University of Rome Tor Vergata
C
C Redistribution and use in source and binary forms, with or without
C modification, are permitted provided that the following conditions
C are met:
C 1. Redistributions of source code must retain the above copyright
C notice, this list of conditions and the following disclaimer.
C 2. Redistributions in binary form must reproduce the above copyright
C notice, this list of conditions, and the following disclaimer in the
C documentation and/or other materials provided with the distribution.
C 3. The name of the PSBLAS group or the names of its contributors may
C not be used to endorse or promote products derived from this
C software without specific written permission.
C
C THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
C ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
C TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
C PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE PSBLAS GROUP OR ITS CONTRIBUTORS
C BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
C CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
C SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
C INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
C CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
C ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
C POSSIBILITY OF SUCH DAMAGE.
C
C
***********************************************************************
* DSRMV modified for SPARKER
* *
* FUNCTION: Driver for routines performing one of the sparse *
* matrix vector operations *
* *
* y = alpha*op(A)*x + beta*y *
* *
* where op(A) is one of: *
* *
* op(A) = A or op(A) = A' or *
* op(A) = lower or upper part of A *
* *
* alpha and beta are scalars. *
* The data structure of the matrix is related *
* to the scalar computer. *
* This is an internal routine called by: *
* DSMMV *
* *
* ENTRY-POINT = DSRMV *
* INPUT = *
* *
* *
* SYMBOLIC NAME: TRANS *
* POSITION: PARAMETER NO 1. *
* ATTRIBUTES: CHARACTER*1 *
* VALUES: 'N' 'T' 'L' 'U' *
* DESCRIPTION: Specifies the form of op(A) to be used in the *
* matrix vector multiplications as follows: *
* *
* TRANS = 'N' , op( A ) = A. *
* *
* TRANS = 'T' , op( A ) = A'. *
* *
* TRANS = 'L' or 'U', op( A ) = lower or *
* upper part of A *
* *
* SYMBOLIC NAME: DIAG *
* POSITION: PARAMETER NO 2. *
* ATTRIBUTES: CHARACTER*1 *
* VALUES: 'N' 'U' *
* DESCRIPTION: *
* Specifies whether or not the matrix A has *
* unit diagonal as follows: *
* *
* DIAG = 'N' A is not assumed *
* to have unit diagonal *
* *
* DIAG = 'U' A is assumed *
* to have unit diagonal. *
* *
* WARNING: it is the caller's responsibility *
* to ensure that if the matrix has unit *
* diagonal, there are no elements of the *
* diagonal are stored in the arrays AS and JA. *
* *
* SYMBOLIC NAME: M *
* POSITION: PARAMETER NO 3. *
* ATTRIBUTES: INTEGER*4. *
* VALUES: M >= 0 *
* DESCRIPTION: Number of rows of the matrix op(A). *
* *
* SYMBOLIC NAME: N *
* POSITION: PARAMETER NO 4. *
* ATTRIBUTES: INTEGER*4. *
* VALUES: N >= 0 *
