psblas3-type-indexed
Alfredo Buttari 19 years ago
parent 4745a96f43
commit 8919dacf49

@ -1,8 +1,8 @@
7 Number of entries below this
CGS Iterative method BICGSTAB CGS BICG BICGSTABL
4 Preconditioner ILU DIAGSC NONE
BICGSTAB Iterative method BICGSTAB CGS BICG BICGSTABL
7 Preconditioner ILU DIAGSC NONE
2 Number ov overlapping levels
CSR A Storage format CSR COO JAD
COO A Storage format CSR COO JAD
20 Domain size (acutal sistem is this**3)
1 Stopping criterion
80 MAXIT

@ -1,640 +0,0 @@
!
! This sample program shows how to build and solve a sparse linear
!
! The program solves a linear system based on the partial differential
! equation
!
!
!
! the equation generated is:
! b1 d d (u) b2 d d (u) a1 d (u)) a2 d (u)))
! - ------ - ------ + ----- + ------ + a3 u = 0
! dx dx dy dy dx dy
!
!
! with Dirichlet boundary conditions on the unit cube
!
! 0<=x,y<=1
!
! The equation is discretized with finite differences and uniform stepsize;
! the resulting discrete equation is
!
! ( u(x,y)(2b1+2b2+a1+a2)+u(x-1,y)(-b1-a1)+u(x,y-1)(-b2-a2)+
! -u(x+1,y)b1-u(x,y+1)b2)*(1/h**2)
!
! Example taken from: C.T.Kelley
! Iterative Methods for Linear and Nonlinear Equations
! SIAM 1995
!
!
! In this sample program the index space of the discretized
! computational domain is first numbered sequentially in a standard way,
! then the corresponding vector is distributed according to an HPF BLOCK
! distribution directive.
!
! Boundary conditions are set in a very simple way, by adding
! equations of the form
!
! u(x,y) = rhs(x,y)
!
Program PP2D
USE F90SPARSE
Implicit none
interface
!.....user passed subroutine.....
subroutine part_block(glob_index,n,np,pv,nv)
INTEGER, INTENT(IN) :: GLOB_INDEX, N, NP
INTEGER, INTENT(OUT) :: NV
INTEGER, INTENT(OUT) :: PV(*)
end subroutine part_block
end interface
! input parameters
Character :: CMETHD*10, PREC*10, AFMT*5
Integer :: IDIM, IRET
! Miscellaneous
Integer, Parameter :: IZERO=0, IONE=1
Character, PARAMETER :: ORDER='R'
INTEGER :: IARGC,CONVERT_DESCR,dim, CHECK_DESCR
REAL(KIND(1.D0)), PARAMETER :: DZERO = 0.D0, ONE = 1.D0
REAL(KIND(1.D0)) :: MPI_WTIME, T1, T2, TPREC, TSOLVE, T3, T4
EXTERNAL MPI_WTIME
! Sparse Matrix and preconditioner
TYPE(D_SPMAT) :: A, L, U, H
TYPE(D_PREC) :: PRE
! Descriptor
TYPE(desc_type) :: DESC_A, DESC_A_OUT
! Dense Matrices
REAL(KIND(1.d0)), POINTER :: B(:), X(:), D(:),LD(:)
INTEGER, pointer :: WORK(:)
! BLACS parameters
INTEGER :: nprow, npcol, icontxt, iam, np, myprow, mypcol
! Solver parameters
INTEGER :: ITER, ITMAX,IERR,ITRACE, METHD,IPREC, ISTOPC,&
& IPARM(20), ML
REAL(KIND(1.D0)) :: ERR, EPS, RPARM(20)
! Other variables
INTEGER :: I,INFO
INTEGER :: INTERNAL, M,II
! Initialize BLACS
CALL BLACS_PINFO(IAM, NP)
CALL BLACS_GET(IZERO, IZERO, ICONTXT)
! Rectangular Grid, P x 1
CALL BLACS_GRIDINIT(ICONTXT, ORDER, NP, IONE)
CALL BLACS_GRIDINFO(ICONTXT, NPROW, NPCOL, MYPROW, MYPCOL)
!
! Get parameters
!
CALL GET_PARMS(ICONTXT,CMETHD,PREC,AFMT,IDIM,ISTOPC,ITMAX,ITRACE,ML)
!
! Allocate and fill in the coefficient matrix, RHS and initial guess
!
CALL BLACS_BARRIER(ICONTXT,'All')
T1 = MPI_WTIME()
CALL CREATE_MATRIX(IDIM,A,B,X,DESC_A,PART_BLOCK,ICONTXT,AFMT)
T2 = MPI_WTIME() - T1
DIM=SIZE(A%ASPK)
ALLOCATE(H%ASPK(DIM),H%IA1(DIM),H%IA2(DIM),H%PL(SIZE(A%PL)),&
& H%PL(SIZE(A%PL)),D(SIZE(A%PL)),&
& DESC_A_OUT%MATRIX_DATA(SIZE(DESC_A%MATRIX_DATA)),&
& DESC_A_OUT%HALO_INDEX(SIZE(DESC_A%HALO_INDEX)),&
& DESC_A_OUT%OVRLAP_INDEX(SIZE(DESC_A%OVRLAP_INDEX)),&
& DESC_A_OUT%OVRLAP_ELEM(SIZE(DESC_A%OVRLAP_ELEM)),&
& DESC_A_OUT%LOC_TO_GLOB(SIZE(DESC_A%LOC_TO_GLOB)),&
& DESC_A_OUT%GLOB_TO_LOC(SIZE(DESC_A%GLOB_TO_LOC)), WORK(1024))
check_descr=15
! work(5)=9
!!$ WRITE(0,*)'CALLING VERIFY'
!!$ CALL F90_PSVERIFY(D,A,DESC_A,CHECK_DESCR,CONVERT_DESCR,H,&
!!$ & DESC_A_OUT,WORK)
!!$ WRITE(0,*)'VERIFY DONE',CONVERT_DESCR
deallocate(work)
CALL DGAMX2D(ICONTXT,'A',' ',IONE, IONE,T2,IONE,T1,T1,-1,-1,-1)
IF (IAM.EQ.0) Write(6,*) 'Matrix creation Time : ',T2
!
! Prepare the preconditioner.
!
SELECT CASE (PREC)
CASE ('SCHW')
IPREC = 3
CASE ('ILU')
IPREC = 2
CASE ('DIAGSC')
IPREC = 1
CASE ('NONE')
IPREC = 0
CASE DEFAULT
WRITE(0,*) 'Unknown preconditioner'
CALL BLACS_ABORT(ICONTXT,-1)
END SELECT
pre%prec=iprec
CALL BLACS_BARRIER(ICONTXT,'All')
T1 = MPI_WTIME()
CALL PRECONDITIONER(A,PRE,DESC_A,IRET)
!!$ CALL PRECONDITIONER(IPREC,A,L,U,D,DESC_A,IRET)
TPREC = MPI_WTIME()-T1
CALL DGAMX2D(icontxt,'A',' ',IONE, IONE,TPREC,IONE,t1,t1,-1,-1,-1)
IF (IAM.EQ.0) WRITE(6,*) 'Preconditioner Time : ',TPREC
IF (IRET.NE.0) THEN
WRITE(0,*) 'Error on preconditioner',IRET
CALL BLACS_ABORT(ICONTXT,-1)
STOP
END IF
!
! Iterative method parameters
!
write(*,*) 'Calling Iterative method', size(b),ml
CALL BLACS_BARRIER(ICONTXT,'All')
T1 = MPI_WTIME()
EPS = 1.D-9
IF (CMETHD.EQ.'BICGSTAB') THEN
CALL F90_BICGSTAB(A,PRE,B,X,EPS,DESC_A,&
& ITMAX,ITER,ERR,IERR,ITRACE)
!!$ ELSE IF (CMETHD.EQ.'BICG') THEN
!!$ CALL F90_BICG(A,PRE,B,X,EPS,DESC_A,&
!!$ & ITMAX,ITER,ERR,IERR,ITRACE)
!!$ ELSE IF (CMETHD.EQ.'CGS') THEN
!!$ CALL F90_CGS(A,PRE,B,X,EPS,DESC_A,&
!!$ & ITMAX,ITER,ERR,IERR,ITRACE)
!!$ ELSE IF (CMETHD.EQ.'BICGSTABL') THEN
!!$ CALL F90_BICGSTABL(A,PRE,B,X,EPS,DESC_A,&
!!$ & ITMAX,ITER,ERR,IERR,ITRACE,ML)
ELSE
write(0,*) 'Unknown method ',cmethd
end IF
CALL BLACS_BARRIER(ICONTXT,'All')
T2 = MPI_WTIME() - T1
CALL DGAMX2D(ICONTXT,'A',' ',IONE, IONE,T2,IONE,T1,T1,-1,-1,-1)
IF (IAM.EQ.0) THEN
WRITE(6,*) 'Time to Solve Matrix : ',T2
WRITE(6,*) 'Time per iteration : ',T2/ITER
WRITE(6,*) 'Number of iterations : ',ITER
WRITE(6,*) 'Error on exit : ',ERR
WRITE(6,*) 'INFO on exit : ',IERR
END IF
!
! Cleanup storage and exit
!
CALL F90_PSDSFREE(B,DESC_A)
CALL F90_PSDSFREE(X,DESC_A)
!!$ CALL F90_PSDSFREE(D,DESC_A)
CALL F90_PSSPFREE(A,DESC_A)
!!$ CALL F90_PSSPFREE(L,DESC_A)
!!$ CALL F90_PSSPFREE(U,DESC_A)
CALL F90_PSDSCFREE(DESC_A,info)
CALL BLACS_GRIDEXIT(ICONTXT)
CALL BLACS_EXIT(0)
STOP
CONTAINS
!
! Get iteration parameters from the command line
!
SUBROUTINE GET_PARMS(ICONTXT,CMETHD,PREC,AFMT,IDIM,ISTOPC,ITMAX,ITRACE,ML)
integer :: icontxt
Character :: CMETHD*10, PREC*10, AFMT*5
Integer :: IDIM, IRET, ISTOPC,ITMAX,ITRACE,ML
Character*40 :: CHARBUF
INTEGER :: IARGC, NPROW, NPCOL, MYPROW, MYPCOL
EXTERNAL IARGC
INTEGER :: INTBUF(10), IP
CALL BLACS_GRIDINFO(ICONTXT, NPROW, NPCOL, MYPROW, MYPCOL)
IF (MYPROW==0) THEN
READ(*,*) IP
IF (IP.GE.3) THEN
READ(*,*) CMETHD
READ(*,*) PREC
READ(*,*) AFMT
! Convert strings in array
DO I = 1, LEN(CMETHD)
INTBUF(I) = IACHAR(CMETHD(I:I))
END DO
! Broadcast parameters to all processors
CALL IGEBS2D(ICONTXT,'ALL',' ',10,1,INTBUF,10)
DO I = 1, LEN(PREC)
INTBUF(I) = IACHAR(PREC(I:I))
END DO
! Broadcast parameters to all processors
CALL IGEBS2D(ICONTXT,'ALL',' ',10,1,INTBUF,10)
DO I = 1, LEN(AFMT)
INTBUF(I) = IACHAR(AFMT(I:I))
END DO
! Broadcast parameters to all processors
CALL IGEBS2D(ICONTXT,'ALL',' ',10,1,INTBUF,10)
READ(*,*) IDIM
IF (IP.GE.4) THEN
READ(*,*) ISTOPC
ELSE
ISTOPC=1
ENDIF
IF (IP.GE.5) THEN
READ(*,*) ITMAX
ELSE
ITMAX=500
ENDIF
IF (IP.GE.6) THEN
READ(*,*) ITRACE
ELSE
ITRACE=-1
ENDIF
IF (IP.GE.7) THEN
READ(*,*) ML
ELSE
ML=1
ENDIF
! Broadcast parameters to all processors
INTBUF(1) = IDIM
INTBUF(2) = ISTOPC
INTBUF(3) = ITMAX
INTBUF(4) = ITRACE
INTBUF(5) = ML
CALL IGEBS2D(ICONTXT,'ALL',' ',5,1,INTBUF,5)
WRITE(6,*)'Solving matrix: ELL1'
WRITE(6,*)'on grid',IDIM,'x',IDIM,'x',IDIM
WRITE(6,*)' with BLOCK data distribution, NP=',Np,&
& ' Preconditioner=',PREC,&
& ' Iterative methd=',CMETHD
ELSE
! Wrong number of parameter, print an error message and exit
CALL PR_USAGE(0)
CALL BLACS_ABORT(ICONTXT,-1)
STOP 1
ENDIF
ELSE
! Receive Parameters
CALL IGEBR2D(ICONTXT,'ALL',' ',10,1,INTBUF,10,0,0)
DO I = 1, 10
CMETHD(I:I) = ACHAR(INTBUF(I))
END DO
CALL IGEBR2D(ICONTXT,'ALL',' ',10,1,INTBUF,10,0,0)
DO I = 1, 10
PREC(I:I) = ACHAR(INTBUF(I))
END DO
CALL IGEBR2D(ICONTXT,'ALL',' ',10,1,INTBUF,10,0,0)
DO I = 1, 5
AFMT(I:I) = ACHAR(INTBUF(I))
END DO
CALL IGEBR2D(ICONTXT,'ALL',' ',5,1,INTBUF,5,0,0)
IDIM = INTBUF(1)
ISTOPC = INTBUF(2)
ITMAX = INTBUF(3)
ITRACE = INTBUF(4)
ML = INTBUF(5)
END IF
RETURN
END SUBROUTINE GET_PARMS
!
! Print an error message
!
SUBROUTINE PR_USAGE(IOUT)
INTEGER :: IOUT
WRITE(IOUT,*)'Incorrect parameter(s) found'
WRITE(IOUT,*)' Usage: pde90 methd prec dim &
&[istop itmax itrace]'
WRITE(IOUT,*)' Where:'
WRITE(IOUT,*)' methd: CGSTAB TFQMR CGS'
WRITE(IOUT,*)' prec : ILU DIAGSC NONE'
WRITE(IOUT,*)' dim number of points along each axis'
WRITE(IOUT,*)' the size of the resulting linear '
WRITE(IOUT,*)' system is dim**3'
WRITE(IOUT,*)' istop Stopping criterion 1, 2 or 3 [1] '
WRITE(IOUT,*)' itmax Maximum number of iterations [500] '
WRITE(IOUT,*)' itrace 0 (no tracing, default) or '
WRITE(IOUT,*)' >= 0 do tracing every ITRACE'
WRITE(IOUT,*)' iterations '
END SUBROUTINE PR_USAGE
!
! Subroutine to allocate and fill in the coefficient matrix and
! the RHS.
!
SUBROUTINE CREATE_MATRIX(IDIM,A,B,T,DESC_A,PARTS,ICONTXT,AFMT)
!
! Discretize the partial diferential equation
!
! b1 dd(u) b2 dd(u) a1 d(u) a2 d(u)
! - ------ - ------ - ----- - ------ + a4 u
! dxdx dydy dx dy
!
! = 0
!
! boundary condition: Dirichlet
! 0< x,y<1
!
! u(x,y)(2b1+2b2+a1+a2)+u(x-1,y)(-b1-a1)+u(x,y-1)(-b2-a2)+
! -u(x+1,y,z)b1-u(x,y+1,z)b2
USE TYPESP
USE TYPEDESC
USE F90TOOLS
Implicit None
INTEGER :: IDIM
!!$ external parts
integer, parameter :: nbmax=10
Real(Kind(1.D0)),Pointer :: B(:),T(:)
Type (desc_type) :: DESC_A
Integer :: ICONTXT
INTERFACE
! .....user passed subroutine.....
SUBROUTINE PARTS(GLOBAL_INDX,N,NP,PV,NV)
INTEGER, INTENT(IN) :: GLOBAL_INDX, N, NP
INTEGER, INTENT(OUT) :: NV, PV(*)
END SUBROUTINE PARTS
END INTERFACE ! Local variables
Type(D_SPMAT) :: A
Real(Kind(1.d0)) :: ZT(NBMAX),GLOB_X,GLOB_Y,GLOB_Z
Integer :: M,N,NNZ,GLOB_ROW,J
Type (D_SPMAT) :: ROW_MAT
Integer :: X,Y,Z,COUNTER,IA,I,INDX_OWNER
INTEGER :: NPROW,NPCOL,MYPROW,MYPCOL
Integer :: ELEMENT
INTEGER :: INFO, NV, INV
INTEGER, ALLOCATABLE :: PRV(:)
INTEGER, pointer :: ierrv(:)
Real(Kind(1.d0)), pointer :: DWORK(:)
INTEGER,POINTER :: IWORK(:)
character :: afmt*5
! deltah dimension of each grid cell
! deltat discretization time
Real(Kind(1.D0)) :: DELTAH
Real(Kind(1.d0)),Parameter :: RHS=0.d0,ONE=1.d0,ZERO=0.d0
Real(Kind(1.d0)) :: MPI_WTIME, T1, T2, T3, TINS
Real(Kind(1.d0)) :: a1, a2, a3, a4, b1, b2, b3
external mpi_wtime,a1, a2, a3, a4, b1, b2, b3
integer :: nb, ir1, ir2, ipr
logical :: own
! common area
CALL BLACS_GRIDINFO(ICONTXT, NPROW, NPCOL, MYPROW, MYPCOL)
DELTAH = 1.D0/(IDIM-1)
! Initialize array descriptor and sparse matrix storage. Provide an
! estimate of the number of non zeroes
CALL SETERR(2)
allocate(ierrv(6))
ierrv(:) = 0
M = IDIM*IDIM
N = M
NNZ = ((N*6)/(NPROW*NPCOL))
write(*,*) 'Size: n ',n
Call F90_PSDSCALL(N,N,PARTS,ICONTXT,IERRV,DESC_A)
write(*,*) 'Allocating A : nnz',nnz
Call F90_PSSPALL(A,IERRV,DESC_A,NNZ=NNZ)
! Define RHS from boundary conditions; also build initial guess
write(*,*) 'Allocating B'
Call F90_PSDSALL(N,B,IERRV,DESC_A)
write(*,*) 'Allocating T'
Call F90_PSDSALL(N,T,IERRV,DESC_A)
! We build an auxiliary matrix consisting of one row at a
! time; just a small matrix. Might be extended to generate
! a bunch of rows per call.
!
ROW_MAT%DESCRA(1:1) = 'G'
ROW_MAT%FIDA = 'CSR'
write(*,*) 'Allocating ROW_MAT',20*nbmax
ALLOCATE(ROW_MAT%ASPK(20*nbmax),ROW_MAT%IA1(20*nbmax),&
&ROW_MAT%IA2(20*nbmax),PRV(NPROW),stat=info)
if (info.ne.0 ) then
write(*,*) 'Memory allocation error'
call blacs_abort(icontxt,-1)
endif
TINS = 0.D0
CALL BLACS_BARRIER(ICONTXT,'ALL')
T1 = MPI_WTIME()
! Loop over rows belonging to current process in a BLOCK
! distribution.
Z=0
ROW_MAT%IA2(1)=1
DO GLOB_ROW = 1, N
CALL PARTS(GLOB_ROW,N,NPROW,PRV,NV)
DO INV = 1, NV
INDX_OWNER = PRV(INV)
IF (INDX_OWNER == MYPROW) THEN
! Local matrix pointer
ELEMENT=1
! Compute gridpoint Coordinates
IF (MOD(GLOB_ROW,(IDIM)).EQ.0) THEN
X = GLOB_ROW/(IDIM)
ELSE
X = GLOB_ROW/(IDIM)+1
ENDIF
Y = GLOB_ROW-(X-1)*IDIM
! GLOB_X, GLOB_Y, GLOB_X coordinates
GLOB_X=X*DELTAH
GLOB_Y=Y*DELTAH
GLOB_Z=Z*DELTAH
! Check on boundary points
IF (X.EQ.1) THEN
ROW_MAT%ASPK(ELEMENT)=ONE
ROW_MAT%IA1(ELEMENT)=(X-1)*IDIM+(Y)
ELEMENT=ELEMENT+1
ELSE IF (Y.EQ.1) THEN
ROW_MAT%ASPK(ELEMENT)=ONE
ROW_MAT%IA1(ELEMENT)=(X-1)*IDIM+(Y)
ELEMENT=ELEMENT+1
ELSE IF (X.EQ.IDIM) THEN
ROW_MAT%ASPK(ELEMENT)=ONE
ROW_MAT%IA1(ELEMENT)=(X-1)*IDIM+(Y)
ELEMENT=ELEMENT+1
ELSE IF (Y.EQ.IDIM) THEN
ROW_MAT%ASPK(ELEMENT)=ONE
ROW_MAT%IA1(ELEMENT)=(X-1)*IDIM+(Y)
ELEMENT=ELEMENT+1
ELSE
! Internal point: build discretization
!
! Term depending on (x-1,y)
!
ROW_MAT%ASPK(ELEMENT)=-B1(GLOB_X,GLOB_Y,GLOB_Z)&
& -A1(GLOB_X,GLOB_Y,GLOB_Z)
ROW_MAT%ASPK(ELEMENT) = ROW_MAT%ASPK(ELEMENT)/(DELTAH*&
& DELTAH)
ROW_MAT%IA1(ELEMENT)=(X-2)*IDIM+(Y)
ELEMENT=ELEMENT+1
! Term depending on (x,y-1,z)
ROW_MAT%ASPK(ELEMENT)=-B2(GLOB_X,GLOB_Y,GLOB_Z)&
& -A2(GLOB_X,GLOB_Y,GLOB_Z)
ROW_MAT%ASPK(ELEMENT) = ROW_MAT%ASPK(ELEMENT)/(DELTAH*&
& DELTAH)
ROW_MAT%IA1(ELEMENT)=(X-1)*IDIM+(Y-1)
ELEMENT=ELEMENT+1
!!$ ! Term depending on (x,y,z-1)
!!$ ROW_MAT%ASPK(ELEMENT)=-B3(GLOB_X,GLOB_Y,GLOB_Z)&
!!$ & -A3(GLOB_X,GLOB_Y,GLOB_Z)
!!$ ROW_MAT%ASPK(ELEMENT) = ROW_MAT%ASPK(ELEMENT)/(DELTAH*&
!!$ & DELTAH)
!!$ ROW_MAT%IA1(ELEMENT)=(X-1)*IDIM*IDIM+(Y-1)*IDIM+(Z-1)
!!$ ELEMENT=ELEMENT+1
! Term depending on (x,y,z)
ROW_MAT%ASPK(ELEMENT)=2*B1(GLOB_X,GLOB_Y,GLOB_Z)&
& +2*B2(GLOB_X,GLOB_Y,GLOB_Z)&
& +A1(GLOB_X,GLOB_Y,GLOB_Z)&
& +A2(GLOB_X,GLOB_Y,GLOB_Z)
ROW_MAT%ASPK(ELEMENT) = ROW_MAT%ASPK(ELEMENT)/(DELTAH*&
& DELTAH)
ROW_MAT%IA1(ELEMENT)=(X-1)*IDIM+(Y)
ELEMENT=ELEMENT+1
!!$ ! Term depending on (x,y,z+1)
!!$ ROW_MAT%ASPK(ELEMENT)=-B1(GLOB_X,GLOB_Y,GLOB_Z)
!!$ ROW_MAT%ASPK(ELEMENT) = ROW_MAT%ASPK(ELEMENT)/(DELTAH*&
!!$ & DELTAH)
!!$ ROW_MAT%IA1(ELEMENT)=(X-1)*IDIM*IDIM+(Y-1)*IDIM+(Z+1)
!!$ ELEMENT=ELEMENT+1
!!$ ! Term depending on (x,y+1,z)
ROW_MAT%ASPK(ELEMENT)=-B2(GLOB_X,GLOB_Y,GLOB_Z)
ROW_MAT%ASPK(ELEMENT) = ROW_MAT%ASPK(ELEMENT)/(DELTAH*&
& DELTAH)
ROW_MAT%IA1(ELEMENT)=(X-1)*IDIM+(Y+1)
ELEMENT=ELEMENT+1
! Term depending on (x+1,y,z)
ROW_MAT%ASPK(ELEMENT)=-B3(GLOB_X,GLOB_Y,GLOB_Z)
ROW_MAT%ASPK(ELEMENT) = ROW_MAT%ASPK(ELEMENT)/(DELTAH*&
& DELTAH)
ROW_MAT%IA1(ELEMENT)=(X)*IDIM+(Y)
ELEMENT=ELEMENT+1
ENDIF
ROW_MAT%M=1
ROW_MAT%K=N
ROW_MAT%IA2(2)=ELEMENT
! IA== GLOBAL ROW INDEX
IA=GLOB_ROW
!!$ IA=(X-1)*IDIM*IDIM+(Y-1)*IDIM+(Z)
!!$ write(0,*) 'Inserting row ',ia,' On proc',myprow
T3 = MPI_WTIME()
CALL F90_PSSPINS(A,IA,1,ROW_MAT,IERRV,DESC_A)
if (ierrv(1).ne.0) then
write(0,*) 'On row ',ia,' IERRV:',ierrv(:)
endif
TINS = TINS + (MPI_WTIME()-T3)
! Build RHS
IF (X==1) THEN
GLOB_Y=(Y-IDIM/2)*DELTAH
GLOB_Z=(Z-IDIM/2)*DELTAH
ZT(1) = EXP(-GLOB_Y**2-GLOB_Z**2)
ELSE IF ((Y==1).OR.(Y==IDIM).OR.(Z==1).OR.(Z==IDIM)) THEN
GLOB_X=3*(X-1)*DELTAH
GLOB_Y=(Y-IDIM/2)*DELTAH
GLOB_Z=(Z-IDIM/2)*DELTAH
ZT(1) = EXP(-GLOB_Y**2-GLOB_Z**2)*EXP(-GLOB_X)
ELSE
ZT(1) = 0.D0
ENDIF
CALL F90_PSDSINS(1,B,IA,ZT(1:1),IERRV,DESC_A)
ZT(1)=0.D0
CALL F90_PSDSINS(1,T,IA,ZT(1:1),IERRV,DESC_A)
END IF
END DO
END DO
CALL BLACS_BARRIER(ICONTXT,'ALL')
T2 = MPI_WTIME()
WRITE(*,*) ' pspins time',TINS
WRITE(*,*) ' Insert time',(T2-T1)
DEALLOCATE(ROW_MAT%ASPK,ROW_MAT%IA1,ROW_MAT%IA2)
write(*,*) 'Calling SPASB'
CALL BLACS_BARRIER(ICONTXT,'ALL')
T1 = MPI_WTIME()
CALL F90_PSSPASB(A,IERRV,DESC_A,AFMT=AFMT)
CALL BLACS_BARRIER(ICONTXT,'ALL')
T2 = MPI_WTIME()
WRITE(0,*) ' Assembly time',(T2-T1),' ',a%fida(1:4)
CALL F90_PSDSASB(B,IERRV,DESC_A)
CALL F90_PSDSASB(T,IERRV,DESC_A)
IF (MYPROW.EQ.0) THEN
WRITE(0,*) ' End CREATE_MATRIX'
ENDIF
RETURN
END SUBROUTINE CREATE_MATRIX
END PROGRAM PP2D
!
! Functions parametrizing the differential equation
!
FUNCTION A1(X,Y,Z)
REAL(KIND(1.D0)) :: A1
REAL(KIND(1.D0)) :: X,Y,Z
A1=1.D0
END FUNCTION A1
FUNCTION A2(X,Y,Z)
REAL(KIND(1.D0)) :: A2
REAL(KIND(1.D0)) :: X,Y,Z
A2=2.D1*Y
END FUNCTION A2
FUNCTION A3(X,Y,Z)
REAL(KIND(1.D0)) :: A3
REAL(KIND(1.D0)) :: X,Y,Z
A3=1.D0
END FUNCTION A3
FUNCTION A4(X,Y,Z)
REAL(KIND(1.D0)) :: A4
REAL(KIND(1.D0)) :: X,Y,Z
A4=1.D0
END FUNCTION A4
FUNCTION B1(X,Y,Z)
REAL(KIND(1.D0)) :: B1
REAL(KIND(1.D0)) :: X,Y,Z
B1=1.D0
END FUNCTION B1
FUNCTION B2(X,Y,Z)
REAL(KIND(1.D0)) :: B2
REAL(KIND(1.D0)) :: X,Y,Z
B2=1.D0
END FUNCTION B2
FUNCTION B3(X,Y,Z)
REAL(KIND(1.D0)) :: B3
REAL(KIND(1.D0)) :: X,Y,Z
B3=1.D0
END FUNCTION B3

@ -1,700 +0,0 @@
!
! This sample program shows how to build and solve a sparse linear
!
! The program solves a linear system based on the partial differential
! equation
!
!
!
! the equation generated is:
! b1 d d (u) b2 d d (u) a1 d (u)) a2 d (u)))
! - ------ - ------ + ----- + ------ + a3 u = 0
! dx dx dy dy dx dy
!
!
! with Dirichlet boundary conditions on the unit cube
!
! 0<=x,y,z<=1
!
! The equation is discretized with finite differences and uniform stepsize;
! the resulting discrete equation is
!
! ( u(x,y,z)(2b1+2b2+a1+a2)+u(x-1,y)(-b1-a1)+u(x,y-1)(-b2-a2)+
! -u(x+1,y)b1-u(x,y+1)b2)*(1/h**2)
!
! Example taken from: C.T.Kelley
! Iterative Methods for Linear and Nonlinear Equations
! SIAM 1995
!
!
! In this sample program the index space of the discretized
! computational domain is first numbered sequentially in a standard way,
! then the corresponding vector is distributed according to an HPF BLOCK
! distribution directive.
!
! Boundary conditions are set in a very simple way, by adding
! equations of the form
!
! u(x,y) = rhs(x,y)
!
Program PDE90
USE F90SPARSE
Implicit none
interface
!.....user passed subroutine.....
subroutine part_block(glob_index,n,np,pv,nv)
INTEGER, INTENT(IN) :: GLOB_INDEX, N, NP
INTEGER, INTENT(OUT) :: NV
INTEGER, INTENT(OUT) :: PV(*)
end subroutine part_block
end interface
! input parameters
Character :: CMETHD*10, PREC*10, AFMT*5
Integer :: IDIM, IRET
! Miscellaneous
Integer, Parameter :: IZERO=0, IONE=1
Character, PARAMETER :: ORDER='R'
INTEGER :: IARGC,CONVERT_DESCR,dim, CHECK_DESCR
REAL(KIND(1.D0)), PARAMETER :: DZERO = 0.D0, ONE = 1.D0
REAL(KIND(1.D0)) :: MPI_WTIME, T1, T2, TPREC, TSOLVE, T3, T4
EXTERNAL MPI_WTIME
! Sparse Matrix and preconditioner
TYPE(D_SPMAT) :: A, L, U, H
TYPE(D_PREC) :: PRE
! Descriptor
TYPE(desc_type) :: DESC_A, DESC_A_OUT
! Dense Matrices
REAL(KIND(1.d0)), POINTER :: B(:), X(:), D(:),LD(:)
INTEGER, pointer :: WORK(:)
! BLACS parameters
INTEGER :: nprow, npcol, icontxt, iam, np, myprow, mypcol
! Solver parameters
INTEGER :: ITER, ITMAX,IERR,ITRACE, METHD,IPREC, ISTOPC,&
& IPARM(20), ML
REAL(KIND(1.D0)) :: ERR, EPS, RPARM(20)
! Other variables
INTEGER :: I,INFO
INTEGER :: INTERNAL, M,II
! Initialize BLACS
CALL BLACS_PINFO(IAM, NP)
CALL BLACS_GET(IZERO, IZERO, ICONTXT)
! Rectangular Grid, P x 1
CALL BLACS_GRIDINIT(ICONTXT, ORDER, NP, IONE)
CALL BLACS_GRIDINFO(ICONTXT, NPROW, NPCOL, MYPROW, MYPCOL)
!
! Get parameters
!
CALL GET_PARMS(ICONTXT,CMETHD,PREC,AFMT,IDIM,ISTOPC,ITMAX,ITRACE,ML)
!
! Allocate and fill in the coefficient matrix, RHS and initial guess
!
CALL BLACS_BARRIER(ICONTXT,'All')
T1 = MPI_WTIME()
CALL CREATE_MATRIX(IDIM,A,B,X,DESC_A,PART_BLOCK,ICONTXT,AFMT)
T2 = MPI_WTIME() - T1
DIM=SIZE(A%ASPK)
ALLOCATE(H%ASPK(DIM),H%IA1(DIM),H%IA2(DIM),H%PL(SIZE(A%PL)),&
& H%PL(SIZE(A%PL)),D(SIZE(A%PL)),&
& DESC_A_OUT%MATRIX_DATA(SIZE(DESC_A%MATRIX_DATA)),&
& DESC_A_OUT%HALO_INDEX(SIZE(DESC_A%HALO_INDEX)),&
& DESC_A_OUT%OVRLAP_INDEX(SIZE(DESC_A%OVRLAP_INDEX)),&
& DESC_A_OUT%OVRLAP_ELEM(SIZE(DESC_A%OVRLAP_ELEM)),&
& DESC_A_OUT%LOC_TO_GLOB(SIZE(DESC_A%LOC_TO_GLOB)),&
& DESC_A_OUT%GLOB_TO_LOC(SIZE(DESC_A%GLOB_TO_LOC)), WORK(1024))
check_descr=15
! work(5)=9
!!$ WRITE(0,*)'CALLING VERIFY'
!!$ CALL F90_PSVERIFY(D,A,DESC_A,CHECK_DESCR,CONVERT_DESCR,H,&
!!$ & DESC_A_OUT,WORK)
!!$ WRITE(0,*)'VERIFY DONE',CONVERT_DESCR
deallocate(work)
CALL DGAMX2D(ICONTXT,'A',' ',IONE, IONE,T2,IONE,T1,T1,-1,-1,-1)
IF (IAM.EQ.0) Write(6,*) 'Matrix creation Time : ',T2
!
! Prepare the preconditioner.
!
write(0,*)'PRECONDIZIONATORE=',prec
SELECT CASE (PREC)
CASE ('SCHW6')
IPREC = 6
CASE ('SCHW5')
IPREC = 5
CASE ('SCHW4')
IPREC = 4
CASE ('SCHW3')
IPREC = 3
CASE ('ILU')
IPREC = 2
CASE ('DIAGSC')
IPREC = 1
CASE ('NONE')
IPREC = 0
CASE DEFAULT
WRITE(0,*) 'Unknown preconditioner'
CALL BLACS_ABORT(ICONTXT,-1)
END SELECT
pre%prec=iprec
pre%n_ovr=ml
pre%irenum=0
CALL BLACS_BARRIER(ICONTXT,'All')
T1 = MPI_WTIME()
CALL PRECONDITIONER(A,PRE,DESC_A,IRET)
!!$ CALL PRECONDITIONER(IPREC,A,L,U,D,DESC_A,IRET)
TPREC = MPI_WTIME()-T1
CALL DGAMX2D(icontxt,'A',' ',IONE, IONE,TPREC,IONE,t1,t1,-1,-1,-1)
IF (IAM.EQ.0) WRITE(6,*) 'Preconditioner Time : ',TPREC
IF (IRET.NE.0) THEN
WRITE(0,*) 'Error on preconditioner',IRET
CALL BLACS_ABORT(ICONTXT,-1)
STOP
END IF
!
! Iterative method parameters
!
call dcsprt90(80+myprow,a,head='% Local A')
write(*,*) 'Calling Iterative method', size(b),ml
CALL BLACS_BARRIER(ICONTXT,'All')
T1 = MPI_WTIME()
EPS = 1.D-9
IF (CMETHD.EQ.'BICGSTAB') THEN
CALL F90_BICGSTAB(A,PRE,B,X,EPS,DESC_A,&
& ITMAX,ITER,ERR,IERR,ITRACE)
!!$ ELSE IF (CMETHD.EQ.'BICG') THEN
!!$ CALL F90_BICG(A,PRE,B,X,EPS,DESC_A,&
!!$ & ITMAX,ITER,ERR,IERR,ITRACE)
ELSE IF (CMETHD.EQ.'CGS') THEN
CALL F90_CGS(A,PRE,B,X,EPS,DESC_A,&
& ITMAX,ITER,ERR,IERR,ITRACE)
ELSE IF (CMETHD.EQ.'BICGSTABL') THEN
CALL F90_BICGSTABL(A,PRE,B,X,EPS,DESC_A,&
& ITMAX,ITER,ERR,IERR,ITRACE,ML)
ELSE
write(0,*) 'Unknown method ',cmethd
end IF
CALL BLACS_BARRIER(ICONTXT,'All')
T2 = MPI_WTIME() - T1
CALL DGAMX2D(ICONTXT,'A',' ',IONE, IONE,T2,IONE,T1,T1,-1,-1,-1)
IF (IAM.EQ.0) THEN
WRITE(6,*) 'Time to Solve Matrix : ',T2
WRITE(6,*) 'Time per iteration : ',T2/ITER
WRITE(6,*) 'Number of iterations : ',ITER
WRITE(6,*) 'Error on exit : ',ERR
WRITE(6,*) 'INFO on exit : ',IERR
END IF
!
! Cleanup storage and exit
!
CALL F90_PSDSFREE(B,DESC_A)
CALL F90_PSDSFREE(X,DESC_A)
!!$ CALL F90_PSDSFREE(D,DESC_A)
CALL F90_PSSPFREE(A,DESC_A)
!!$ CALL F90_PSSPFREE(L,DESC_A)
!!$ CALL F90_PSSPFREE(U,DESC_A)
CALL F90_PSDSCFREE(DESC_A,info)
CALL BLACS_GRIDEXIT(ICONTXT)
CALL BLACS_EXIT(0)
STOP
CONTAINS
!
! Get iteration parameters from the command line
!
SUBROUTINE GET_PARMS(ICONTXT,CMETHD,PREC,AFMT,IDIM,ISTOPC,ITMAX,ITRACE,ML)
integer :: icontxt
Character :: CMETHD*10, PREC*10, AFMT*5
Integer :: IDIM, IRET, ISTOPC,ITMAX,ITRACE,ML
Character*40 :: CHARBUF
INTEGER :: IARGC, NPROW, NPCOL, MYPROW, MYPCOL
EXTERNAL IARGC
INTEGER :: INTBUF(10), IP
CALL BLACS_GRIDINFO(ICONTXT, NPROW, NPCOL, MYPROW, MYPCOL)
IF (MYPROW==0) THEN
READ(*,*) IP
IF (IP.GE.3) THEN
READ(*,*) CMETHD
READ(*,*) PREC
READ(*,*) AFMT
! Convert strings in array
DO I = 1, LEN(CMETHD)
INTBUF(I) = IACHAR(CMETHD(I:I))
END DO
! Broadcast parameters to all processors
CALL IGEBS2D(ICONTXT,'ALL',' ',10,1,INTBUF,10)
DO I = 1, LEN(PREC)
INTBUF(I) = IACHAR(PREC(I:I))
END DO
! Broadcast parameters to all processors
CALL IGEBS2D(ICONTXT,'ALL',' ',10,1,INTBUF,10)
DO I = 1, LEN(AFMT)
INTBUF(I) = IACHAR(AFMT(I:I))
END DO
! Broadcast parameters to all processors
CALL IGEBS2D(ICONTXT,'ALL',' ',10,1,INTBUF,10)
READ(*,*) IDIM
IF (IP.GE.4) THEN
READ(*,*) ISTOPC
ELSE
ISTOPC=1
ENDIF
IF (IP.GE.5) THEN
READ(*,*) ITMAX
ELSE
ITMAX=500
ENDIF
IF (IP.GE.6) THEN
READ(*,*) ITRACE
ELSE
ITRACE=-1
ENDIF
IF (IP.GE.7) THEN
READ(*,*) ML
ELSE
ML=1
ENDIF
! Broadcast parameters to all processors
INTBUF(1) = IDIM
INTBUF(2) = ISTOPC
INTBUF(3) = ITMAX
INTBUF(4) = ITRACE
INTBUF(5) = ML
CALL IGEBS2D(ICONTXT,'ALL',' ',5,1,INTBUF,5)
WRITE(6,*)'Solving matrix: ELL1'
WRITE(6,*)'on grid',IDIM,'x',IDIM,'x',IDIM
WRITE(6,*)' with BLOCK data distribution, NP=',Np,&
& ' Preconditioner=',PREC,&
& ' Iterative methd=',CMETHD
ELSE
! Wrong number of parameter, print an error message and exit
CALL PR_USAGE(0)
CALL BLACS_ABORT(ICONTXT,-1)
STOP 1
ENDIF
ELSE
! Receive Parameters
CALL IGEBR2D(ICONTXT,'ALL',' ',10,1,INTBUF,10,0,0)
DO I = 1, 10
CMETHD(I:I) = ACHAR(INTBUF(I))
END DO
CALL IGEBR2D(ICONTXT,'ALL',' ',10,1,INTBUF,10,0,0)
DO I = 1, 10
PREC(I:I) = ACHAR(INTBUF(I))
END DO
CALL IGEBR2D(ICONTXT,'ALL',' ',10,1,INTBUF,10,0,0)
DO I = 1, 5
AFMT(I:I) = ACHAR(INTBUF(I))
END DO
CALL IGEBR2D(ICONTXT,'ALL',' ',5,1,INTBUF,5,0,0)
IDIM = INTBUF(1)
ISTOPC = INTBUF(2)
ITMAX = INTBUF(3)
ITRACE = INTBUF(4)
ML = INTBUF(5)
END IF
RETURN
END SUBROUTINE GET_PARMS
!
! Print an error message
!
SUBROUTINE PR_USAGE(IOUT)
INTEGER :: IOUT
WRITE(IOUT,*)'Incorrect parameter(s) found'
WRITE(IOUT,*)' Usage: pde90 methd prec dim &
&[istop itmax itrace]'
WRITE(IOUT,*)' Where:'
WRITE(IOUT,*)' methd: CGSTAB TFQMR CGS'
WRITE(IOUT,*)' prec : ILU DIAGSC NONE'
WRITE(IOUT,*)' dim number of points along each axis'
WRITE(IOUT,*)' the size of the resulting linear '
WRITE(IOUT,*)' system is dim**3'
WRITE(IOUT,*)' istop Stopping criterion 1, 2 or 3 [1] '
WRITE(IOUT,*)' itmax Maximum number of iterations [500] '
WRITE(IOUT,*)' itrace 0 (no tracing, default) or '
WRITE(IOUT,*)' >= 0 do tracing every ITRACE'
WRITE(IOUT,*)' iterations '
END SUBROUTINE PR_USAGE
!
! Subroutine to allocate and fill in the coefficient matrix and
! the RHS.
!
SUBROUTINE CREATE_MATRIX(IDIM,A,B,T,DESC_A,PARTS,ICONTXT,AFMT)
!
! Discretize the partial diferential equation
!
! b1 dd(u) b2 dd(u) a1 d(u) a2 d(u)
! - ------ - ------ - ----- - ------ + a4 u
! dxdx dydy dx dy
!
! = 0
!
! boundary condition: Dirichlet
! 0< x,y<1
!
! u(x,y)(2b1+2b2+a1+a2)+u(x-1,y)(-b1-a1)+u(x,y-1)(-b2-a2)+
! -u(x+1,y,z)b1-u(x,y+1,z)b2
USE TYPESP
USE TYPEDESC
USE F90TOOLS
Implicit None
INTEGER :: IDIM
integer, parameter :: nbmax=10
Real(Kind(1.D0)),Pointer :: B(:),T(:)
Type (desc_type) :: DESC_A
Integer :: ICONTXT
INTERFACE
! .....user passed subroutine.....
SUBROUTINE PARTS(GLOBAL_INDX,N,NP,PV,NV)
IMPLICIT NONE
INTEGER, INTENT(IN) :: GLOBAL_INDX, N, NP
INTEGER, INTENT(OUT) :: NV
INTEGER, INTENT(OUT) :: PV(*)
END SUBROUTINE PARTS
END INTERFACE ! Local variables
Type(D_SPMAT) :: A
Real(Kind(1.d0)) :: ZT(NBMAX),GLOB_X,GLOB_Y,GLOB_Z
Integer :: M,N,NNZ,GLOB_ROW,J
Type (D_SPMAT) :: ROW_MAT
Integer :: X,Y,Z,COUNTER,IA,I,INDX_OWNER
INTEGER :: NPROW,NPCOL,MYPROW,MYPCOL
Integer :: ELEMENT
INTEGER :: INFO, NV, INV
INTEGER, ALLOCATABLE :: PRV(:)
INTEGER, pointer :: ierrv(:)
Real(Kind(1.d0)), pointer :: DWORK(:)
INTEGER,POINTER :: IWORK(:)
character :: afmt*5
! deltah dimension of each grid cell
! deltat discretization time
Real(Kind(1.D0)) :: DELTAH
Real(Kind(1.d0)),Parameter :: RHS=0.d0,ONE=1.d0,ZERO=0.d0
Real(Kind(1.d0)) :: MPI_WTIME, T1, T2, T3, TINS
Real(Kind(1.d0)) :: a1, a2, a3, a4, b1, b2, b3
external mpi_wtime,a1, a2, a3, a4, b1, b2, b3
integer :: nb, ir1, ir2, ipr
logical :: own
! common area
CALL BLACS_GRIDINFO(ICONTXT, NPROW, NPCOL, MYPROW, MYPCOL)
DELTAH = 1.D0/(IDIM-1)
! Initialize array descriptor and sparse matrix storage. Provide an
! estimate of the number of non zeroes
CALL SETERR(2)
allocate(ierrv(6))
ierrv(:) = 0
M = IDIM*IDIM
N = M
NNZ = ((N*6)/(NPROW*NPCOL))
write(*,*) 'Size: n ',n
Call F90_PSDSCALL(N,N,PARTS,ICONTXT,IERRV,DESC_A)
write(*,*) 'Allocating A : nnz',nnz
Call F90_PSSPALL(A,IERRV,DESC_A,NNZ=NNZ)
! