diff --git a/base/modules/psb_c_base_mat_mod.f90 b/base/modules/psb_c_base_mat_mod.f90 index 7c97d6a6..b4eeddd3 100644 --- a/base/modules/psb_c_base_mat_mod.f90 +++ b/base/modules/psb_c_base_mat_mod.f90 @@ -601,13 +601,21 @@ module psb_c_base_mat_mod end interface ! - ! Matrix-vector products. - ! Y = alpha*A*X + beta*Y - ! - ! vect_mv relies on csmv for those data types - ! not specifically using the encapsulation to handle - ! foreign data. - ! + !> Function csmm: + !! \brief Product by a dense rank 2 array. + !! + !! Compute + !! Y = alpha*op(A)*X + beta*Y + !! + !! \param alpha Scaling factor for Ax + !! \param A the input sparse matrix + !! \param x(:,:) the input dense X + !! \param beta Scaling factor for y + !! \param y(:,:) the input/output dense Y + !! \param info return code + !! \param trans [N] Whether to use A (N), its transpose (T) + !! or its conjugate transpose (C) + !! ! interface subroutine psb_c_base_csmm(alpha,a,x,beta,y,info,trans) @@ -620,6 +628,22 @@ module psb_c_base_mat_mod end subroutine psb_c_base_csmm end interface + !> Function csmv: + !! \brief Product by a dense rank 1 array. + !! + !! Compute + !! Y = alpha*op(A)*X + beta*Y + !! + !! \param alpha Scaling factor for Ax + !! \param A the input sparse matrix + !! \param x(:) the input dense X + !! \param beta Scaling factor for y + !! \param y(:) the input/output dense Y + !! \param info return code + !! \param trans [N] Whether to use A (N), its transpose (T) + !! or its conjugate transpose (C) + !! + ! interface subroutine psb_c_base_csmv(alpha,a,x,beta,y,info,trans) import :: psb_ipk_, psb_c_base_sparse_mat, psb_spk_ @@ -631,6 +655,22 @@ module psb_c_base_mat_mod end subroutine psb_c_base_csmv end interface + !> Function vect_mv: + !! \brief Product by an encapsulated array type(psb_c_vect_type) + !! + !! Compute + !! Y = alpha*op(A)*X + beta*Y + !! + !! \param alpha Scaling factor for Ax + !! \param A the input sparse matrix + !! \param x the input X + !! \param beta Scaling factor for y + !! \param y the input/output Y + !! \param info return code + !! \param trans [N] Whether to use A (N), its transpose (T) + !! or its conjugate transpose (C) + !! + ! interface subroutine psb_c_base_vect_mv(alpha,a,x,beta,y,info,trans) import :: psb_ipk_, psb_c_base_sparse_mat, psb_spk_, psb_c_base_vect_type @@ -649,6 +689,26 @@ module psb_c_base_mat_mod ! level, and they take care of the SCALE and D control arguments. ! So the derived classes need to override only the INNER_ methods. ! + + ! + !> Function cssm: + !! \brief Triangular system solve by a dense rank 2 array. + !! + !! Compute + !! Y = alpha*op(A^-1)*X + beta*Y + !! + !! Internal workhorse called by cssm. + !! + !! \param alpha Scaling factor for Ax + !! \param A the input sparse matrix + !! \param x(:,:) the input dense X + !! \param beta Scaling factor for y + !! \param y(:,:) the input/output dense Y + !! \param info return code + !! \param trans [N] Whether to use A (N), its transpose (T) + !! or its conjugate transpose (C) + !! + ! interface subroutine psb_c_base_inner_cssm(alpha,a,x,beta,y,info,trans) import :: psb_ipk_, psb_c_base_sparse_mat, psb_spk_ @@ -660,6 +720,29 @@ module psb_c_base_mat_mod end subroutine psb_c_base_inner_cssm end interface + + ! + !> Function cssv: + !! \brief Triangular system solve by a dense rank 1 array. + !! + !! Compute + !! Y = alpha*op(A^-1)*X + beta*Y + !! + !! Internal workhorse called by cssv. + !! + !! \param alpha Scaling factor for Ax + !! \param A the input sparse matrix + !! \param x(:) the input dense X + !! \param beta Scaling factor for y + !! \param y(:) the input/output dense Y + !! \param info return code + !! \param trans [N] Whether to use A (N), its transpose (T) + !! or its conjugate transpose (C) + !! \param scale [N] Apply a scaling on Right (R) i.e. ADX + !! or on the Left (L) i.e. DAx + !! \param D(:) [none] Diagonal for scaling. + !! + ! interface subroutine psb_c_base_inner_cssv(alpha,a,x,beta,y,info,trans) import :: psb_ipk_, psb_c_base_sparse_mat, psb_spk_ @@ -671,6 +754,25 @@ module psb_c_base_mat_mod end subroutine psb_c_base_inner_cssv end interface + ! + !