* DESCRIPTION: Number of columns of the matrix op(A) *
* *
* SYMBOLIC NAME: ALPHA *
* POSITION: PARAMETER NO 5. *
* ATTRIBUTES: REAL*8. *
* VALUES: any. *
* DESCRIPTION: Specifies the scalar alpha. *
* *
* *
* SYMBOLIC NAME: AS *
* POSITION: PARAMETER NO 6. *
* ATTRIBUTES: REAL*8: ARRAY(IA(M+1)-1) *
* VALUES: ANY *
* DESCRIPTION: Array containing the non zero coefficients of *
* the sparse matrix op(A). *
* *
* SYMBOLIC NAME: JA *
* POSITION: PARAMETER NO 7. *
* ATTRIBUTES: INTEGER*4: ARRAY(IA(M+1)-1) *
* VALUES: 0 < JA(I) <= M *
* DESCRIPTION: Array containing the column number of the *
* nonzero coefficients stored in array AS. *
* *
* SYMBOLIC NAME: IA *
* POSITION: PARAMETER NO 8. *
* ATTRIBUTES: INTEGER*4: ARRAY(*) *
* VALUES: IA(I) > 0 *
* DESCRIPTION: Contains the pointers for the beginning of *
* each rows. *
* *
* *
* SYMBOLIC NAME: X *
* POSITION: PARAMETER NO 9. *
* ATTRIBUTES: REAL*8 ARRAY(N) (or ARRAY(M) when op(A) = A') *
* VALUES: any. *
* DESCRIPTION: Contains the values of the vector to be *
* multiplied by the matrix A. *
* *
* SYMBOLIC NAME: BETA *
* POSITION: PARAMETER NO 10. *
* ATTRIBUTES: REAL*8. *
* VALUES: any. *
* DESCRIPTION: Specifies the scalar beta. *
* *
* SYMBOLIC NAME: Y *
* POSITION: PARAMETER NO 11. *
* ATTRIBUTES: REAL*8 ARRAY(M) (or ARRAY(N) when op(A) = A') *
* VALUES: any. *
* DESCRIPTION: Contains the values of the vector to be *
* updated by the matrix-vector multiplication. *
* *
* SYMBOLIC NAME: WORK *
* POSITION: PARAMETER NO 12. *
* ATTRIBUTES: REAL*8 ARRAY(M) (or ARRAY(N) when op(A) = A') *
* VALUES: any. *
* DESCRIPTION: Work area available to the program. It is used *
* only when TRANS = 'T'. *
* *
* OUTPUT = *
* *
* *
* SYMBOLIC NAME: Y *
* POSITION: PARAMETER NO 11. *
* ATTRIBUTES: REAL*8 ARRAY(M) (or ARRAY(N) when op(A) = A') *
* VALUES: any. *
* DESCRIPTION: Contains the values of the vector *
* updated by the matrix-vector multiplication. *
* *
* *
***********************************************************************
SUBROUTINE DCSRMV3(TRANS,DIAG,M,N,ALPHA,AS,JA,IA,X,LDX,
+ BETA,Y,LDY, WORK,LWORK,IERROR)
integer nb
parameter (nb=3)
C .. Parameters ..
DOUBLE PRECISION ONE, ZERO
PARAMETER (ONE=1.0D0,ZERO=0.0D0)
C .. Scalar Arguments ..
DOUBLE PRECISION ALPHA, BETA
INTEGER M, N,LWORK,IERROR,ldx,ldy
CHARACTER DIAG, TRANS
C .. Array Arguments ..
DOUBLE PRECISION AS(*), WORK(*), X(LDX,NB), Y(LDY,NB)
INTEGER IA(*), JA(*)
C .. Local Scalars ..
DOUBLE PRECISION ACC(nb)
INTEGER I, J, K, NCOLA, NROWA
LOGICAL SYM, TRA, UNI
C .. Executable Statements ..
C
IERROR = 0
UNI = (DIAG.EQ.'U')
TRA = (TRANS.EQ.'T')
C Symmetric matrix upper or lower
SYM = ((TRANS.EQ.'L').OR.(TRANS.EQ.'U'))
C
if ( .not. tra) then
nrowa = m
ncola = n
else if (tra) then
nrowa = n
ncola = m
end if !(....tra)
if (alpha.eq.zero) then
if (beta.eq.zero) then
do i = 1, m
y(i,1:nb) = zero
enddo
else
do 20 i = 1, m
y(i,1:nb) = beta*y(i,1:nb)
20 continue
endif
return
end if
c
if (sym) then
if (uni) then
c
c ......Symmetric with unitary diagonal.......
C ....OK!!
