|
|
|
@ -280,8 +280,8 @@ An integer value; 0 means no error has been detected.
|
|
|
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
\clearpage\subsection*{psb\_geamax --- Infinity-Norm of Vector}
|
|
|
|
|
\addcontentsline{toc}{subsection}{psb\_geamax}
|
|
|
|
|
\clearpage\subsection*{psb\_normi --- Infinity-Norm of Vector}
|
|
|
|
|
\addcontentsline{toc}{subsection}{psb\_normi}
|
|
|
|
|
|
|
|
|
|
This function computes
|
|
|
|
|
the infinity-norm of a vector $x$.\\
|
|
|
|
@ -297,6 +297,7 @@ else if $x$ is a complex vector then it computes the infinity-norm as:
|
|
|
|
|
|
|
|
|
|
\begin{verbatim}
|
|
|
|
|
psb_geamax(x, desc_a, info)
|
|
|
|
|
psb_normi(x, desc_a, info)
|
|
|
|
|
\end{verbatim}
|
|
|
|
|
%% \syntax*{psb\_geamax}{x, desc\_a, info, jx}
|
|
|
|
|
|
|
|
|
@ -420,8 +421,8 @@ An integer value; 0 means no error has been detected.
|
|
|
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
\clearpage\subsection*{psb\_geasum --- 1-Norm of Vector}
|
|
|
|
|
\addcontentsline{toc}{subsection}{psb\_geasum}
|
|
|
|
|
\clearpage\subsection*{psb\_norm1 --- 1-Norm of Vector}
|
|
|
|
|
\addcontentsline{toc}{subsection}{psb\_norm1}
|
|
|
|
|
|
|
|
|
|
This function computes the 1-norm of a vector $x$.\\
|
|
|
|
|
If $x$ is a real vector
|
|
|
|
@ -433,6 +434,7 @@ else if $x$ is a complex vector then it computes 1-norm as:
|
|
|
|
|
|
|
|
|
|
\begin{verbatim}
|
|
|
|
|
psb_geasum(x, desc_a, info)
|
|
|
|
|
psb_norm1(x, desc_a, info)
|
|
|
|
|
\end{verbatim}
|
|
|
|
|
|
|
|
|
|
\begin{table}[h]
|
|
|
|
@ -556,8 +558,8 @@ An integer value; 0 means no error has been detected.
|
|
|
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
\clearpage\subsection*{psb\_genrm2 --- 2-Norm of Vector}
|
|
|
|
|
\addcontentsline{toc}{subsection}{psb\_genrm2}
|
|
|
|
|
\clearpage\subsection*{psb\_norm2 --- 2-Norm of Vector}
|
|
|
|
|
\addcontentsline{toc}{subsection}{psb\_norm2}
|
|
|
|
|
|
|
|
|
|
This function computes the 2-norm of a vector $x$.\\
|
|
|
|
|
If $x$ is a real vector
|
|
|
|
@ -588,6 +590,7 @@ Long Precision Real&Long Precision Complex & psb\_genrm2 \\
|
|
|
|
|
|
|
|
|
|
\begin{verbatim}
|
|
|
|
|
psb_genrm2(x, desc_a, info)
|
|
|
|
|
psb_norm2(x, desc_a, info)
|
|
|
|
|
\end{verbatim}
|
|
|
|
|
%% \syntax*{psb\_genrm2}{x, desc\_a, info, jx}
|
|
|
|
|
|
|
|
|
@ -698,8 +701,8 @@ An integer value; 0 means no error has been detected.
|
|
|
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
\clearpage\subsection*{psb\_spnrm1 --- 1-Norm of Sparse Matrix}
|
|
|
|
|
\addcontentsline{toc}{subsection}{psb\_spnrm1}
|
|
|
|
|
\clearpage\subsection*{psb\_norm1 --- 1-Norm of Sparse Matrix}
|
|
|
|
|
\addcontentsline{toc}{subsection}{psb\_norm1}
|
|
|
|
|
|
|
|
|
|
This function computes the 1-norm of a matrix $A$:\\
|
|
|
|
|
|
|
|
|
@ -727,6 +730,7 @@ Long Precision Complex & psb\_spnrm1 \\
|
|
|
|
|
|
|
|
|
|
\begin{verbatim}
|
|
|
|
|
psb_spnrm1(A, desc_a, info)
|
|
|
|
|
psb_norm1(A, desc_a, info)
|
|
|
|
|
\end{verbatim}
|
|
|
|
|
|
|
|
|
|
\begin{description}
|
|
|
|
@ -762,8 +766,8 @@ An integer value; 0 means no error has been detected.
|
|
|
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
\clearpage\subsection*{psb\_spnrmi --- Infinity Norm of Sparse Matrix}
|
|
|
|
|
\addcontentsline{toc}{subsection}{psb\_spnrmi}
|
|
|
|
|
\clearpage\subsection*{psb\_normi --- Infinity Norm of Sparse Matrix}
|
|
|
|
|
\addcontentsline{toc}{subsection}{psb\_normi}
|
|
|
|
|
|
|
|
|
|
This function computes the infinity-norm of a matrix $A$:\\
|
|
|
|
|
|
|
|
|
@ -791,6 +795,7 @@ Long Precision Complex & psb\_spnrmi \\
|
|
|
|
|
|
|
|
|
|
\begin{verbatim}
|
|
|
|
|
psb_spnrmi(A, desc_a, info)
|
|
|
|
|
psb_normi(A, desc_a, info)
|
|
|
|
|
\end{verbatim}
|
|
|
|
|
|
|
|
|
|
\begin{description}
|
|
|
|
|