> Function inner_vect_cssv: + !! \brief Triangular system solve by + !! an encapsulated array type(psb_c_vect_type) + !! + !! Compute + !! Y = alpha*op(A^-1)*X + beta*Y + !! + !! Internal workhorse called by vect_cssv. + !! + !! \param alpha Scaling factor for Ax + !! \param A the input sparse matrix + !! \param x the input dense X + !! \param beta Scaling factor for y + !! \param y the input/output dense Y + !! \param info return code + !! \param trans [N] Whether to use A (N), its transpose (T) + !! or its conjugate transpose (C) + ! interface subroutine psb_c_base_inner_vect_sv(alpha,a,x,beta,y,info,trans) import :: psb_ipk_, psb_c_base_sparse_mat, psb_spk_, psb_c_base_vect_type @@ -682,6 +784,26 @@ module psb_c_base_mat_mod end subroutine psb_c_base_inner_vect_sv end interface + ! + !> Function cssm: + !! \brief Triangular system solve by a dense rank 2 array. + !! + !! Compute + !! Y = alpha*op(A^-1)*X + beta*Y + !! + !! \param alpha Scaling factor for Ax + !! \param A the input sparse matrix + !! \param x(:,:) the input dense X + !! \param beta Scaling factor for y + !! \param y(:,:) the input/output dense Y + !! \param info return code + !! \param trans [N] Whether to use A (N), its transpose (T) + !! or its conjugate transpose (C) + !! \param scale [N] Apply a scaling on Right (R) i.e. ADX + !! or on the Left (L) i.e. DAx + !! \param D(:) [none] Diagonal for scaling. + !! + ! interface subroutine psb_c_base_cssm(alpha,a,x,beta,y,info,trans,scale,d) import :: psb_ipk_, psb_c_base_sparse_mat, psb_spk_ @@ -694,6 +816,26 @@ module psb_c_base_mat_mod end subroutine psb_c_base_cssm end interface + ! + !> Function cssv: + !! \brief Triangular system solve by a dense rank 1 array. + !! + !! Compute + !! Y = alpha*op(A^-1)*X + beta*Y + !! + !! \param alpha Scaling factor for Ax + !! \param A the input sparse matrix + !! \param x(:) the input dense X + !! \param beta Scaling factor for y + !! \param y(:) the input/output dense Y + !! \param info return code + !! \param trans [N] Whether to use A (N), its transpose (T) + !! or its conjugate transpose (C) + !! \param scale [N] Apply a scaling on Right (R) i.e. ADX + !! or on the Left (L) i.e. DAx + !! \param D(:) [none] Diagonal for scaling. + !! + ! interface subroutine psb_c_base_cssv(alpha,a,x,beta,y,info,trans,scale,d) import :: psb_ipk_, psb_c_base_sparse_mat, psb_spk_ @@ -705,7 +847,28 @@ module psb_c_base_mat_mod complex(psb_spk_), intent(in), optional :: d(:) end subroutine psb_c_base_cssv end interface - + + ! + !> Function vect_cssv: + !! \brief Triangular system solve by + !! an encapsulated array type(psb_c_vect_type) + !! + !! Compute + !! Y = alpha*op(A^-1)*X + beta*Y + !! + !! \param alpha Scaling factor for Ax + !! \param A the input sparse matrix + !! \param x the input dense X + !! \param beta Scaling factor for y + !! \param y the input/output dense Y + !! \param info return code + !! \param trans [N] Whether to use A (N), its transpose (T) + !! or its conjugate transpose (C) + !! \param scale [N] Apply a scaling on Right (R) i.e. ADX + !! or on the Left (L) i.e. DAx + !! \param D [none] Diagonal for scaling. + !! + ! interface subroutine psb_c_base_vect_cssv(alpha,a,x,beta,y,info,trans,scale,d) import :: psb_ipk_, psb_c_base_sparse_mat, psb_spk_,psb_c_base_vect_type diff --git a/base/modules/psb_d_base_mat_mod.f90 b/base/modules/psb_d_base_mat_mod.f90 index 83636d92..ae703050 100644 --- a/base/modules/psb_d_base_mat_mod.f90 +++ b/base/modules/psb_d_base_mat_mod.f90 @@ -601,13 +601,21 @@ module psb_d_base_mat_mod end interface ! - ! Matrix-vector products. - ! Y = alpha*A*X + beta*Y - ! - ! vect_mv relies on csmv for those data types - ! not specifically using the encapsulation to handle - ! foreign data. - ! + !> Function csmm: + !! \brief Product by a dense rank 2 array. + !! + !! Compute + !! Y = alpha*op(A)*X + beta*Y + !! + !! \param alpha Scaling factor for Ax + !! \param A the input sparse matrix + !! \param x(:,:) the input dense X + !! \param beta Scaling factor for y + !! \param y(:,:) the input/output dense Y + !! \param info return code + !! \param trans [N] Whether to use A (N), its transpose (T) + !! or its conjugate transpose (C) + !! ! interface subroutine psb_d_base_csmm(alpha,a,x,beta,y,info,trans) @@ -620,6 +628,22 @@ module psb_d_base_mat_mod end subroutine psb_d_base_csmm end interface + !> Function csmv: + !! \brief Product by a dense rank 1 array. + !! + !! Compute + !! Y = alpha*op(A)*X + beta*Y + !! + !! \param alpha Scaling factor for Ax + !! \param A the input sparse matrix + !! \param x(:) the input dense X + !! \param beta Scaling factor for y + !! \param y(:) the input/output dense Y + !! \param info return code + !! \param trans [N] Whether to use A (N), its transpose (T) + !! or its conjugate transpose (C) + !! + ! interface subroutine psb_d_base_csmv(alpha,a,x,beta,y,info,trans) import :: psb_ipk_, psb_d_base_sparse_mat, psb_dpk_ @@ -631,6 +655,22 @@ module psb_d_base_mat_mod end subroutine psb_d_base_csmv end interface + !> Function vect_mv: + !! \brief Product by an encapsulated array type(psb_d_vect_type) + !! + !! Compute + !! Y = alpha*op(A)*X + beta*Y + !! + !! \param alpha Scaling factor for Ax + !! \param A the input sparse matrix + !! \param x the input X + !! \param beta Scaling factor for y + !! \param y the input/output Y + !! \param info return code + !! \param trans [N] Whether to use A (N), its transpose (T) + !! or its conjugate transpose (C) + !! + ! interface subroutine psb_d_base_vect_mv(alpha,a,x,beta,y,info,trans) import :: psb_ipk_, psb_d_base_sparse_mat, psb_dpk_, psb_d_base_vect_type @@ -649,6 +689,26 @@ module psb_d_base_mat_mod ! level, and they take care of the SCALE and D control arguments. ! So the derived classes need to override only the INNER_ methods. ! + + ! + !> Function cssm: + !! \brief Triangular system solve by a dense rank 2 array. + !! + !! Compute + !! Y = alpha*op(A^-1)*X + beta*Y + !! + !! Internal workhorse called by cssm. + !! + !! \param alpha Scaling factor for Ax + !! \param A the input sparse matrix + !! \param x(:,:) the input dense X + !! \param beta Scaling factor for y + !! \param y(:,:) the input/output dense Y + !! \param info return code + !! \param trans [N] Whether to use A (N), its transpose (T) + !! or its conjugate transpose (C) + !! + ! interface subroutine psb_d_base_inner_cssm(alpha,a,x,beta,y,info,trans) import :: psb_ipk_, psb_d_base_sparse_mat, psb_dpk_ @@ -660,6 +720,29 @@ module psb_d_base_mat_mod end subroutine psb_d_base_inner_cssm end interface + + ! + !> Function cssv: + !! \brief Triangular system solve by a dense rank 1 array. + !! + !! Compute + !! Y = alpha*op(A^-1)*X + beta*Y + !! + !! Internal workhorse called by cssv. + !! + !! \param alpha Scaling factor for Ax + !! \param A the input sparse matrix + !! \param x(:) the input dense X + !! \param beta Scaling factor for y + !! \param y(:) the input/output dense Y + !! \param info return code + !! \param trans [N] Whether to use A (N), its transpose (T) + !! or its conjugate transpose (C) + !! \param scale [N] Apply a scaling on Right (R) i.e. ADX + !! or on the Left (L) i.e. DAx + !! \param D(:) [none] Diagonal for scaling. + !! + ! interface subroutine psb_d_base_inner_cssv(alpha,a,x,beta,y,info,trans) import :: psb_ipk_, psb_d_base_sparse_mat, psb_dpk_ @@ -671,6 +754,25 @@ module psb_d_base_mat_mod end subroutine psb_d_base_inner_cssv end interface + ! + !> Function inner_vect_cssv: + !! \brief Triangular system solve by + !! an encapsulated array type(psb_d_vect_type) + !! + !! Compute + !! Y = alpha*op(A^-1)*X + beta*Y + !! + !! Internal workhorse called by vect_cssv. + !! + !! \param alpha Scaling factor for Ax + !! \param A the input sparse matrix + !! \param x the input dense X + !! \param beta Scaling factor for y + !! \param y the input/output dense Y + !! \param info return code + !! \param trans [N] Whether to use A (N), its transpose (T) + !! or its conjugate transpose (C) + ! interface subroutine psb_d_base_inner_vect_sv(alpha,a,x,beta,y,info,trans) import :: psb_ipk_, psb_d_base_sparse_mat, psb_dpk_, psb_d_base_vect_type @@ -682,6 +784,26 @@ module psb_d_base_mat_mod end subroutine psb_d_base_inner_vect_sv end interface + ! + !> Function cssm: + !! \brief Triangular system solve by a dense rank 2 array. + !! + !! Compute + !! Y = alpha*op(A^-1)*X + beta*Y + !! + !! \param alpha Scaling factor for Ax + !! \param A the input sparse matrix + !! \param x(:,:) the input dense X + !! \param beta Scaling factor for y + !! \param y(:,:) the input/output dense Y + !! \param info return code + !! \param trans [N] Whether to use A (N), its transpose (T) + !! or its conjugate transpose (C) + !! \param scale [N] Apply a scaling on Right (R) i.e. ADX + !! or on the Left (L) i.e. DAx + !! \param D(:) [none] Diagonal for scaling. + !! + ! interface subroutine psb_d_base_cssm(alpha,a,x,beta,y,info,trans,scale,d) import :: psb_ipk_, psb_d_base_sparse_mat, psb_dpk_ @@ -694,6 +816,26 @@ module psb_d_base_mat_mod end subroutine psb_d_base_cssm end interface + ! + !> Function cssv: + !! \brief Triangular system solve by a dense rank 1 array. + !! + !! Compute + !! Y = alpha*op(A^-1)*X + beta*Y + !! + !! \param alpha Scaling factor for Ax + !! \param A the input sparse matrix + !! \param x(:) the input dense X + !! \param beta Scaling factor for y + !! \param y(:) the input/output dense Y + !! \param info return code + !! \param trans [N] Whether to use A (N), its transpose (T) + !! or its conjugate transpose (C) + !! \param scale [N] Apply a scaling on Right (R) i.e. ADX + !! or on the Left (L) i.e. DAx + !! \param D(:) [none] Diagonal for scaling. + !! + ! interface subroutine psb_d_base_cssv(alpha,a,x,beta,y,info,trans,scale,d) import :: psb_ipk_, psb_d_base_sparse_mat, psb_dpk_ @@ -705,7 +847,28 @@ module psb_d_base_mat_mod real(psb_dpk_), intent(in), optional :: d(:) end subroutine psb_d_base_cssv end interface - + + ! + !> Function vect_cssv: + !! \brief Triangular system solve by + !! an encapsulated array type(psb_d_vect_type) + !! + !! Compute + !! Y = alpha*op(A^-1)*X + beta*Y + !! + !! \param alpha Scaling factor for Ax + !! \param A the input sparse matrix + !! \param x the input dense X + !! \param beta Scaling factor for y + !! \param y the input/output dense Y + !! \param info return code + !! \param trans [N] Whether to use A (N), its transpose (T) + !! or its conjugate transpose (C) + !! \param scale [N] Apply a scaling on Right (R) i.e. ADX + !! or on the Left (L) i.e. DAx + !! \param D [none] Diagonal for scaling. + !! + ! interface subroutine psb_d_base_vect_cssv(alpha,a,x,beta,y,info,trans,scale,d) import :: psb_ipk_, psb_d_base_sparse_mat, psb_dpk_,psb_d_base_vect_type diff --git a/base/modules/psb_s_base_mat_mod.f90 b/base/modules/psb_s_base_mat_mod.f90 index 0bd5482e..4b1391e4 100644 --- a/base/modules/psb_s_base_mat_mod.f90 +++ b/base/modules/psb_s_base_mat_mod.f90 @@ -601,13 +601,21 @@ module psb_s_base_mat_mod end interface ! - ! Matrix-vector products. - ! Y = alpha*A*X + beta*Y - ! - ! vect_mv relies on csmv for those data types - ! not specifically using the encapsulation to handle - ! foreign data. - ! + !> Function csmm: + !! \brief Product by a dense rank 2 array. + !! + !! Compute + !! Y = alpha*op(A)*X + beta*Y + !! + !! \param alpha Scaling factor for Ax + !! \param A the input sparse matrix + !! \param x(:,:) the input dense X + !! \param beta Scaling factor for y + !! \param y(:,:) the input/output dense Y + !! \param info return code + !! \param trans [N] Whether to use A (N), its transpose (T) + !! or its conjugate transpose (C) + !! ! interface subroutine psb_s_base_csmm(alpha,a,x,beta,y,info,trans) @@ -620,6 +628,22 @@ module psb_s_base_mat_mod end subroutine psb_s_base_csmm end interface + !> Function csmv: + !! \brief Product by a dense rank 1 array. + !! + !! Compute + !! Y = alpha*op(A)*X + beta*Y + !! + !! \param alpha Scaling factor for Ax + !! \param A the input sparse matrix + !! \param x(:) the input dense X + !! \param beta Scaling factor for y + !! \param y(:) the input/output dense Y + !! \param info return code + !! \param trans [N] Whether to use A (N), its transpose (T) + !! or its conjugate transpose (C) + !! + ! interface subroutine psb_s_base_csmv(alpha,a,x,beta,y,info,trans) import :: psb_ipk_, psb_s_base_sparse_mat, psb_spk_ @@ -631,6 +655,22 @@ module psb_s_base_mat_mod end subroutine psb_s_base_csmv end interface + !> Function vect_mv: + !! \brief Product by an encapsulated array type(psb_s_vect_type) + !! + !! Compute + !! Y = alpha*op(A)*X + beta*Y + !! + !! \param alpha Scaling factor for Ax + !! \param A the input sparse matrix + !! \param x the input X + !! \param beta Scaling factor for y + !! \param y the input/output Y + !! \param info return code + !! \param trans [N] Whether to use A (N), its transpose (T) + !! or its conjugate transpose (C) + !! + ! interface subroutine psb_s_base_vect_mv(alpha,a,x,beta,y,info,trans) import :: psb_ipk_, psb_s_base_sparse_mat, psb_spk_, psb_s_base_vect_type @@ -649,6 +689,26 @@ module psb_s_base_mat_mod ! level, and they take care of the SCALE and D control arguments. ! So the derived classes need to override only the INNER_ methods. ! + + ! + !> Function cssm: + !! \brief Triangular system solve by a dense rank 2 array. + !! + !! Compute + !! Y = alpha*op(A^-1)*X + beta*Y + !! + !! Internal workhorse called by cssm. + !! + !! \param alpha Scaling factor for Ax + !! \param A the input sparse matrix + !! \param x(:,:) the input dense X + !! \param beta Scaling factor for y + !! \param y(:,:) the input/output dense Y + !! \param info return code + !! \param trans [N] Whether to use A (N), its transpose (T) + !! or its conjugate transpose (C) + !! + ! interface subroutine psb_s_base_inner_cssm(alpha,a,x,beta,y,info,trans) import :: psb_ipk_, psb_s_base_sparse_mat, psb_spk_ @@ -660,6 +720,29 @@ module psb_s_base_mat_mod end subroutine psb_s_base_inner_cssm end interface + + ! + !> Function cssv: + !! \brief Triangular system solve by a dense rank 1 array. + !! + !! Compute + !! Y = alpha*op(A^-1)*X + beta*Y + !! + !! Internal workhorse called by cssv. + !! + !! \param alpha Scaling factor for Ax + !! \param A the input sparse matrix + !! \param x(:) the input dense X + !! \param beta Scaling factor for y + !! \param y(:) the input/output dense Y + !! \param info return code + !! \param trans [N] Whether to use A (N), its transpose (T) + !! or its conjugate transpose (C) + !! \param scale [N] Apply a scaling on Right (R) i.e. ADX + !! or on the Left (L) i.e. DAx + !! \param D(:) [none] Diagonal for scaling. + !! + ! interface subroutine psb_s_base_inner_cssv(alpha,a,x,beta,y,info,trans) import :: psb_ipk_, psb_s_base_sparse_mat, psb_spk_ @@ -671,6 +754,25 @@ module psb_s_base_mat_mod end subroutine psb_s_base_inner_cssv end interface + ! + !> Function inner_vect_cssv: + !! \brief Triangular system solve by + !! an encapsulated array type(psb_s_vect_type) + !! + !! Compute + !! Y = alpha*op(A^-1)*X + beta*Y + !! + !! Internal workhorse called by vect_cssv. + !! + !! \param alpha Scaling factor for Ax + !! \param A the input sparse matrix + !! \param x the input dense X + !! \param beta Scaling factor for y + !! \param y the input/output dense Y + !! \param info return code + !! \param trans [N] Whether to use A (N), its transpose (T) + !! or its conjugate transpose (C) + ! interface subroutine psb_s_base_inner_vect_sv(alpha,a,x,beta,y,info,trans) import :: psb_ipk_, psb_s_base_sparse_mat, psb_spk_, psb_s_base_vect_type @@ -682,6 +784,26 @@ module psb_s_base_mat_mod end subroutine psb_s_base_inner_vect_sv end interface + ! + !> Function cssm: + !! \brief Triangular system solve by a dense rank 2 array. + !! + !! Compute + !! Y = alpha*op(A^-1)*X + beta*Y + !! + !! \param alpha Scaling factor for Ax + !! \param A the input sparse matrix + !! \param x(:,:) the input dense X + !! \param beta Scaling factor for y + !! \param y(:,:) the input/output dense Y + !! \param info return code + !! \param trans [N] Whether to use A (N), its transpose (T) + !! or its conjugate transpose (C) + !! \param scale [N] Apply a scaling on Right (R) i.e. ADX + !! or on the Left (L) i.e. DAx + !! \param D(:) [none] Diagonal for scaling. + !! + ! interface subroutine psb_s_base_cssm(alpha,a,x,beta,y,info,trans,scale,d) import :: psb_ipk_, psb_s_base_sparse_mat, psb_spk_ @@ -694,6 +816,26 @@ module psb_s_base_mat_mod end subroutine psb_s_base_cssm end interface + ! + !> Function cssv: + !! \brief Triangular system solve by a dense rank 1 array. + !! + !! Compute + !! Y = alpha*op(A^-1)*X + beta*Y + !! + !! \param alpha Scaling factor for Ax + !! \param A the input sparse matrix + !! \param x(:) the input dense X + !! \param beta Scaling factor for y + !! \param y(:) the input/output dense Y + !! \param info return code + !! \param trans [N] Whether to use A (N), its transpose (T) + !! or its conjugate transpose (C) + !! \param scale [N] Apply a scaling on Right (R) i.e. ADX + !! or on the Left (L) i.e. DAx + !! \param D(:) [none] Diagonal for scaling. + !! + ! interface subroutine psb_s_base_cssv(alpha,a,x,beta,y,info,trans,scale,d) import :: psb_ipk_, psb_s_base_sparse_mat, psb_spk_ @@ -705,7 +847,28 @@ module psb_s_base_mat_mod real(psb_spk_), intent(in), optional :: d(:) end subroutine psb_s_base_cssv end interface - + + ! + !> Function vect_cssv: + !! \brief Triangular system solve by + !! an encapsulated array type(psb_s_vect_type) + !! + !! Compute + !! Y = alpha*op(A^-1)*X + beta*Y + !! + !! \param alpha Scaling factor for Ax + !! \param A the input sparse matrix + !! \param x the input dense X + !! \param beta Scaling factor for y + !! \param y the input/output dense Y + !! \param info return code + !! \param trans [N] Whether to use A (N), its transpose (T) + !! or its conjugate transpose (C) + !! \param scale [N] Apply a scaling on Right (R) i.e. ADX + !! or on the Left (L) i.e. DAx + !! \param D [none] Diagonal for scaling. + !! + ! interface subroutine psb_s_base_vect_cssv(alpha,a,x,beta,y,info,trans,scale,d) import :: psb_ipk_, psb_s_base_sparse_mat, psb_spk_,psb_s_base_vect_type diff --git a/base/modules/psb_z_base_mat_mod.f90 b/base/modules/psb_z_base_mat_mod.f90 index 97c1856a..0f28b704 100644 --- a/base/modules/psb_z_base_mat_mod.f90 +++ b/base/modules/psb_z_base_mat_mod.f90 @@ -601,13 +601,21 @@ module psb_z_base_mat_mod end interface ! - ! Matrix-vector products. - ! Y = alpha*A*X + beta*Y - ! - ! vect_mv relies on csmv for those data types - ! not specifically using the encapsulation to handle - ! foreign data. - ! + !> Function csmm: + !! \brief Product by a dense rank 2 array. + !! + !! Compute + !! Y = alpha*op(A)*X + beta*Y + !! + !! \param alpha Scaling factor for Ax + !! \param A the input sparse matrix + !! \param x(:,:) the input dense X + !! \param beta Scaling factor for y + !! \param y(:,:) the input/output dense Y + !! \param info return code + !! \param trans [N] Whether to use A (N), its transpose (T) + !! or its conjugate transpose (C) + !! ! interface subroutine psb_z_base_csmm(alpha,a,x,beta,y,info,trans) @@ -620,6 +628,22 @@ module psb_z_base_mat_mod end subroutine psb_z_base_csmm end interface + !> Function csmv: + !! \brief Product by a dense rank 1 array. + !! + !! Compute + !! Y = alpha*op(A)*X + beta*Y + !! + !! \param alpha Scaling factor for Ax + !! \param A the input sparse matrix + !! \param x(:) the input dense X + !! \param beta Scaling factor for y + !! \param y(:) the input/output dense Y + !! \param info return code + !! \param trans [N] Whether to use A (N), its transpose (T) + !! or its conjugate transpose (C) + !! + ! interface subroutine psb_z_base_csmv(alpha,a,x,beta,y,info,trans) import :: psb_ipk_, psb_z_base_sparse_mat, psb_dpk_ @@ -631,6 +655,22 @@ module psb_z_base_mat_mod end subroutine psb_z_base_csmv end interface + !> Function vect_mv: + !! \brief Product by an encapsulated array type(psb_z_vect_type) + !! + !! Compute + !! Y = alpha*op(A)*X + beta*Y + !! + !! \param alpha Scaling factor for Ax + !! \param A the input sparse matrix + !! \param x the input X + !! \param beta Scaling factor for y + !! \param y the input/output Y + !! \param info return code + !! \param trans [N] Whether to use A (N), its transpose (T) + !! or its conjugate transpose (C) + !! + ! interface subroutine psb_z_base_vect_mv(alpha,a,x,beta,y,info,trans) import :: psb_ipk_, psb_z_base_sparse_mat, psb_dpk_, psb_z_base_vect_type @@ -649,6 +689,26 @@ module psb_z_base_mat_mod ! level, and they take care of the SCALE and D control arguments. ! So the derived classes need to override only the INNER_ methods. ! + + ! + !> Function cssm: + !! \brief Triangular system solve by a dense rank 2 array. + !! + !! Compute + !! Y = alpha*op(A^-1)*X + beta*Y + !! + !! Internal workhorse called by cssm. + !! + !! \param alpha Scaling factor for Ax + !! \param A the input sparse matrix + !! \param x(:,:) the input dense X + !! \param beta Scaling factor for y + !! \param y(:,:) the input/output dense Y + !! \param info return code + !! \param trans [N] Whether to use A (N), its transpose (T) + !! or its conjugate transpose (C) + !! + ! interface subroutine psb_z_base_inner_cssm(alpha,a,x,beta,y,info,trans) import :: psb_ipk_, psb_z_base_sparse_mat, psb_dpk_ @@ -660,6 +720,29 @@ module psb_z_base_mat_mod end subroutine psb_z_base_inner_cssm end interface + + ! + !> Function cssv: + !! \brief Triangular system solve by a dense rank 1 array. + !! + !! Compute + !! Y = alpha*op(A^-1)*X + beta*Y + !! + !! Internal workhorse called by cssv. + !! + !! \param alpha Scaling factor for Ax + !! \param A the input sparse matrix + !! \param x(:) the input dense X + !! \param beta Scaling factor for y + !! \param y(:) the input/output dense Y + !! \param info return code + !! \param trans [N] Whether to use A (N), its transpose (T) + !! or its conjugate transpose (C) + !! \param scale [N] Apply a scaling on Right (R) i.e. ADX + !! or on the Left (L) i.e. DAx + !! \param D(:) [none] Diagonal for scaling. + !! + ! interface subroutine psb_z_base_inner_cssv(alpha,a,x,beta,y,info,trans) import :: psb_ipk_, psb_z_base_sparse_mat, psb_dpk_ @@ -671,6 +754,25 @@ module psb_z_base_mat_mod end subroutine psb_z_base_inner_cssv end interface + ! + !> Function inner_vect_cssv: + !! \brief Triangular system solve by + !! an encapsulated array type(psb_z_vect_type) + !! + !! Compute + !! Y = alpha*op(A^-1)*X + beta*Y + !! + !! Internal workhorse called by vect_cssv. + !! + !! \param alpha Scaling factor for Ax + !! \param A the input sparse matrix + !! \param x the input dense X + !! \param beta Scaling factor for y + !! \param y the input/output dense Y + !! \param info return code + !! \param trans [N] Whether to use A (N), its transpose (T) + !! or its conjugate transpose (C) + ! interface subroutine psb_z_base_inner_vect_sv(alpha,a,x,beta,y,info,trans) import :: psb_ipk_, psb_z_base_sparse_mat, psb_dpk_, psb_z_base_vect_type @@ -682,6 +784,26 @@ module psb_z_base_mat_mod end subroutine psb_z_base_inner_vect_sv end interface + ! + !> Function cssm: + !! \brief Triangular system solve by a dense rank 2 array. + !! + !! Compute + !! Y = alpha*op(A^-1)*X + beta*Y + !! + !! \param alpha Scaling factor for Ax + !! \param A the input sparse matrix + !! \param x(:,:) the input dense X + !! \param beta Scaling factor for y + !! \param y(:,:) the input/output dense Y + !! \param info return code + !! \param trans [N] Whether to use A (N), its transpose (T) + !! or its conjugate transpose (C) + !! \param scale [N] Apply a scaling on Right (R) i.e. ADX + !! or on the Left (L) i.e. DAx + !! \param D(:) [none] Diagonal for scaling. + !! + ! interface subroutine psb_z_base_cssm(alpha,a,x,beta,y,info,trans,scale,d) import :: psb_ipk_, psb_z_base_sparse_mat, psb_dpk_ @@ -694,6 +816,26 @@ module psb_z_base_mat_mod end subroutine psb_z_base_cssm end interface + ! + !> Function cssv: + !! \brief Triangular system solve by a dense rank 1 array. + !! + !! Compute + !! Y = alpha*op(A^-1)*X + beta*Y + !! + !! \param alpha Scaling factor for Ax + !! \param A the input sparse matrix + !! \param x(:) the input dense X + !! \param beta Scaling factor for y + !! \param y(:) the input/output dense Y + !! \param info return code + !! \param trans [N] Whether to use A (N), its transpose (T) + !! or its conjugate transpose (C) + !! \param scale [N] Apply a scaling on Right (R) i.e. ADX + !! or on the Left (L) i.e. DAx + !! \param D(:) [none] Diagonal for scaling. + !! + ! interface subroutine psb_z_base_cssv(alpha,a,x,beta,y,info,trans,scale,d) import :: psb_ipk_, psb_z_base_sparse_mat, psb_dpk_ @@ -705,7 +847,28 @@ module psb_z_base_mat_mod complex(psb_dpk_), intent(in), optional :: d(:) end subroutine psb_z_base_cssv end interface - + + ! + !> Function vect_cssv: + !! \brief Triangular system solve by + !! an encapsulated array type(psb_z_vect_type) + !! + !! Compute + !! Y = alpha*op(A^-1)*X + beta*Y + !! + !! \param alpha Scaling factor for Ax + !! \param A the input sparse matrix + !! \param x the input dense X + !! \param beta Scaling factor for y + !! \param y the input/output dense Y + !! \param info return code + !! \param trans [N] Whether to use A (N), its transpose (T) + !! or its conjugate transpose (C) + !! \param scale [N] Apply a scaling on Right (R) i.e. ADX + !! or on the Left (L) i.e. DAx + !! \param D [none] Diagonal for scaling. + !! + ! interface subroutine psb_z_base_vect_cssv(alpha,a,x,beta,y,info,trans,scale,d) import :: psb_ipk_, psb_z_base_sparse_mat, psb_dpk_,psb_z_base_vect_type