C To be optimized
if (beta.ne.zero) then
do i = 1, m
C
C Product for diagonal elements
c
y(i,1:nb) = beta*y(i,1:nb) + alpha*x(i,1:nb)
enddo
else
do i = 1, m
y(i,1:nb) = alpha*x(i,1:nb)
enddo
endif
C Product for other elements
do 80 i = 1, m
acc = zero
do 60 j = ia(i), ia(i+1) - 1
k = ja(j)
y(k,1:nb) = y(k,1:nb) + alpha*as(j)*x(i,1:nb)
acc(1:nb) = acc(1:nb) + as(j)*x(k,1:nb)
60 continue
y(i,1:nb) = y(i,1:nb) + alpha*acc(1:nb)
80 continue
C
else if ( .not. uni) then
C
C Check if matrix is lower or upper
C
if (trans.eq.'L') then
C
C LOWER CASE: diagonal element is the last element of row
C ....OK!
if (beta.ne.zero) then
do 100 i = 1, m
y(i,1:nb) = beta*y(i,1:nb)
100 continue
else
do i = 1, m
y(i,1:nb) = zero
enddo
endif
do 140 i = 1, m
acc = zero
do 120 j = ia(i), ia(i+1) - 1 ! it was -2
K = ja(j)
C
C To be optimized
C
if (k.ne.i) then !for symmetric element
y(k,1:nb) = y(k,1:nb) + alpha*as(j)*x(i,1:nb)
endif
acc(1:nb) = acc(1:nb) + as(j)*x(k,1:nb)
120 continue
y(i,1:nb) = y(i,1:nb) + alpha*acc(1:nb)
140 continue
else ! ....Trans<>L
C
C UPPER CASE
C ....OK!!
C
if (beta.ne.zero) then
do 160 i = 1, m
y(i,1:nb) = beta*y(i,1:nb)
160 continue
else
do i = 1, m
y(i,1:nb) = zero
enddo
endif
do 200 i = 1, m
acc = zero
do 180 j = ia(i) , ia(i+1) - 1 ! removed +1
k = ja(j)
C
C To be optimized
C
if (k.ne.i) then
y(k,1:nb) = y(k,1:nb) + alpha*as(j)*x(i,1:nb)
endif
acc(1:nb) = acc(1:nb) + as(j)*x(k,1:nb)
180 continue
y(i,1:nb) = y(i,1:nb) + alpha*acc(1:nb)
200 continue
end if ! ......TRANS=='L'
end if ! ......Not UNI
c
else if ( .not. tra) then !......NOT SYM
if ( .not. uni) then
C
C .......General Not Unit, No Traspose
C
if (beta == zero) then
if (alpha==one) then
do i = 1, m
acc = zero
do j = ia(i), ia(i+1) - 1
acc = acc + as(j)*x(ja(j),1:nb)
enddo
y(i,1:nb) = acc
enddo
else if (alpha==-one) then
do i = 1, m
acc = zero
do j = ia(i), ia(i+1) - 1
acc = acc - as(j)*x(ja(j),1:nb)
enddo
y(i,1:nb) = acc
enddo
else
do i = 1, m
acc = zero
do j = ia(i), ia(i+1) - 1
acc = acc + as(j)*x(ja(j),1:nb)
enddo
y(i,1:nb) = alpha*acc
enddo
endif
else if (beta==one) then
if (alpha==one) then
do i = 1, m
acc = y(i,1:nb)
do j = ia(i), ia(i+1) - 1
acc = acc + as(j)*x(ja(j),1:nb)
enddo
y(i,1:nb) = acc
enddo
else if (alpha==-one) then
do i = 1, m
acc = y(i,1:nb)
do j = ia(i), ia(i+1) - 1
acc = acc - as(j)*x(ja(j),1:nb)
enddo
y(i,1:nb) = acc
enddo
else
do i = 1, m
acc = zero
do j = ia(i), ia(i+1) - 1
acc = acc + as(j)*x(ja(j),1:nb)
enddo
y(i,1:nb) = alpha*acc + y(i,1:nb)
enddo
endif
else if (beta==-one) then
if (alpha==one) then
do i = 1, m
acc = -y(i,1:nb)
do j = ia(i), ia(i+1) - 1
acc = acc + as(j)*x(ja(j),1:nb)
enddo
y(i,1:nb) = acc
enddo
else if (alpha==-one) then
do i = 1, m
acc = -y(i,1:nb)
do j = ia(i), ia(i+1) - 1
acc = acc - as(j)*x(ja(j),1:nb)
enddo
y(i,1:nb) = acc
enddo
else
do i = 1, m
acc = zero
do j = ia(i), ia(i+1) - 1
acc = acc + as(j)*x(ja(j),1:nb)
enddo
y(i,1:nb) = alpha*acc - y(i,1:nb)
enddo
endif
else
if (alpha==one) then
do i = 1, m
acc = zero
do j = ia(i), ia(i+1) - 1
acc = acc + as(j)*x(ja(j),1:nb)
enddo
y(i,1:nb) = acc + beta*y(i,1:nb)
enddo
else if (alpha==-one) then
do i = 1, m
acc = zero
do j = ia(i), ia(i+1) - 1
acc = acc - as(j)*x(ja(j),1:nb)
enddo
y(i,1:nb) = acc + beta*y(i,1:nb)
enddo
else
do i = 1, m
acc = zero
do j = ia(i), ia(i+1) - 1
acc = acc + as(j)*x(ja(j),1:nb)
enddo
y(i,1:nb) = alpha*acc + beta*y(i,1:nb)
enddo
endif
end if
c
else if (uni) then
c
if (beta.ne.zero) then
do 280 i = 1, m
acc(1:nb) = zero
do 260 j = ia(i), ia(i+1) - 1
acc(1:nb) = acc(1:nb) + as(j)*x(ja(j),1:nb)
260 continue
y(i,1:nb) = alpha*(acc(1:nb)+x(i,1:nb)) + beta*y(i,1:nb)
280 continue
else !(beta.eq.zero)
do i = 1, m
acc(1:nb) = zero
do j = ia(i), ia(i+1) - 1
acc(1:nb) = acc(1:nb) + as(j)*x(ja(j),1:nb)
enddo
y(i,1:nb) = alpha*(acc(1:nb)+x(i,1:nb))
enddo
endif
end if !....End Testing on UNI
C
else if (tra) then !....Else on SYM (swapped M and N)
C
if ( .not. uni) then
c
if (beta.ne.zero) then
do 300 i = 1, m
y(i,1:nb) = beta*y(i,1:nb)
300 continue
else !(BETA.EQ.ZERO)
do i = 1, m
y(i,1:nb) = zero
enddo
endif
c
else if (uni) then
c
if (beta.ne.zero) then
do 320 i = 1, m
y(i,1:nb) = beta*y(i,1:nb) + alpha*x(i,1:nb)
320 continue
else !(BETA.EQ.ZERO)
do i = 1, m
y(i,1:nb) = alpha*x(i,1:nb)
enddo
endif
c
end if !....UNI
C
if (alpha.eq.one) then
c
do 360 i = 1, n
do 340 j = ia(i), ia(i+1) - 1
k = ja(j)
y(k,1:nb) = y(k,1:nb) + as(j)*x(i,1:nb)
340 continue
360 continue
c
else if (alpha.eq.-one) then
c
do 400 i = 1, n
do 380 j = ia(i), ia(i+1) - 1
k = ja(j)
y(k,1:nb) = y(k,1:nb) - as(j)*x(i,1:nb)
380 continue
400 continue
c
else !.....Else on TRA
C
C This work array is used for efficiency
C
if (lwork.lt.n) then
ierror = 60
work(1) = dble(n)
return
endif
c$$$ do 420 i = 1, n
c$$$ work(i) = alpha*x(i,1:4)
c$$$ 420 continue
c$$$C
c$$$ DO 460 I = 1, n
c$$$ DO 440 J = IA(I), IA(I+1) - 1
c$$$ K = JA(J)
c$$$ Y(K) = Y(K) + AS(J)*WORK(I)
c$$$ 440 CONTINUE
c$$$ 460 CONTINUE
c
end if !.....end testing on alpha
end if !.....end testing on sym
c
return
c
c end of dsrmv
c
end