New GPS handling.
parent
49f49ba419
commit
4536e66167
@ -0,0 +1,756 @@
|
||||
!!$
|
||||
!!$ Parallel Sparse BLAS v2.0
|
||||
!!$ (C) Copyright 2006 Salvatore Filippone University of Rome Tor Vergata
|
||||
!!$ Alfredo Buttari University of Rome Tor Vergata
|
||||
!!$
|
||||
!!$ Redistribution and use in source and binary forms, with or without
|
||||
!!$ modification, are permitted provided that the following conditions
|
||||
!!$ are met:
|
||||
!!$ 1. Redistributions of source code must retain the above copyright
|
||||
!!$ notice, this list of conditions and the following disclaimer.
|
||||
!!$ 2. Redistributions in binary form must reproduce the above copyright
|
||||
!!$ notice, this list of conditions, and the following disclaimer in the
|
||||
!!$ documentation and/or other materials provided with the distribution.
|
||||
!!$ 3. The name of the PSBLAS group or the names of its contributors may
|
||||
!!$ not be used to endorse or promote products derived from this
|
||||
!!$ software without specific written permission.
|
||||
!!$
|
||||
!!$ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
!!$ ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
||||
!!$ TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
||||
!!$ PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE PSBLAS GROUP OR ITS CONTRIBUTORS
|
||||
!!$ BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
||||
!!$ CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
||||
!!$ SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
||||
!!$ INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
||||
!!$ CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
||||
!!$ ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||||
!!$ POSSIBILITY OF SUCH DAMAGE.
|
||||
!!$
|
||||
!!$
|
||||
! Author: Gibbs-Poole-Stockmeyer (revised by Stefano Toninel)
|
||||
!
|
||||
! Routines for Gibbs-Poole-Stockmeyer matrix bandwidth and profile reduction.
|
||||
! Originally released in ACM-TOMS no. 508 written in Fortran77.
|
||||
! Now revised and ported to Fortran90.
|
||||
! Further revised and ported into the PSBLAS environment.
|
||||
!
|
||||
module psb_gps_mod
|
||||
use psb_realloc_mod
|
||||
!
|
||||
public psb_gps_reduce
|
||||
!
|
||||
! COMMON /GRA/ N, IDPTH, IDEG
|
||||
!
|
||||
private
|
||||
! common /CC/ XCC,SIZEG,STPT
|
||||
INTEGER, save :: xcc,n,idpth,ideg
|
||||
INTEGER,allocatable,SAVE ::SIZEG(:),STPT(:)
|
||||
!
|
||||
! COMMON /LVLW/ NHIGH,NLOW,NACUM
|
||||
INTEGER,allocatable,target,save :: NHIGH(:),NLOW(:),NACUM(:),AUX(:)
|
||||
INTEGER,PARAMETER :: INIT=500
|
||||
!
|
||||
CONTAINS
|
||||
!
|
||||
SUBROUTINE psb_gps_reduce(NDSTK, NR, IOLD, RENUM, NDEG, LVL, LVLS1, LVLS2,&
|
||||
& CCSTOR, IBW2, IPF2,NE,IDPTHE,IDEGE)
|
||||
! SUBROUTINE REDUCE DETERMINES A ROW AND COLUMN PERMUTATION WHICH,
|
||||
! WHEN APPLIED TO A GIVEN SPARSE MATRIX, PRODUCES A PERMUTED
|
||||
! MATRIX WITH A SMALLER BANDWIDTH AND PROFILE.
|
||||
! THE INPUT ARRAY IS A CONNECTION TABLE WHICH REPRESENTS THE
|
||||
! INDICES OF THE NONZERO ELEMENTS OF THE MATRIX, A. THE ALGO-
|
||||
! RITHM IS DESCRIBED IN TERMS OF THE ADJACENCY GRAPH WHICH
|
||||
! HAS THE CHARACTERISTIC THAT THERE IS AN EDGE (CONNECTION)
|
||||
! BETWEEN NODES I AND J IF A(I,J) .NE. 0 AND I .NE. J.
|
||||
! DIMENSIONING INFORMATION--THE FOLLOWING INTEGER ARRAYS MUST BE
|
||||
! DIMENSIONED IN THE CALLING ROUTINE.
|
||||
! NDSTK(NR,D1) D1 IS .GE. MAXIMUM DEGREE OF ALL NODES.
|
||||
! IOLD(D2) D2 AND NR ARE .GE. THE TOTAL NUMBER OF
|
||||
! RENUM(D2+1) NODES IN THE GRAPH.
|
||||
! NDEG(D2) STORAGE REQUIREMENTS CAN BE SIGNIFICANTLY
|
||||
! LVL(D2) DECREASED FOR IBM 360 AND 370 COMPUTERS
|
||||
! LVLS1(D2) BY REPLACING INTEGER NDSTK BY
|
||||
! LVLS2(D2) INTEGER*2 NDSTK IN SUBROUTINES REDUCE,
|
||||
! CCSTOR(D2) DGREE, FNDIAM, TREE AND NUMBER.
|
||||
! COMMON INFORMATION--THE FOLLOWING COMMON BLOCK MUST BE IN THE
|
||||
! CALLING ROUTINE.
|
||||
! COMMON/GRA/N,IDPTH,IDEG
|
||||
! EXPLANATION OF INPUT VARIABLES--
|
||||
! NDSTK- CONNECTION TABLE REPRESENTING GRAPH.
|
||||
! NDSTK(I,J)=NODE NUMBER OF JTH CONNECTION TO NODE
|
||||
! NUMBER I. A CONNECTION OF A NODE TO ITSELF IS NOT
|
||||
! LISTED. EXTRA POSITIONS MUST HAVE ZERO FILL.
|
||||
! NR- ROW DIMENSION ASSIGNED NDSTK IN CALLING PROGRAM.
|
||||
! IOLD(I)- NUMBERING OF ITH NODE UPON INPUT.
|
||||
! IF NO NUMBERING EXISTS THEN IOLD(I)=I.
|
||||
! N- NUMBER OF NODES IN GRAPH (EQUAL TO ORDER OF MATRIX).
|
||||
! IDEG- MAXIMUM DEGREE OF ANY NODE IN THE GRAPH.
|
||||
! EXPLANATION OF OUTPUT VARIABLES--
|
||||
! RENUM(I)- THE NEW NUMBER FOR THE ITH NODE.
|
||||
! NDEG(I)- THE DEGREE OF THE ITH NODE.
|
||||
! IBW2- THE BANDWIDTH AFTER RENUMBERING.
|
||||
! IPF2- THE PROFILE AFTER RENUMBERING.
|
||||
! IDPTH- NUMBER OF LEVELS IN REDUCE LEVEL STRUCTURE.
|
||||
! THE FOLLOWING ONLY HAVE MEANING IF THE GRAPH WAS CONNECTED--
|
||||
! LVL(I)- INDEX INTO LVLS1 TO THE FIRST NODE IN LEVEL I.
|
||||
! LVL(I+1)-LVL(I)= NUMBER OF NODES IN ITH LEVEL
|
||||
! LVLS1- NODE NUMBERS LISTED BY LEVEL.
|
||||
! LVLS2(I)- THE LEVEL ASSIGNED TO NODE I BY REDUCE.
|
||||
! WORKING STORAGE VARIABLE--
|
||||
! CCSTOR
|
||||
! LOCAL STORAGE--
|
||||
! COMMON/CC/-SUBROUTINES REDUCE, SORT2 AND PIKLVL ASSUME THAT
|
||||
! THE GRAPH HAS AT MOST 50 CONNECTED COMPONENTS.
|
||||
! SUBROUTINE FNDIAM ASSUMES THAT THERE ARE AT MOST
|
||||
! 100 NODES IN THE LAST LEVEL.
|
||||
! COMMON/LVLW/-SUBROUTINES SETUP AND PIKLVL ASSUME THAT THERE
|
||||
! ARE AT MOST 100 LEVELS.
|
||||
! USE INTEGER*2 NDSTK WITH AN IBM 360 OR 370.
|
||||
INTEGER NDSTK
|
||||
INTEGER STNODE, RVNODE, RENUM, STNUM, CCSTOR, SBNUM
|
||||
! COMMON /GRA/ N, IDPTH, IDEG
|
||||
! IT IS ASSUMED THAT THE GRAPH HAS AT MOST 50 CONNECTED COMPONENTS.
|
||||
! COMMON /CC/ XCC, SIZEG(50), STPT(50)
|
||||
! COMMON /LVLW/ NHIGH(100), NLOW(100), NACUM(100)
|
||||
DIMENSION CCSTOR(1), IOLD(NE)
|
||||
DIMENSION NDSTK(NR,IDEGE), LVL(NE), LVLS1(1), LVLS2(1), RENUM(NE+1), NDEG(NE)
|
||||
|
||||
n = ne
|
||||
ideg = idege
|
||||
idpth = 0
|
||||
|
||||
ALLOCATE(SIZEG(NR),STPT(NR), STAT=INFO)
|
||||
IF(INFO /= 0) THEN
|
||||
WRITE(*,*) 'ERROR! MEMORY ALLOCATION # 1 FAILED IN GPS'
|
||||
STOP
|
||||
END IF
|
||||
!
|
||||
ALLOCATE(NHIGH(INIT), NLOW(INIT), NACUM(INIT), AUX(INIT), STAT=INFO)
|
||||
IF(INFO /= 0) THEN
|
||||
WRITE(*,*) 'ERROR! MEMORY ALLOCATION # 2 FAILED IN GPS'
|
||||
STOP
|
||||
END IF
|
||||
!
|
||||
IBW2 = 0
|
||||
IPF2 = 0
|
||||
! SET RENUM(I)=0 FOR ALL I TO INDICATE NODE I IS UNNUMBERED
|
||||
DO I=1,N
|
||||
RENUM(I) = 0
|
||||
END DO
|
||||
! COMPUTE DEGREE OF EACH NODE AND ORIGINAL BANDWIDTH AND PROFILE
|
||||
CALL DGREE(NDSTK, NR, NDEG, IOLD, IBW1, IPF1)
|
||||
! SBNUM= LOW END OF AVAILABLE NUMBERS FOR RENUMBERING
|
||||
! STNUM= HIGH END OF AVAILABLE NUMBERS FOR RENUMBERING
|
||||
SBNUM = 1
|
||||
STNUM = N
|
||||
! NUMBER THE NODES OF DEGREE ZERO
|
||||
DO I=1,N
|
||||
IF (NDEG(I).GT.0) CYCLE
|
||||
RENUM(I) = STNUM
|
||||
STNUM = STNUM - 1
|
||||
END DO
|
||||
! FIND AN UNNUMBERED NODE OF MIN DEGREE TO START ON
|
||||
do
|
||||
LOWDG = IDEG + 1
|
||||
NFLG = 1
|
||||
ISDIR = 1
|
||||
DO I=1,N
|
||||
IF (NDEG(I).GE.LOWDG) CYCLE
|
||||
IF (RENUM(I).GT.0) CYCLE
|
||||
LOWDG = NDEG(I)
|
||||
STNODE = I
|
||||
END DO
|
||||
! FIND PSEUDO-DIAMETER AND ASSOCIATED LEVEL STRUCTURES.
|
||||
! STNODE AND RVNODE ARE THE ENDS OF THE DIAM AND LVLS1 AND LVLS2
|
||||
! ARE THE RESPECTIVE LEVEL STRUCTURES.
|
||||
CALL FNDIAM(STNODE, RVNODE, NDSTK, NR, NDEG, LVL, LVLS1,LVLS2, CCSTOR, IDFLT)
|
||||
IF (.not.(ndeg(stnode).le.ndeg(rvnode))) then
|
||||
! NFLG INDICATES THE END TO BEGIN NUMBERING ON
|
||||
NFLG = -1
|
||||
STNODE = RVNODE
|
||||
endif
|
||||
CALL SETUP(LVL, LVLS1, LVLS2)
|
||||
! FIND ALL THE CONNECTED COMPONENTS (XCC COUNTS THEM)
|
||||
XCC = 0
|
||||
LROOT = 1
|
||||
LVLN = 1
|
||||
DO I=1,N
|
||||
IF (LVL(I).NE.0) CYCLE
|
||||
XCC = XCC + 1
|
||||
STPT(XCC) = LROOT
|
||||
CALL TREE(I, NDSTK, NR, LVL, CCSTOR, NDEG, LVLWTH, LVLBOT,LVLN, MAXLW, N)
|
||||
SIZEG(XCC) = LVLBOT + LVLWTH - LROOT
|
||||
LROOT = LVLBOT + LVLWTH
|
||||
LVLN = LROOT
|
||||
END DO
|
||||
if (sort2() /= 0) then
|
||||
CALL PIKLVL(LVLS1, LVLS2, CCSTOR, IDFLT, ISDIR)
|
||||
endif
|
||||
! ON RETURN FROM PIKLVL, ISDIR INDICATES THE DIRECTION THE LARGEST
|
||||
! COMPONENT FELL. ISDIR IS MODIFIED NOW TO INDICATE THE NUMBERING
|
||||
! DIRECTION. NUM IS SET TO THE PROPER VALUE FOR THIS DIRECTION.
|
||||
ISDIR = ISDIR*NFLG
|
||||
NUM = SBNUM
|
||||
IF (ISDIR.LT.0) NUM = STNUM
|
||||
CALL NUMBER(STNODE, NUM, NDSTK, LVLS2, NDEG, RENUM, LVLS1,LVL,&
|
||||
& NR, NFLG, IBW2, IPF2, CCSTOR, ISDIR)
|
||||
! UPDATE STNUM OR SBNUM AFTER NUMBERING
|
||||
IF (ISDIR.LT.0) STNUM = NUM
|
||||
IF (ISDIR.GT.0) SBNUM = NUM
|
||||
IF (.not.(sbnum.le.stnum)) exit
|
||||
end do
|
||||
IF (IBW2 > IBW1) then
|
||||
! IF ORIGINAL NUMBERING IS BETTER THAN NEW ONE, SET UP TO RETURN IT
|
||||
DO I=1,N
|
||||
RENUM(I) = IOLD(I)
|
||||
END DO
|
||||
IBW2 = IBW1
|
||||
IPF2 = IPF1
|
||||
!
|
||||
endif
|
||||
DEALLOCATE(SIZEG,STPT,NHIGH,NLOW,AUX,NACUM)
|
||||
idpthe = idpth
|
||||
RETURN
|
||||
END SUBROUTINE PSB_GPS_REDUCE
|
||||
!
|
||||
SUBROUTINE DGREE(NDSTK, NR, NDEG, IOLD, IBW1, IPF1)
|
||||
! DGREE COMPUTES THE DEGREE OF EACH NODE IN NDSTK AND STORES
|
||||
! IT IN THE ARRAY NDEG. THE BANDWIDTH AND PROFILE FOR THE ORIGINAL
|
||||
! OR INPUT RENUMBERING OF THE GRAPH IS COMPUTED ALSO.
|
||||
! USE INTEGER*2 NDSTK WITH AN IBM 360 OR 370.
|
||||
INTEGER NDSTK
|
||||
! COMMON /GRA/ N, IDPTH, IDEG
|
||||
DIMENSION NDSTK(NR,IDEG), NDEG(N), IOLD(N)
|
||||
|
||||
IBW1 = 0
|
||||
IPF1 = 0
|
||||
DO I=1,N
|
||||
NDEG(I) = 0
|
||||
IRW = 0
|
||||
DO J=1,IDEG
|
||||
ITST = NDSTK(I,J)
|
||||
IF(ITST <= 0) EXIT
|
||||
NDEG(I) = NDEG(I) + 1
|
||||
IDIF = IOLD(I) - IOLD(ITST)
|
||||
IF (IRW.LT.IDIF) IRW = IDIF
|
||||
END DO
|
||||
IPF1 = IPF1 + IRW
|
||||
IF (IRW.GT.IBW1) IBW1 = IRW
|
||||
END DO
|
||||
RETURN
|
||||
END SUBROUTINE DGREE
|
||||
!
|
||||
SUBROUTINE FNDIAM(SND1, SND2, NDSTK, NR, NDEG, LVL, LVLS1,LVLS2, IWK, IDFLT)
|
||||
! FNDIAM IS THE CONTROL PROCEDURE FOR FINDING THE PSEUDO-DIAMETER OF
|
||||
! NDSTK AS WELL AS THE LEVEL STRUCTURE FROM EACH END
|
||||
! SND1- ON INPUT THIS IS THE NODE NUMBER OF THE FIRST
|
||||
! ATTEMPT AT FINDING A DIAMETER. ON OUTPUT IT
|
||||
! CONTAINS THE ACTUAL NUMBER USED.
|
||||
! SND2- ON OUTPUT CONTAINS OTHER END OF DIAMETER
|
||||
! LVLS1- ARRAY CONTAINING LEVEL STRUCTURE WITH SND1 AS ROOT
|
||||
! LVLS2- ARRAY CONTAINING LEVEL STRUCTURE WITH SND2 AS ROOT
|
||||
! IDFLT- FLAG USED IN PICKING FINAL LEVEL STRUCTURE, SET
|
||||
! =1 IF WIDTH OF LVLS1 .LE. WIDTH OF LVLS2, OTHERWISE =2
|
||||
! LVL,IWK- WORKING STORAGE
|
||||
! USE INTEGER*2 NDSTK WITH AN IBM 360 OR 370.
|
||||
INTEGER NDSTK
|
||||
INTEGER FLAG, SND, SND1, SND2
|
||||
! COMMON /GRA/ N, IDPTH, IDEG
|
||||
! IT IS ASSUMED THAT THE LAST LEVEL HAS AT MOST 100 NODES.
|
||||
! COMMON /CC/ NDLST(100)
|
||||
INTEGER,POINTER :: NDLST(:)
|
||||
DIMENSION NDSTK(NR,IDEG), NDEG(1), LVL(N), LVLS1(N), LVLS2(N),IWK(N)
|
||||
!
|
||||
NDLST => AUX
|
||||
!
|
||||
FLAG = 0
|
||||
MTW2 = N
|
||||
SND = SND1
|
||||
! ZERO LVL TO INDICATE ALL NODES ARE AVAILABLE TO TREE
|
||||
10 DO 20 I=1,N
|
||||
LVL(I) = 0
|
||||
20 END DO
|
||||
LVLN = 1
|
||||
! DROP A TREE FROM SND
|
||||
CALL TREE(SND, NDSTK, NR, LVL, IWK, NDEG, LVLWTH, LVLBOT,LVLN, MAXLW, MTW2)
|
||||
IF (FLAG.GE.1) GO TO 50
|
||||
FLAG = 1
|
||||
30 IDPTH = LVLN - 1
|
||||
MTW1 = MAXLW
|
||||
! COPY LEVEL STRUCTURE INTO LVLS1
|
||||
DO 40 I=1,N
|
||||
LVLS1(I) = LVL(I)
|
||||
40 END DO
|
||||
NDXN = 1
|
||||
NDXL = 0
|
||||
MTW2 = N
|
||||
! SORT LAST LEVEL BY DEGREE AND STORE IN NDLST
|
||||
CALL SORTDG(NDLST, IWK(LVLBOT), NDXL, LVLWTH, NDEG)
|
||||
SND = NDLST(1)
|
||||
GO TO 10
|
||||
50 IF (IDPTH.GE.LVLN-1) GO TO 60
|
||||
! START AGAIN WITH NEW STARTING NODE
|
||||
SND1 = SND
|
||||
GO TO 30
|
||||
60 IF (MAXLW.GE.MTW2) GO TO 80
|
||||
MTW2 = MAXLW
|
||||
SND2 = SND
|
||||
! STORE NARROWEST REVERSE LEVEL STRUCTURE IN LVLS2
|
||||
DO 70 I=1,N
|
||||
LVLS2(I) = LVL(I)
|
||||
70 END DO
|
||||
80 IF (NDXN.EQ.NDXL) GO TO 90
|
||||
! TRY NEXT NODE IN NDLST
|
||||
NDXN = NDXN + 1
|
||||
SND = NDLST(NDXN)
|
||||
GO TO 10
|
||||
90 IDFLT = 1
|
||||
IF (MTW2.LE.MTW1) IDFLT = 2
|
||||
NULLIFY(NDLST)
|
||||
RETURN
|
||||
END SUBROUTINE FNDIAM
|
||||
!
|
||||
SUBROUTINE TREE(IROOT, NDSTK, NR, LVL, IWK, NDEG, LVLWTH, LVLBOT, LVLN, MAXLW, IBORT)
|
||||
! TREE DROPS A TREE IN NDSTK FROM IROOT
|
||||
! LVL- ARRAY INDICATING AVAILABLE NODES IN NDSTK WITH ZERO
|
||||
! ENTRIES. TREE ENTERS LEVEL NUMBERS ASSIGNED
|
||||
! DURING EXECUTION OF THIS PROCEDURE
|
||||
! IWK- ON OUTPUT CONTAINS NODE NUMBERS USED IN TREE
|
||||
! ARRANGED BY LEVELS (IWK(LVLN) CONTAINS IROOT
|
||||
! AND IWK(LVLBOT+LVLWTH-1) CONTAINS LAST NODE ENTERED)
|
||||
! LVLWTH- ON OUTPUT CONTAINS WIDTH OF LAST LEVEL
|
||||
! LVLBOT- ON OUTPUT CONTAINS INDEX INTO IWK OF FIRST
|
||||
! NODE IN LAST LEVEL
|
||||
! MAXLW- ON OUTPUT CONTAINS THE MAXIMUM LEVEL WIDTH
|
||||
! LVLN- ON INPUT THE FIRST AVAILABLE LOCATION IN IWK
|
||||
! USUALLY ONE BUT IF IWK IS USED TO STORE PREVIOUS
|
||||
! CONNECTED COMPONENTS, LVLN IS NEXT AVAILABLE LOCATION.
|
||||
! ON OUTPUT THE TOTAL NUMBER OF LEVELS + 1
|
||||
! IBORT- INPUT PARAM WHICH TRIGGERS EARLY RETURN IF
|
||||
! MAXLW BECOMES .GE. IBORT
|
||||
! USE INTEGER*2 NDSTK WITH AN IBM 360 OR 370.
|
||||
INTEGER NDSTK
|
||||
DIMENSION NDSTK(NR,IDEG), LVL(N), IWK(N), NDEG(N)
|
||||
MAXLW = 0
|
||||
ITOP = LVLN
|
||||
INOW = LVLN
|
||||
LVLBOT = LVLN
|
||||
LVLTOP = LVLN + 1
|
||||
LVLN = 1
|
||||
LVL(IROOT) = 1
|
||||
IWK(ITOP) = IROOT
|
||||
10 LVLN = LVLN + 1
|
||||
20 IWKNOW = IWK(INOW)
|
||||
NDROW = NDEG(IWKNOW)
|
||||
DO 30 J=1,NDROW
|
||||
ITEST = NDSTK(IWKNOW,J)
|
||||
IF (LVL(ITEST).NE.0) CYCLE
|
||||
LVL(ITEST) = LVLN
|
||||
ITOP = ITOP + 1
|
||||
IWK(ITOP) = ITEST
|
||||
30 END DO
|
||||
INOW = INOW + 1
|
||||
IF (INOW.LT.LVLTOP) GO TO 20
|
||||
LVLWTH = LVLTOP - LVLBOT
|
||||
IF (MAXLW.LT.LVLWTH) MAXLW = LVLWTH
|
||||
IF (MAXLW.GE.IBORT) RETURN
|
||||
IF (ITOP.LT.LVLTOP) RETURN
|
||||
LVLBOT = INOW
|
||||
LVLTOP = ITOP + 1
|
||||
GO TO 10
|
||||
END SUBROUTINE TREE
|
||||
!
|
||||
SUBROUTINE SORTDG(STK1, STK2, X1, X2, NDEG)
|
||||
! SORTDG SORTS STK2 BY DEGREE OF THE NODE AND ADDS IT TO THE END
|
||||
! OF STK1 IN ORDER OF LOWEST TO HIGHEST DEGREE. X1 AND X2 ARE THE
|
||||
! NUMBER OF NODES IN STK1 AND STK2 RESPECTIVELY.
|
||||
INTEGER X1, X2, STK1, STK2, TEMP
|
||||
! COMMON /GRA/ N, IDPTH, IDEG
|
||||
DIMENSION NDEG(N), STK1(X1+X2), STK2(X2)
|
||||
IND = X2
|
||||
10 ITEST = 0
|
||||
IND = IND - 1
|
||||
IF (IND.LT.1) GO TO 30
|
||||
DO 20 I=1,IND
|
||||
J = I + 1
|
||||
ISTK2 = STK2(I)
|
||||
JSTK2 = STK2(J)
|
||||
IF (NDEG(ISTK2).LE.NDEG(JSTK2)) CYCLE
|
||||
ITEST = 1
|
||||
TEMP = STK2(I)
|
||||
STK2(I) = STK2(J)
|
||||
STK2(J) = TEMP
|
||||
20 END DO
|
||||
IF (ITEST.EQ.1) GO TO 10
|
||||
30 DO 40 I=1,X2
|
||||
X1 = X1 + 1
|
||||
STK1(X1) = STK2(I)
|
||||
40 END DO
|
||||
RETURN
|
||||
END SUBROUTINE SORTDG
|
||||
!
|
||||
SUBROUTINE SETUP(LVL, LVLS1, LVLS2)
|
||||
! SETUP COMPUTES THE REVERSE LEVELING INFO FROM LVLS2 AND STORES
|
||||
! IT INTO LVLS2. NACUM(I) IS INITIALIZED TO NODES/ITH LEVEL FOR NODES
|
||||
! ON THE PSEUDO-DIAMETER OF THE GRAPH. LVL IS INITIALIZED TO NON-
|
||||
! ZERO FOR NODES ON THE PSEUDO-DIAM AND NODES IN A DIFFERENT
|
||||
! COMPONENT OF THE GRAPH.
|
||||
! COMMON /GRA/ N, IDPTH, IDEG
|
||||
! IT IS ASSUMED THAT THERE ARE AT MOST 100 LEVELS.
|
||||
! COMMON /LVLW/ NHIGH(100), NLOW(100), NACUM(100)
|
||||
DIMENSION LVL(N), LVLS1(N), LVLS2(N)
|
||||
INTEGER :: SZ
|
||||
!-----------------------------------------------------
|
||||
SZ=SIZE(NACUM)
|
||||
IF(SZ .LT. IDPTH) THEN
|
||||
WRITE(*,*) 'GPS_SETUP: on fly reallocation of NACUM'
|
||||
CALL REALLOC(NACUM,SZ,IDPTH)
|
||||
END IF
|
||||
!-----------------------------------------------------
|
||||
DO 10 I=1,IDPTH
|
||||
NACUM(I) = 0
|
||||
10 END DO
|
||||
DO 30 I=1,N
|
||||
LVL(I) = 1
|
||||
LVLS2(I) = IDPTH + 1 - LVLS2(I)
|
||||
ITEMP = LVLS2(I)
|
||||
IF (ITEMP.GT.IDPTH) CYCLE
|
||||
IF (ITEMP.NE.LVLS1(I)) GO TO 20
|
||||
NACUM(ITEMP) = NACUM(ITEMP) + 1
|
||||
CYCLE
|
||||
20 LVL(I) = 0
|
||||
30 END DO
|
||||
RETURN
|
||||
END SUBROUTINE SETUP
|
||||
!
|
||||
INTEGER FUNCTION SORT2()
|
||||
! SORT2 SORTS SIZEG AND STPT INTO DESCENDING ORDER ACCORDING TO
|
||||
! VALUES OF SIZEG. XCC=NUMBER OF ENTRIES IN EACH ARRAY
|
||||
INTEGER TEMP
|
||||
! IT IS ASSUMED THAT THE GRAPH HAS AT MOST 50 CONNECTED COMPONENTS.
|
||||
!COMMON /CC/ XCC, SIZEG(50), STPT(50)
|
||||
|
||||
SORT2 = 0
|
||||
IF (XCC.EQ.0) RETURN
|
||||
SORT2 = 1
|
||||
IND = XCC
|
||||
10 ITEST = 0
|
||||
IND = IND - 1
|
||||
IF (IND.LT.1) RETURN
|
||||
DO 20 I=1,IND
|
||||
J = I + 1
|
||||
IF (SIZEG(I).GE.SIZEG(J)) CYCLE
|
||||
ITEST = 1
|
||||
TEMP = SIZEG(I)
|
||||
SIZEG(I) = SIZEG(J)
|
||||
SIZEG(J) = TEMP
|
||||
TEMP = STPT(I)
|
||||
STPT(I) = STPT(J)
|
||||
STPT(J) = TEMP
|
||||
20 END DO
|
||||
IF (ITEST.EQ.1) GO TO 10
|
||||
RETURN
|
||||
END FUNCTION SORT2
|
||||
!
|
||||
SUBROUTINE PIKLVL(LVLS1, LVLS2, CCSTOR, IDFLT, ISDIR)
|
||||
! PIKLVL CHOOSES THE LEVEL STRUCTURE USED IN NUMBERING GRAPH
|
||||
! LVLS1- ON INPUT CONTAINS FORWARD LEVELING INFO
|
||||
! LVLS2- ON INPUT CONTAINS REVERSE LEVELING INFO
|
||||
! ON OUTPUT THE FINAL LEVEL STRUCTURE CHOSEN
|
||||
! CCSTOR- ON INPUT CONTAINS CONNECTED COMPONENT INFO
|
||||
! IDFLT- ON INPUT =1 IF WDTH LVLS1.LE.WDTH LVLS2, =2 OTHERWISE
|
||||
! NHIGH KEEPS TRACK OF LEVEL WIDTHS FOR HIGH NUMBERING
|
||||
! NLOW- KEEPS TRACK OF LEVEL WIDTHS FOR LOW NUMBERING
|
||||
! NACUM- KEEPS TRACK OF LEVEL WIDTHS FOR CHOSEN LEVEL STRUCTURE
|
||||
! XCC- NUMBER OF CONNECTED COMPONENTS
|
||||
! SIZEG(I)- SIZE OF ITH CONNECTED COMPONENT
|
||||
! STPT(I)- INDEX INTO CCSTORE OF 1ST NODE IN ITH CON COMPT
|
||||
! ISDIR- FLAG WHICH INDICATES WHICH WAY THE LARGEST CONNECTED
|
||||
! COMPONENT FELL. =+1 IF LOW AND -1 IF HIGH
|
||||
INTEGER CCSTOR, ENDC
|
||||
! COMMON /GRA/ N, IDPTH, IDEG
|
||||
! IT IS ASSUMED THAT THE GRAPH HAS AT MOST 50 COMPONENTS AND
|
||||
! THAT THERE ARE AT MOST 100 LEVELS.
|
||||
! COMMON /LVLW/ NHIGH(100), NLOW(100), NACUM(100)
|
||||
! COMMON /CC/ XCC, SIZEG(50), STPT(50)
|
||||
DIMENSION LVLS1(N), LVLS2(N), CCSTOR(N)
|
||||
INTEGER :: SZ
|
||||
! FOR EACH CONNECTED COMPONENT DO
|
||||
DO 80 I=1,XCC
|
||||
J = STPT(I)
|
||||
ENDC= SIZEG(I) + J - 1
|
||||
! SET NHIGH AND NLOW EQUAL TO NACUM
|
||||
!-----------------------------------------------------
|
||||
SZ=SIZE(NHIGH)
|
||||
IF(SZ .LT. IDPTH) THEN
|
||||
WRITE(*,*) 'GPS_PIKLVL: on fly reallocation of NHIGH'
|
||||
CALL REALLOC(NHIGH,SZ,IDPTH)
|
||||
END IF
|
||||
SZ=SIZE(NLOW)
|
||||
IF(SZ .LT. IDPTH) THEN
|
||||
WRITE(*,*) 'GPS_PIKLVL: on fly reallocation of NLOW'
|
||||
CALL REALLOC(NLOW,SZ,IDPTH)
|
||||
END IF
|
||||
!-----------------------------------------------------
|
||||
DO 10 K=1,IDPTH
|
||||
NHIGH(K) = NACUM(K)
|
||||
NLOW(K) = NACUM(K)
|
||||
10 END DO
|
||||
! UPDATE NHIGH AND NLOW FOR EACH NODE IN CONNECTED COMPONENT
|
||||
DO 20 K=J,ENDC
|
||||
INODE = CCSTOR(K)
|
||||
LVLNH = LVLS1(INODE)
|
||||
NHIGH(LVLNH) = NHIGH(LVLNH) + 1
|
||||
LVLNL = LVLS2(INODE)
|
||||
NLOW(LVLNL) = NLOW(LVLNL) + 1
|
||||
20 END DO
|
||||
MAX1 = 0
|
||||
MAX2 = 0
|
||||
! SET MAX1=LARGEST NEW NUMBER IN NHIGH
|
||||
! SET MAX2=LARGEST NEW NUMBER IN NLOW
|
||||
DO 30 K=1,IDPTH
|
||||
IF (2*NACUM(K).EQ.NLOW(K)+NHIGH(K)) CYCLE
|
||||
IF (NHIGH(K).GT.MAX1) MAX1 = NHIGH(K)
|
||||
IF (NLOW(K).GT.MAX2) MAX2 = NLOW(K)
|
||||
30 END DO
|
||||
! SET IT= NUMBER OF LEVEL STRUCTURE TO BE USED
|
||||
IT = 1
|
||||
IF (MAX1.GT.MAX2) IT = 2
|
||||
IF (MAX1.EQ.MAX2) IT = IDFLT
|
||||
IF (IT.EQ.2) GO TO 60
|
||||
IF (I.EQ.1) ISDIR = -1
|
||||
! COPY LVLS1 INTO LVLS2 FOR EACH NODE IN CONNECTED COMPONENT
|
||||
DO 40 K=J,ENDC
|
||||
INODE = CCSTOR(K)
|
||||
LVLS2(INODE) = LVLS1(INODE)
|
||||
40 END DO
|
||||
! UPDATE NACUM TO BE THE SAME AS NHIGH
|
||||
DO 50 K=1,IDPTH
|
||||
NACUM(K) = NHIGH(K)
|
||||
50 END DO
|
||||
CYCLE
|
||||
! UPDATE NACUM TO BE THE SAME AS NLOW
|
||||
60 DO 70 K=1,IDPTH
|
||||
NACUM(K) = NLOW(K)
|
||||
70 END DO
|
||||
80 END DO
|
||||
RETURN
|
||||
END SUBROUTINE PIKLVL
|
||||
!
|
||||
SUBROUTINE NUMBER(SND, NUM, NDSTK, LVLS2, NDEG, RENUM, LVLST,LSTPT,&
|
||||
& NR, NFLG, IBW2, IPF2, IPFA, ISDIR)
|
||||
! NUMBER PRODUCES THE NUMBERING OF THE GRAPH FOR MIN BANDWIDTH
|
||||
! SND- ON INPUT THE NODE TO BEGIN NUMBERING ON
|
||||
! NUM- ON INPUT AND OUTPUT, THE NEXT AVAILABLE NUMBER
|
||||
! LVLS2- THE LEVEL STRUCTURE TO BE USED IN NUMBERING
|
||||
! RENUM- THE ARRAY USED TO STORE THE NEW NUMBERING
|
||||
! LVLST- ON OUTPUT CONTAINS LEVEL STRUCTURE
|
||||
! LSTPT(I)- ON OUTPUT, INDEX INTO LVLST TO FIRST NODE IN ITH LVL
|
||||
! LSTPT(I+1) - LSTPT(I) = NUMBER OF NODES IN ITH LVL
|
||||
! NFLG- =+1 IF SND IS FORWARD END OF PSEUDO-DIAM
|
||||
! =-1 IF SND IS REVERSE END OF PSEUDO-DIAM
|
||||
! IBW2- BANDWIDTH OF NEW NUMBERING COMPUTED BY NUMBER
|
||||
! IPF2- PROFILE OF NEW NUMBERING COMPUTED BY NUMBER
|
||||
! IPFA- WORKING STORAGE USED TO COMPUTE PROFILE AND BANDWIDTH
|
||||
! ISDIR- INDICATES STEP DIRECTION USED IN NUMBERING(+1 OR -1)
|
||||
! USE INTEGER*2 NDSTK WITH AN IBM 360 OR 370.
|
||||
INTEGER NDSTK
|
||||
INTEGER SND, XA, XB, XC, XD, CX, ENDC,RENUM, TEST
|
||||
! COMMON /GRA/ N, IDPTH, IDEG
|
||||
! THE STORAGE IN COMMON BLOCKS CC AND LVLW IS NOW FREE AND CAN
|
||||
! BE USED FOR STACKS.
|
||||
!COMMON /LVLW/ STKA(100), STKB(100), STKC(100)
|
||||
!COMMON /CC/ STKD(100)
|
||||
DIMENSION IPFA(N)
|
||||
DIMENSION NDSTK(NR,IDEG), LVLS2(N), NDEG(N), RENUM(N+1), LVLST(N),LSTPT(N)
|
||||
INTEGER,POINTER :: STKA(:),STKB(:),STKC(:),STKD(:)
|
||||
INTEGER :: SZ1,SZ2
|
||||
!
|
||||
STKA => NHIGH
|
||||
STKB => NLOW
|
||||
STKC => NACUM
|
||||
STKD => AUX
|
||||
!
|
||||
! SET UP LVLST AND LSTPT FROM LVLS2
|
||||
DO 10 I=1,N
|
||||
IPFA(I) = 0
|
||||
10 END DO
|
||||
NSTPT = 1
|
||||
DO 30 I=1,IDPTH
|
||||
LSTPT(I) = NSTPT
|
||||
DO 20 J=1,N
|
||||
IF (LVLS2(J).NE.I) CYCLE
|
||||
LVLST(NSTPT) = J
|
||||
NSTPT = NSTPT + 1
|
||||
20 END DO
|
||||
30 END DO
|
||||
LSTPT(IDPTH+1) = NSTPT
|
||||
! STKA, STKB, STKC AND STKD ARE STACKS WITH POINTERS
|
||||
! XA,XB,XC, AND XD. CX IS A SPECIAL POINTER INTO STKC WHICH
|
||||
! INDICATES THE PARTICULAR NODE BEING PROCESSED.
|
||||
! LVLN KEEPS TRACK OF THE LEVEL WE ARE WORKING AT.
|
||||
! INITIALLY STKC CONTAINS ONLY THE INITIAL NODE, SND.
|
||||
LVLN = 0
|
||||
IF (NFLG.LT.0) LVLN = IDPTH + 1
|
||||
XC = 1
|
||||
STKC(XC) = SND
|
||||
40 CX = 1
|
||||
XD = 0
|
||||
LVLN = LVLN + NFLG
|
||||
LST = LSTPT(LVLN)
|
||||
LND = LSTPT(LVLN+1) - 1
|
||||
! BEGIN PROCESSING NODE STKC(CX)
|
||||
50 IPRO = STKC(CX)
|
||||
RENUM(IPRO) = NUM
|
||||
NUM = NUM + ISDIR
|
||||
ENDC = NDEG(IPRO)
|
||||
XA = 0
|
||||
XB = 0
|
||||
! CHECK ALL ADJACENT NODES
|
||||
DO 80 I=1,ENDC
|
||||
TEST = NDSTK(IPRO,I)
|
||||
INX = RENUM(TEST)
|
||||
! ONLY NODES NOT NUMBERED OR ALREADY ON A STACK ARE ADDED
|
||||
IF (INX.EQ.0) GO TO 60
|
||||
IF (INX.LT.0) CYCLE
|
||||
! DO PRELIMINARY BANDWIDTH AND PROFILE CALCULATIONS
|
||||
NBW = (RENUM(IPRO)-INX)*ISDIR
|
||||
IF (ISDIR.GT.0) INX = RENUM(IPRO)
|
||||
IF (IPFA(INX).LT.NBW) IPFA(INX) = NBW
|
||||
CYCLE
|
||||
60 RENUM(TEST) = -1
|
||||
! PUT NODES ON SAME LEVEL ON STKA, ALL OTHERS ON STKB
|
||||
IF (LVLS2(TEST).EQ.LVLS2(IPRO)) GO TO 70
|
||||
XB = XB + 1
|
||||
STKB(XB) = TEST
|
||||
CYCLE
|
||||
70 XA = XA + 1
|
||||
STKA(XA) = TEST
|
||||
80 END DO
|
||||
! SORT STKA AND STKB INTO INCREASING DEGREE AND ADD STKA TO STKC
|
||||
! AND STKB TO STKD
|
||||
IF (XA.EQ.0) GO TO 100
|
||||
IF (XA.EQ.1) GO TO 90
|
||||
!-----------------------------------------------------------------
|
||||
SZ1=SIZE(STKC)
|
||||
SZ2=XC+XA
|
||||
IF(SZ1 < SZ2) THEN
|
||||
WRITE(*,*) 'GPS_NUMBER - Check #1: on fly reallocation of STKC'
|
||||
CALL REALLOC(NACUM,SZ1,SZ2)
|
||||
STKC => NACUM
|
||||
END IF
|
||||
!-----------------------------------------------------------------
|
||||
CALL SORTDG(STKC, STKA, XC, XA, NDEG)
|
||||
GO TO 100
|
||||
90 XC = XC + 1
|
||||
!-----------------------------------------------------------------
|
||||
SZ1=SIZE(STKC)
|
||||
SZ2=XC
|
||||
IF(SZ1 < SZ2) THEN
|
||||
WRITE(*,*) 'GPS_NUMBER - Check #2: on fly reallocation of STKC'
|
||||
SZ2=SZ2+INIT
|
||||
CALL REALLOC(NACUM,SZ1,SZ2)
|
||||
STKC => NACUM
|
||||
END IF
|
||||
!-----------------------------------------------------------------
|
||||
STKC(XC) = STKA(XA)
|
||||
100 IF (XB.EQ.0) GO TO 120
|
||||
IF (XB.EQ.1) GO TO 110
|
||||
!-----------------------------------------------------------------
|
||||
SZ1=SIZE(STKD)
|
||||
SZ2=XD+XB
|
||||
IF(SZ1 < SZ2) THEN
|
||||
WRITE(*,*) 'GPS_NUMBER - Check #3: on fly reallocation of STKD'
|
||||
CALL REALLOC(AUX,SZ1,SZ2)
|
||||
STKD => AUX
|
||||
END IF
|
||||
!-----------------------------------------------------------------
|
||||
CALL SORTDG(STKD, STKB, XD, XB, NDEG)
|
||||
GO TO 120
|
||||
110 XD = XD + 1
|
||||
!-----------------------------------------------------------------
|
||||
SZ1=SIZE(STKD)
|
||||
SZ2=XD
|
||||
IF(SZ1 < SZ2) THEN
|
||||
WRITE(*,*) 'GPS_NUMBER - Check #4: on fly reallocation of STKD'
|
||||
SZ2=SZ2+INIT
|
||||
CALL REALLOC(AUX,SZ1,SZ2)
|
||||
STKD => AUX
|
||||
END IF
|
||||
!-----------------------------------------------------------------
|
||||
STKD(XD) = STKB(XB)
|
||||
! BE SURE TO PROCESS ALL NODES IN STKC
|
||||
120 CX = CX + 1
|
||||
IF (XC.GE.CX) GO TO 50
|
||||
! WHEN STKC IS EXHAUSTED LOOK FOR MIN DEGREE NODE IN SAME LEVEL
|
||||
! WHICH HAS NOT BEEN PROCESSED
|
||||
MAX = IDEG + 1
|
||||
SND = N + 1
|
||||
DO 130 I=LST,LND
|
||||
TEST = LVLST(I)
|
||||
IF (RENUM(TEST).NE.0) CYCLE
|
||||
IF (NDEG(TEST).GE.MAX) CYCLE
|
||||
RENUM(SND) = 0
|
||||
RENUM(TEST) = -1
|
||||
MAX = NDEG(TEST)
|
||||
SND = TEST
|
||||
130 END DO
|
||||
IF (SND.EQ.N+1) GO TO 140
|
||||
XC = XC + 1
|
||||
!-----------------------------------------------------------------
|
||||
SZ1=SIZE(STKC)
|
||||
SZ2=XC
|
||||
IF(SZ1 < SZ2) THEN
|
||||
WRITE(*,*) 'GPS_NUMBER - Check #5: on fly reallocation of STKC'
|
||||
SZ2=SZ2+INIT
|
||||
CALL REALLOC(NACUM,SZ1,SZ2)
|
||||
STKC => NACUM
|
||||
END IF
|
||||
!-----------------------------------------------------------------
|
||||
STKC(XC) = SND
|
||||
GO TO 50
|
||||
! IF STKD IS EMPTY WE ARE DONE, OTHERWISE COPY STKD ONTO STKC
|
||||
! AND BEGIN PROCESSING NEW STKC
|
||||
140 IF (XD.EQ.0) GO TO 160
|
||||
!-----------------------------------------------------------------
|
||||
SZ1=SIZE(STKC)
|
||||
SZ2=XD
|
||||
IF(SZ1 < SZ2) THEN
|
||||
WRITE(*,*) 'GPS_NUMBER - Check #6: on fly reallocation of STKC'
|
||||
SZ2=SZ2+INIT
|
||||
CALL REALLOC(NACUM,SZ1,SZ2)
|
||||
STKC => NACUM
|
||||
END IF
|
||||
!-----------------------------------------------------------------
|
||||
DO 150 I=1,XD
|
||||
STKC(I) = STKD(I)
|
||||
150 END DO
|
||||
XC = XD
|
||||
GO TO 40
|
||||
! DO FINAL BANDWIDTH AND PROFILE CALCULATIONS
|
||||
160 DO 170 I=1,N
|
||||
IF (IPFA(I).GT.IBW2) IBW2 = IPFA(I)
|
||||
IPF2 = IPF2 + IPFA(I)
|
||||
170 END DO
|
||||
!
|
||||
RETURN
|
||||
END SUBROUTINE NUMBER
|
||||
!
|
||||
! ---------------------------------------------------------
|
||||
SUBROUTINE REALLOC(VET,SZ1,SZ2)
|
||||
! PERFORM ON FLY REALLOCATION OF POINTER VET INCREASING
|
||||
! ITS SIZE FROM SZ1 TO SZ2
|
||||
IMPLICIT NONE
|
||||
INTEGER,allocatable :: VET(:),TMP(:)
|
||||
INTEGER :: SZ1,SZ2,INFO
|
||||
|
||||
call psb_realloc(sz2,vet,info)
|
||||
IF(INFO /= 0) THEN
|
||||
WRITE(*,*) 'Error! Memory allocation failure in REALLOC'
|
||||
STOP
|
||||
END IF
|
||||
RETURN
|
||||
END SUBROUTINE REALLOC
|
||||
!
|
||||
END MODULE psb_gps_mod
|
@ -1,576 +0,0 @@
|
||||
SUBROUTINE REDUCE(NDSTK, NR, IOLD, RENUM, NDEG, LVL, LVLS1,
|
||||
* LVLS2, CCSTOR, IBW2, IPF2)
|
||||
C SUBROUTINE REDUCE DETERMINES A ROW AND COLUMN PERMUTATION WHICH,
|
||||
C WHEN APPLIED TO A GIVEN SPARSE MATRIX, PRODUCES A PERMUTED
|
||||
C MATRIX WITH A SMALLER BANDWIDTH AND PROFILE.
|
||||
C THE INPUT ARRAY IS A CONNECTION TABLE WHICH REPRESENTS THE
|
||||
C INDICES OF THE NONZERO ELEMENTS OF THE MATRIX, A. THE ALGO-
|
||||
C RITHM IS DESCRIBED IN TERMS OF THE ADJACENCY GRAPH WHICH
|
||||
C HAS THE CHARACTERISTIC THAT THERE IS AN EDGE (CONNECTION)
|
||||
C BETWEEN NODES I AND J IF A(I,J) .NE. 0 AND I .NE. J.
|
||||
C DIMENSIONING INFORMATION--THE FOLLOWING INTEGER ARRAYS MUST BE
|
||||
C DIMENSIONED IN THE CALLING ROUTINE.
|
||||
C NDSTK(NR,D1) D1 IS .GE. MAXIMUM DEGREE OF ALL NODES.
|
||||
C IOLD(D2) D2 AND NR ARE .GE. THE TOTAL NUMBER OF
|
||||
C RENUM(D2+1) NODES IN THE GRAPH.
|
||||
C NDEG(D2) STORAGE REQUIREMENTS CAN BE SIGNIFICANTLY
|
||||
C LVL(D2) DECREASED FOR IBM 360 AND 370 COMPUTERS
|
||||
C LVLS1(D2) BY REPLACING INTEGER NDSTK BY
|
||||
C LVLS2(D2) INTEGER*2 NDSTK IN SUBROUTINES REDUCE,
|
||||
C CCSTOR(D2) DGREE, FNDIAM, TREE AND NUMBER.
|
||||
C COMMON INFORMATION--THE FOLLOWING COMMON BLOCK MUST BE IN THE
|
||||
C CALLING ROUTINE.
|
||||
C COMMON/GRA/N,IDPTH,IDEG
|
||||
C EXPLANATION OF INPUT VARIABLES--
|
||||
C NDSTK- CONNECTION TABLE REPRESENTING GRAPH.
|
||||
C NDSTK(I,J)=NODE NUMBER OF JTH CONNECTION TO NODE
|
||||
C NUMBER I. A CONNECTION OF A NODE TO ITSELF IS NOT
|
||||
C LISTED. EXTRA POSITIONS MUST HAVE ZERO FILL.
|
||||
C NR- ROW DIMENSION ASSIGNED NDSTK IN CALLING PROGRAM.
|
||||
C IOLD(I)- NUMBERING OF ITH NODE UPON INPUT.
|
||||
C IF NO NUMBERING EXISTS THEN IOLD(I)=I.
|
||||
C N- NUMBER OF NODES IN GRAPH (EQUAL TO ORDER OF MATRIX).
|
||||
C IDEG- MAXIMUM DEGREE OF ANY NODE IN THE GRAPH.
|
||||
C EXPLANATION OF OUTPUT VARIABLES--
|
||||
C RENUM(I)- THE NEW NUMBER FOR THE ITH NODE.
|
||||
C NDEG(I)- THE DEGREE OF THE ITH NODE.
|
||||
C IBW2- THE BANDWIDTH AFTER RENUMBERING.
|
||||
C IPF2- THE PROFILE AFTER RENUMBERING.
|
||||
C IDPTH- NUMBER OF LEVELS IN REDUCE LEVEL STRUCTURE.
|
||||
C THE FOLLOWING ONLY HAVE MEANING IF THE GRAPH WAS CONNECTED--
|
||||
C LVL(I)- INDEX INTO LVLS1 TO THE FIRST NODE IN LEVEL I.
|
||||
C LVL(I+1)-LVL(I)= NUMBER OF NODES IN ITH LEVEL
|
||||
C LVLS1- NODE NUMBERS LISTED BY LEVEL.
|
||||
C LVLS2(I)- THE LEVEL ASSIGNED TO NODE I BY REDUCE.
|
||||
C WORKING STORAGE VARIABLE--
|
||||
C CCSTOR
|
||||
C LOCAL STORAGE--
|
||||
C COMMON/CC/-SUBROUTINES REDUCE, SORT2 AND PIKLVL ASSUME THAT
|
||||
C THE GRAPH HAS AT MOST 50 CONNECTED COMPONENTS.
|
||||
C SUBROUTINE FNDIAM ASSUMES THAT THERE ARE AT MOST
|
||||
C 100 NODES IN THE LAST LEVEL.
|
||||
C COMMON/LVLW/-SUBROUTINES SETUP AND PIKLVL ASSUME THAT THERE
|
||||
C ARE AT MOST 100 LEVELS.
|
||||
C USE INTEGER*2 NDSTK WITH AN IBM 360 OR 370.
|
||||
INTEGER NDSTK
|
||||
INTEGER STNODE, RVNODE, RENUM, XC, SORT2, STNUM, CCSTOR,
|
||||
* SIZE, STPT, SBNUM
|
||||
COMMON /GRA/ N, IDPTH, IDEG
|
||||
C IT IS ASSUMED THAT THE GRAPH HAS AT MOST 50 CONNECTED COMPONENTS.
|
||||
COMMON /CC/ XC, SIZE(5000), STPT(5000)
|
||||
COMMON /LVLW/ NHIGH(10000), NLOW(10000), NACUM(10000)
|
||||
save gra, cc, lvlw
|
||||
DIMENSION CCSTOR(1), IOLD(1)
|
||||
DIMENSION NDSTK(NR,1), LVL(1), LVLS1(1), LVLS2(1), RENUM(1),
|
||||
* NDEG(1)
|
||||
IBW2 = 0
|
||||
IPF2 = 0
|
||||
C SET RENUM(I)=0 FOR ALL I TO INDICATE NODE I IS UNNUMBERED
|
||||
DO 10 I=1,N
|
||||
RENUM(I) = 0
|
||||
10 CONTINUE
|
||||
C COMPUTE DEGREE OF EACH NODE AND ORIGINAL BANDWIDTH AND PROFILE
|
||||
CALL DGREE(NDSTK, NR, NDEG, IOLD, IBW1, IPF1)
|
||||
C SBNUM= LOW END OF AVAILABLE NUMBERS FOR RENUMBERING
|
||||
C STNUM= HIGH END OF AVAILABLE NUMBERS FOR RENUMBERING
|
||||
SBNUM = 1
|
||||
STNUM = N
|
||||
C NUMBER THE NODES OF DEGREE ZERO
|
||||
DO 20 I=1,N
|
||||
IF (NDEG(I).GT.0) GO TO 20
|
||||
RENUM(I) = STNUM
|
||||
STNUM = STNUM - 1
|
||||
20 CONTINUE
|
||||
C FIND AN UNNUMBERED NODE OF MIN DEGREE TO START ON
|
||||
30 LOWDG = IDEG + 1
|
||||
NFLG = 1
|
||||
ISDIR = 1
|
||||
DO 40 I=1,N
|
||||
IF (NDEG(I).GE.LOWDG) GO TO 40
|
||||
IF (RENUM(I).GT.0) GO TO 40
|
||||
LOWDG = NDEG(I)
|
||||
STNODE = I
|
||||
40 CONTINUE
|
||||
C FIND PSEUDO-DIAMETER AND ASSOCIATED LEVEL STRUCTURES.
|
||||
C STNODE AND RVNODE ARE THE ENDS OF THE DIAM AND LVLS1 AND LVLS2
|
||||
C ARE THE RESPECTIVE LEVEL STRUCTURES.
|
||||
CALL FNDIAM(STNODE, RVNODE, NDSTK, NR, NDEG, LVL, LVLS1,
|
||||
* LVLS2, CCSTOR, IDFLT)
|
||||
IF (NDEG(STNODE).LE.NDEG(RVNODE)) GO TO 50
|
||||
C NFLG INDICATES THE END TO BEGIN NUMBERING ON
|
||||
NFLG = -1
|
||||
STNODE = RVNODE
|
||||
50 CALL GPS_SETUP(LVL, LVLS1, LVLS2)
|
||||
C FIND ALL THE CONNECTED COMPONENTS (XC COUNTS THEM)
|
||||
XC = 0
|
||||
LROOT = 1
|
||||
LVLN = 1
|
||||
DO 60 I=1,N
|
||||
IF (LVL(I).NE.0) GO TO 60
|
||||
XC = XC + 1
|
||||
STPT(XC) = LROOT
|
||||
CALL TREE(I, NDSTK, NR, LVL, CCSTOR, NDEG, LVLWTH, LVLBOT,
|
||||
* LVLN, MAXLW, N)
|
||||
SIZE(XC) = LVLBOT + LVLWTH - LROOT
|
||||
LROOT = LVLBOT + LVLWTH
|
||||
LVLN = LROOT
|
||||
60 CONTINUE
|
||||
IF (SORT2(DMY).EQ.0) GO TO 70
|
||||
CALL PIKLVL(LVLS1, LVLS2, CCSTOR, IDFLT, ISDIR)
|
||||
C ON RETURN FROM PIKLVL, ISDIR INDICATES THE DIRECTION THE LARGEST
|
||||
C COMPONENT FELL. ISDIR IS MODIFIED NOW TO INDICATE THE NUMBERING
|
||||
C DIRECTION. NUM IS SET TO THE PROPER VALUE FOR THIS DIRECTION.
|
||||
70 ISDIR = ISDIR*NFLG
|
||||
NUM = SBNUM
|
||||
IF (ISDIR.LT.0) NUM = STNUM
|
||||
CALL NUMBER(STNODE, NUM, NDSTK, LVLS2, NDEG, RENUM, LVLS1,
|
||||
* LVL, NR, NFLG, IBW2, IPF2, CCSTOR, ISDIR)
|
||||
C UPDATE STNUM OR SBNUM AFTER NUMBERING
|
||||
IF (ISDIR.LT.0) STNUM = NUM
|
||||
IF (ISDIR.GT.0) SBNUM = NUM
|
||||
IF (SBNUM.LE.STNUM) GO TO 30
|
||||
IF (IBW2.LE.IBW1) RETURN
|
||||
C IF ORIGINAL NUMBERING IS BETTER THAN NEW ONE, SET UP TO RETURN IT
|
||||
DO 80 I=1,N
|
||||
RENUM(I) = IOLD(I)
|
||||
80 CONTINUE
|
||||
IBW2 = IBW1
|
||||
IPF2 = IPF1
|
||||
RETURN
|
||||
END
|
||||
SUBROUTINE DGREE(NDSTK, NR, NDEG, IOLD, IBW1, IPF1)
|
||||
C DGREE COMPUTES THE DEGREE OF EACH NODE IN NDSTK AND STORES
|
||||
C IT IN THE ARRAY NDEG. THE BANDWIDTH AND PROFILE FOR THE ORIGINAL
|
||||
C OR INPUT RENUMBERING OF THE GRAPH IS COMPUTED ALSO.
|
||||
C USE INTEGER*2 NDSTK WITH AN IBM 360 OR 370.
|
||||
INTEGER NDSTK
|
||||
COMMON /GRA/ N, IDPTH, IDEG
|
||||
DIMENSION NDSTK(NR,1), NDEG(1), IOLD(1)
|
||||
IBW1 = 0
|
||||
IPF1 = 0
|
||||
DO 40 I=1,N
|
||||
NDEG(I) = 0
|
||||
IRW = 0
|
||||
DO 20 J=1,IDEG
|
||||
ITST = NDSTK(I,J)
|
||||
IF (ITST) 30, 30, 10
|
||||
10 NDEG(I) = NDEG(I) + 1
|
||||
IDIF = IOLD(I) - IOLD(ITST)
|
||||
IF (IRW.LT.IDIF) IRW = IDIF
|
||||
20 CONTINUE
|
||||
30 IPF1 = IPF1 + IRW
|
||||
IF (IRW.GT.IBW1) IBW1 = IRW
|
||||
40 CONTINUE
|
||||
RETURN
|
||||
END
|
||||
SUBROUTINE FNDIAM(SND1, SND2, NDSTK, NR, NDEG, LVL, LVLS1,
|
||||
* LVLS2, IWK, IDFLT)
|
||||
C FNDIAM IS THE CONTROL PROCEDURE FOR FINDING THE PSEUDO-DIAMETER OF
|
||||
C NDSTK AS WELL AS THE LEVEL STRUCTURE FROM EACH END
|
||||
C SND1- ON INPUT THIS IS THE NODE NUMBER OF THE FIRST
|
||||
C ATTEMPT AT FINDING A DIAMETER. ON OUTPUT IT
|
||||
C CONTAINS THE ACTUAL NUMBER USED.
|
||||
C SND2- ON OUTPUT CONTAINS OTHER END OF DIAMETER
|
||||
C LVLS1- ARRAY CONTAINING LEVEL STRUCTURE WITH SND1 AS ROOT
|
||||
C LVLS2- ARRAY CONTAINING LEVEL STRUCTURE WITH SND2 AS ROOT
|
||||
C IDFLT- FLAG USED IN PICKING FINAL LEVEL STRUCTURE, SET
|
||||
C =1 IF WIDTH OF LVLS1 .LE. WIDTH OF LVLS2, OTHERWISE =2
|
||||
C LVL,IWK- WORKING STORAGE
|
||||
C USE INTEGER*2 NDSTK WITH AN IBM 360 OR 370.
|
||||
INTEGER NDSTK
|
||||
INTEGER FLAG, SND, SND1, SND2
|
||||
COMMON /GRA/ N, IDPTH, IDEG
|
||||
C IT IS ASSUMED THAT THE LAST LEVEL HAS AT MOST 100 NODES.
|
||||
COMMON /CC/ NDLST(10001)
|
||||
DIMENSION NDSTK(NR,1), NDEG(1), LVL(1), LVLS1(1), LVLS2(1),
|
||||
* IWK(1)
|
||||
FLAG = 0
|
||||
MTW2 = N
|
||||
SND = SND1
|
||||
C ZERO LVL TO INDICATE ALL NODES ARE AVAILABLE TO TREE
|
||||
10 DO 20 I=1,N
|
||||
LVL(I) = 0
|
||||
20 CONTINUE
|
||||
LVLN = 1
|
||||
C DROP A TREE FROM SND
|
||||
CALL TREE(SND, NDSTK, NR, LVL, IWK, NDEG, LVLWTH, LVLBOT,
|
||||
* LVLN, MAXLW, MTW2)
|
||||
IF (FLAG.GE.1) GO TO 50
|
||||
FLAG = 1
|
||||
30 IDPTH = LVLN - 1
|
||||
MTW1 = MAXLW
|
||||
C COPY LEVEL STRUCTURE INTO LVLS1
|
||||
DO 40 I=1,N
|
||||
LVLS1(I) = LVL(I)
|
||||
40 CONTINUE
|
||||
NDXN = 1
|
||||
NDXL = 0
|
||||
MTW2 = N
|
||||
C SORT LAST LEVEL BY DEGREE AND STORE IN NDLST
|
||||
CALL SORTDG(NDLST, IWK(LVLBOT), NDXL, LVLWTH, NDEG)
|
||||
SND = NDLST(1)
|
||||
GO TO 10
|
||||
50 IF (IDPTH.GE.LVLN-1) GO TO 60
|
||||
C START AGAIN WITH NEW STARTING NODE
|
||||
SND1 = SND
|
||||
GO TO 30
|
||||
60 IF (MAXLW.GE.MTW2) GO TO 80
|
||||
MTW2 = MAXLW
|
||||
SND2 = SND
|
||||
C STORE NARROWEST REVERSE LEVEL STRUCTURE IN LVLS2
|
||||
DO 70 I=1,N
|
||||
LVLS2(I) = LVL(I)
|
||||
70 CONTINUE
|
||||
80 IF (NDXN.EQ.NDXL) GO TO 90
|
||||
C TRY NEXT NODE IN NDLST
|
||||
NDXN = NDXN + 1
|
||||
SND = NDLST(NDXN)
|
||||
GO TO 10
|
||||
90 IDFLT = 1
|
||||
IF (MTW2.LE.MTW1) IDFLT = 2
|
||||
RETURN
|
||||
END
|
||||
SUBROUTINE TREE(IROOT, NDSTK, NR, LVL, IWK, NDEG, LVLWTH,
|
||||
* LVLBOT, LVLN, MAXLW, IBORT)
|
||||
C TREE DROPS A TREE IN NDSTK FROM IROOT
|
||||
C LVL- ARRAY INDICATING AVAILABLE NODES IN NDSTK WITH ZERO
|
||||
C ENTRIES. TREE ENTERS LEVEL NUMBERS ASSIGNED
|
||||
C DURING EXECUTION OF THIS PROCEDURE
|
||||
C IWK- ON OUTPUT CONTAINS NODE NUMBERS USED IN TREE
|
||||
C ARRANGED BY LEVELS (IWK(LVLN) CONTAINS IROOT
|
||||
C AND IWK(LVLBOT+LVLWTH-1) CONTAINS LAST NODE ENTERED)
|
||||
C LVLWTH- ON OUTPUT CONTAINS WIDTH OF LAST LEVEL
|
||||
C LVLBOT- ON OUTPUT CONTAINS INDEX INTO IWK OF FIRST
|
||||
C NODE IN LAST LEVEL
|
||||
C MAXLW- ON OUTPUT CONTAINS THE MAXIMUM LEVEL WIDTH
|
||||
C LVLN- ON INPUT THE FIRST AVAILABLE LOCATION IN IWK
|
||||
C USUALLY ONE BUT IF IWK IS USED TO STORE PREVIOUS
|
||||
C CONNECTED COMPONENTS, LVLN IS NEXT AVAILABLE LOCATION.
|
||||
C ON OUTPUT THE TOTAL NUMBER OF LEVELS + 1
|
||||
C IBORT- INPUT PARAM WHICH TRIGGERS EARLY RETURN IF
|
||||
C MAXLW BECOMES .GE. IBORT
|
||||
C USE INTEGER*2 NDSTK WITH AN IBM 360 OR 370.
|
||||
INTEGER NDSTK
|
||||
DIMENSION NDSTK(NR,1), LVL(1), IWK(1), NDEG(1)
|
||||
MAXLW = 0
|
||||
ITOP = LVLN
|
||||
INOW = LVLN
|
||||
LVLBOT = LVLN
|
||||
LVLTOP = LVLN + 1
|
||||
LVLN = 1
|
||||
LVL(IROOT) = 1
|
||||
IWK(ITOP) = IROOT
|
||||
10 LVLN = LVLN + 1
|
||||
20 IWKNOW = IWK(INOW)
|
||||
NDROW = NDEG(IWKNOW)
|
||||
DO 30 J=1,NDROW
|
||||
ITEST = NDSTK(IWKNOW,J)
|
||||
IF (LVL(ITEST).NE.0) GO TO 30
|
||||
LVL(ITEST) = LVLN
|
||||
ITOP = ITOP + 1
|
||||
IWK(ITOP) = ITEST
|
||||
30 CONTINUE
|
||||
INOW = INOW + 1
|
||||
IF (INOW.LT.LVLTOP) GO TO 20
|
||||
LVLWTH = LVLTOP - LVLBOT
|
||||
IF (MAXLW.LT.LVLWTH) MAXLW = LVLWTH
|
||||
IF (MAXLW.GE.IBORT) RETURN
|
||||
IF (ITOP.LT.LVLTOP) RETURN
|
||||
LVLBOT = INOW
|
||||
LVLTOP = ITOP + 1
|
||||
GO TO 10
|
||||
END
|
||||
SUBROUTINE SORTDG(STK1, STK2, X1, X2, NDEG)
|
||||
C SORTDG SORTS STK2 BY DEGREE OF THE NODE AND ADDS IT TO THE END
|
||||
C OF STK1 IN ORDER OF LOWEST TO HIGHEST DEGREE. X1 AND X2 ARE THE
|
||||
C NUMBER OF NODES IN STK1 AND STK2 RESPECTIVELY.
|
||||
INTEGER X1, X2, STK1, STK2, TEMP
|
||||
COMMON /GRA/ N, IDPTH, IDEG
|
||||
DIMENSION NDEG(1), STK1(1), STK2(1)
|
||||
IND = X2
|
||||
10 ITEST = 0
|
||||
IND = IND - 1
|
||||
IF (IND.LT.1) GO TO 30
|
||||
DO 20 I=1,IND
|
||||
J = I + 1
|
||||
ISTK2 = STK2(I)
|
||||
JSTK2 = STK2(J)
|
||||
IF (NDEG(ISTK2).LE.NDEG(JSTK2)) GO TO 20
|
||||
ITEST = 1
|
||||
TEMP = STK2(I)
|
||||
STK2(I) = STK2(J)
|
||||
STK2(J) = TEMP
|
||||
20 CONTINUE
|
||||
IF (ITEST.EQ.1) GO TO 10
|
||||
30 DO 40 I=1,X2
|
||||
X1 = X1 + 1
|
||||
STK1(X1) = STK2(I)
|
||||
40 CONTINUE
|
||||
RETURN
|
||||
END
|
||||
SUBROUTINE GPS_SETUP(LVL, LVLS1, LVLS2)
|
||||
C SETUP COMPUTES THE REVERSE LEVELING INFO FROM LVLS2 AND STORES
|
||||
C IT INTO LVLS2. NACUM(I) IS INITIALIZED TO NODES/ITH LEVEL FOR NODES
|
||||
C ON THE PSEUDO-DIAMETER OF THE GRAPH. LVL IS INITIALIZED TO NON-
|
||||
C ZERO FOR NODES ON THE PSEUDO-DIAM AND NODES IN A DIFFERENT
|
||||
C COMPONENT OF THE GRAPH.
|
||||
COMMON /GRA/ N, IDPTH, IDEG
|
||||
C IT IS ASSUMED THAT THERE ARE AT MOST 100 LEVELS.
|
||||
COMMON /LVLW/ NHIGH(10000), NLOW(10000), NACUM(10000)
|
||||
DIMENSION LVL(1), LVLS1(1), LVLS2(1)
|
||||
DO 10 I=1,IDPTH
|
||||
NACUM(I) = 0
|
||||
10 CONTINUE
|
||||
DO 30 I=1,N
|
||||
LVL(I) = 1
|
||||
LVLS2(I) = IDPTH + 1 - LVLS2(I)
|
||||
ITEMP = LVLS2(I)
|
||||
IF (ITEMP.GT.IDPTH) GO TO 30
|
||||
IF (ITEMP.NE.LVLS1(I)) GO TO 20
|
||||
NACUM(ITEMP) = NACUM(ITEMP) + 1
|
||||
GO TO 30
|
||||
20 LVL(I) = 0
|
||||
30 CONTINUE
|
||||
RETURN
|
||||
END
|
||||
INTEGER FUNCTION SORT2(DMY)
|
||||
C SORT2 SORTS SIZE AND STPT INTO DESCENDING ORDER ACCORDING TO
|
||||
C VALUES OF SIZE. XC=NUMBER OF ENTRIES IN EACH ARRAY
|
||||
INTEGER TEMP, CCSTOR, SIZE, STPT, XC
|
||||
C IT IS ASSUMED THAT THE GRAPH HAS AT MOST 50 CONNECTED COMPONENTS.
|
||||
COMMON /CC/ XC, SIZE(5000), STPT(5000)
|
||||
SORT2 = 0
|
||||
IF (XC.EQ.0) RETURN
|
||||
SORT2 = 1
|
||||
IND = XC
|
||||
10 ITEST = 0
|
||||
IND = IND - 1
|
||||
IF (IND.LT.1) RETURN
|
||||
DO 20 I=1,IND
|
||||
J = I + 1
|
||||
IF (SIZE(I).GE.SIZE(J)) GO TO 20
|
||||
ITEST = 1
|
||||
TEMP = SIZE(I)
|
||||
SIZE(I) = SIZE(J)
|
||||
SIZE(J) = TEMP
|
||||
TEMP = STPT(I)
|
||||
STPT(I) = STPT(J)
|
||||
STPT(J) = TEMP
|
||||
20 CONTINUE
|
||||
IF (ITEST.EQ.1) GO TO 10
|
||||
RETURN
|
||||
END
|
||||
SUBROUTINE PIKLVL(LVLS1, LVLS2, CCSTOR, IDFLT, ISDIR)
|
||||
C PIKLVL CHOOSES THE LEVEL STRUCTURE USED IN NUMBERING GRAPH
|
||||
C LVLS1- ON INPUT CONTAINS FORWARD LEVELING INFO
|
||||
C LVLS2- ON INPUT CONTAINS REVERSE LEVELING INFO
|
||||
C ON OUTPUT THE FINAL LEVEL STRUCTURE CHOSEN
|
||||
C CCSTOR- ON INPUT CONTAINS CONNECTED COMPONENT INFO
|
||||
C IDFLT- ON INPUT =1 IF WDTH LVLS1.LE.WDTH LVLS2, =2 OTHERWISE
|
||||
C NHIGH KEEPS TRACK OF LEVEL WIDTHS FOR HIGH NUMBERING
|
||||
C NLOW- KEEPS TRACK OF LEVEL WIDTHS FOR LOW NUMBERING
|
||||
C NACUM- KEEPS TRACK OF LEVEL WIDTHS FOR CHOSEN LEVEL STRUCTURE
|
||||
C XC- NUMBER OF CONNECTED COMPONENTS
|
||||
C SIZE(I)- SIZE OF ITH CONNECTED COMPONENT
|
||||
C STPT(I)- INDEX INTO CCSTORE OF 1ST NODE IN ITH CON COMPT
|
||||
C ISDIR- FLAG WHICH INDICATES WHICH WAY THE LARGEST CONNECTED
|
||||
C COMPONENT FELL. =+1 IF LOW AND -1 IF HIGH
|
||||
INTEGER CCSTOR, SIZE, STPT, XC, END
|
||||
COMMON /GRA/ N, IDPTH, IDEG
|
||||
C IT IS ASSUMED THAT THE GRAPH HAS AT MOST 50 COMPONENTS AND
|
||||
C THAT THERE ARE AT MOST 100 LEVELS.
|
||||
COMMON /LVLW/ NHIGH(10000), NLOW(10000), NACUM(10000)
|
||||
COMMON /CC/ XC, SIZE(5000), STPT(5000)
|
||||
DIMENSION LVLS1(1), LVLS2(1), CCSTOR(1)
|
||||
C FOR EACH CONNECTED COMPONENT DO
|
||||
DO 80 I=1,XC
|
||||
J = STPT(I)
|
||||
END = SIZE(I) + J - 1
|
||||
C SET NHIGH AND NLOW EQUAL TO NACUM
|
||||
DO 10 K=1,IDPTH
|
||||
NHIGH(K) = NACUM(K)
|
||||
NLOW(K) = NACUM(K)
|
||||
10 CONTINUE
|
||||
C UPDATE NHIGH AND NLOW FOR EACH NODE IN CONNECTED COMPONENT
|
||||
DO 20 K=J,END
|
||||
INODE = CCSTOR(K)
|
||||
LVLNH = LVLS1(INODE)
|
||||
NHIGH(LVLNH) = NHIGH(LVLNH) + 1
|
||||
LVLNL = LVLS2(INODE)
|
||||
NLOW(LVLNL) = NLOW(LVLNL) + 1
|
||||
20 CONTINUE
|
||||
MAX1 = 0
|
||||
MAX2 = 0
|
||||
C SET MAX1=LARGEST NEW NUMBER IN NHIGH
|
||||
C SET MAX2=LARGEST NEW NUMBER IN NLOW
|
||||
DO 30 K=1,IDPTH
|
||||
IF (2*NACUM(K).EQ.NLOW(K)+NHIGH(K)) GO TO 30
|
||||
IF (NHIGH(K).GT.MAX1) MAX1 = NHIGH(K)
|
||||
IF (NLOW(K).GT.MAX2) MAX2 = NLOW(K)
|
||||
30 CONTINUE
|
||||
C SET IT= NUMBER OF LEVEL STRUCTURE TO BE USED
|
||||
IT = 1
|
||||
IF (MAX1.GT.MAX2) IT = 2
|
||||
IF (MAX1.EQ.MAX2) IT = IDFLT
|
||||
IF (IT.EQ.2) GO TO 60
|
||||
IF (I.EQ.1) ISDIR = -1
|
||||
C COPY LVLS1 INTO LVLS2 FOR EACH NODE IN CONNECTED COMPONENT
|
||||
DO 40 K=J,END
|
||||
INODE = CCSTOR(K)
|
||||
LVLS2(INODE) = LVLS1(INODE)
|
||||
40 CONTINUE
|
||||
C UPDATE NACUM TO BE THE SAME AS NHIGH
|
||||
DO 50 K=1,IDPTH
|
||||
NACUM(K) = NHIGH(K)
|
||||
50 CONTINUE
|
||||
GO TO 80
|
||||
C UPDATE NACUM TO BE THE SAME AS NLOW
|
||||
60 DO 70 K=1,IDPTH
|
||||
NACUM(K) = NLOW(K)
|
||||
70 CONTINUE
|
||||
80 CONTINUE
|
||||
RETURN
|
||||
END
|
||||
SUBROUTINE NUMBER(SND, NUM, NDSTK, LVLS2, NDEG, RENUM, LVLST,
|
||||
* LSTPT, NR, NFLG, IBW2, IPF2, IPFA, ISDIR)
|
||||
C NUMBER PRODUCES THE NUMBERING OF THE GRAPH FOR MIN BANDWIDTH
|
||||
C SND- ON INPUT THE NODE TO BEGIN NUMBERING ON
|
||||
C NUM- ON INPUT AND OUTPUT, THE NEXT AVAILABLE NUMBER
|
||||
C LVLS2- THE LEVEL STRUCTURE TO BE USED IN NUMBERING
|
||||
C RENUM- THE ARRAY USED TO STORE THE NEW NUMBERING
|
||||
C LVLST- ON OUTPUT CONTAINS LEVEL STRUCTURE
|
||||
C LSTPT(I)- ON OUTPUT, INDEX INTO LVLST TO FIRST NODE IN ITH LVL
|
||||
C LSTPT(I+1) - LSTPT(I) = NUMBER OF NODES IN ITH LVL
|
||||
C NFLG- =+1 IF SND IS FORWARD END OF PSEUDO-DIAM
|
||||
C =-1 IF SND IS REVERSE END OF PSEUDO-DIAM
|
||||
C IBW2- BANDWIDTH OF NEW NUMBERING COMPUTED BY NUMBER
|
||||
C IPF2- PROFILE OF NEW NUMBERING COMPUTED BY NUMBER
|
||||
C IPFA- WORKING STORAGE USED TO COMPUTE PROFILE AND BANDWIDTH
|
||||
C ISDIR- INDICATES STEP DIRECTION USED IN NUMBERING(+1 OR -1)
|
||||
C USE INTEGER*2 NDSTK WITH AN IBM 360 OR 370.
|
||||
INTEGER NDSTK
|
||||
INTEGER SND, STKA, STKB, STKC, STKD, XA, XB, XC, XD, CX, END,
|
||||
* RENUM, TEST
|
||||
COMMON /GRA/ N, IDPTH, IDEG
|
||||
C THE STORAGE IN COMMON BLOCKS CC AND LVLW IS NOW FREE AND CAN
|
||||
C BE USED FOR STACKS.
|
||||
COMMON /LVLW/ STKA(10000), STKB(10000), STKC(10000)
|
||||
COMMON /CC/ STKD(10001)
|
||||
DIMENSION IPFA(1)
|
||||
DIMENSION NDSTK(NR,1), LVLS2(1), NDEG(1), RENUM(1), LVLST(1),
|
||||
* LSTPT(1)
|
||||
C SET UP LVLST AND LSTPT FROM LVLS2
|
||||
DO 10 I=1,N
|
||||
IPFA(I) = 0
|
||||
10 CONTINUE
|
||||
write(0,*) 'NUMBER: initialization on NSTPT'
|
||||
NSTPT = 1
|
||||
DO 30 I=1,IDPTH
|
||||
LSTPT(I) = NSTPT
|
||||
DO 20 J=1,N
|
||||
IF (LVLS2(J).NE.I) GO TO 20
|
||||
LVLST(NSTPT) = J
|
||||
NSTPT = NSTPT + 1
|
||||
20 CONTINUE
|
||||
30 CONTINUE
|
||||
LSTPT(IDPTH+1) = NSTPT
|
||||
write(0,*) 'NUMBER: initialization completed', idpth,nstpt
|
||||
C STKA, STKB, STKC AND STKD ARE STACKS WITH POINTERS
|
||||
C XA,XB,XC, AND XD. CX IS A SPECIAL POINTER INTO STKC WHICH
|
||||
C INDICATES THE PARTICULAR NODE BEING PROCESSED.
|
||||
C LVLN KEEPS TRACK OF THE LEVEL WE ARE WORKING AT.
|
||||
C INITIALLY STKC CONTAINS ONLY THE INITIAL NODE, SND.
|
||||
LVLN = 0
|
||||
IF (NFLG.LT.0) LVLN = IDPTH + 1
|
||||
XC = 1
|
||||
STKC(XC) = SND
|
||||
40 CX = 1
|
||||
XD = 0
|
||||
LVLN = LVLN + NFLG
|
||||
LST = LSTPT(LVLN)
|
||||
LND = LSTPT(LVLN+1) - 1
|
||||
C BEGIN PROCESSING NODE STKC(CX)
|
||||
50 IPRO = STKC(CX)
|
||||
RENUM(IPRO) = NUM
|
||||
NUM = NUM + ISDIR
|
||||
END = NDEG(IPRO)
|
||||
XA = 0
|
||||
XB = 0
|
||||
C CHECK ALL ADJACENT NODES
|
||||
DO 80 I=1,END
|
||||
c$$$ write(0,*) 'NUMBER: loop 80 ',i,end, lvln
|
||||
TEST = NDSTK(IPRO,I)
|
||||
INX = RENUM(TEST)
|
||||
C ONLY NODES NOT NUMBERED OR ALREADY ON A STACK ARE ADDED
|
||||
IF (INX.EQ.0) GO TO 60
|
||||
IF (INX.LT.0) GO TO 80
|
||||
C DO PRELIMINARY BANDWIDTH AND PROFILE CALCULATIONS
|
||||
NBW = (RENUM(IPRO)-INX)*ISDIR
|
||||
IF (ISDIR.GT.0) INX = RENUM(IPRO)
|
||||
IF (IPFA(INX).LT.NBW) IPFA(INX) = NBW
|
||||
GO TO 80
|
||||
60 RENUM(TEST) = -1
|
||||
C PUT NODES ON SAME LEVEL ON STKA, ALL OTHERS ON STKB
|
||||
IF (LVLS2(TEST).EQ.LVLS2(IPRO)) GO TO 70
|
||||
XB = XB + 1
|
||||
if (xb>10000) write(0,*) 'XB>10000 in NUMBER'
|
||||
STKB(XB) = TEST
|
||||
GO TO 80
|
||||
70 XA = XA + 1
|
||||
if (xa>10000) write(0,*) 'XA>10000 in NUMBER'
|
||||
STKA(XA) = TEST
|
||||
80 CONTINUE
|
||||
C SORT STKA AND STKB INTO INCREASING DEGREE AND ADD STKA TO STKC
|
||||
C AND STKB TO STKD
|
||||
IF (XA.EQ.0) GO TO 100
|
||||
IF (XA.EQ.1) GO TO 90
|
||||
CALL SORTDG(STKC, STKA, XC, XA, NDEG)
|
||||
GO TO 100
|
||||
90 XC = XC + 1
|
||||
if (xc>10000) write(0,*) 'XC>10000 in NUMBER'
|
||||
STKC(XC) = STKA(XA)
|
||||
|
||||
100 IF (XB.EQ.0) GO TO 120
|
||||
IF (XB.EQ.1) GO TO 110
|
||||
CALL SORTDG(STKD, STKB, XD, XB, NDEG)
|
||||
GO TO 120
|
||||
110 XD = XD + 1
|
||||
if (xd>10000) write(0,*) 'XD>10000 in NUMBER'
|
||||
STKD(XD) = STKB(XB)
|
||||
C BE SURE TO PROCESS ALL NODES IN STKC
|
||||
120 CX = CX + 1
|
||||
if (cx>10000) write(0,*) 'CX>10000 in NUMBER'
|
||||
IF (XC.GE.CX) GO TO 50
|
||||
C WHEN STKC IS EXHAUSTED LOOK FOR MIN DEGREE NODE IN SAME LEVEL
|
||||
C WHICH HAS NOT BEEN PROCESSED
|
||||
MAX = IDEG + 1
|
||||
SND = N + 1
|
||||
DO 130 I=LST,LND
|
||||
TEST = LVLST(I)
|
||||
IF (RENUM(TEST).NE.0) GO TO 130
|
||||
IF (NDEG(TEST).GE.MAX) GO TO 130
|
||||
RENUM(SND) = 0
|
||||
RENUM(TEST) = -1
|
||||
MAX = NDEG(TEST)
|
||||
SND = TEST
|
||||
130 CONTINUE
|
||||
IF (SND.EQ.N+1) GO TO 140
|
||||
XC = XC + 1
|
||||
if (xc>10000) write(0,*) 'XC>10000 ...2... in NUMBER'
|
||||
STKC(XC) = SND
|
||||
GO TO 50
|
||||
C IF STKD IS EMPTY WE ARE DONE, OTHERWISE COPY STKD ONTO STKC
|
||||
C AND BEGIN PROCESSING NEW STKC
|
||||
140 IF (XD.EQ.0) GO TO 160
|
||||
DO 150 I=1,XD
|
||||
STKC(I) = STKD(I)
|
||||
150 CONTINUE
|
||||
XC = XD
|
||||
GO TO 40
|
||||
C DO FINAL BANDWIDTH AND PROFILE CALCULATIONS
|
||||
160 DO 170 I=1,N
|
||||
IF (IPFA(I).GT.IBW2) IBW2 = IPFA(I)
|
||||
IPF2 = IPF2 + IPFA(I)
|
||||
170 CONTINUE
|
||||
RETURN
|
||||
END
|
Loading…
Reference in New Issue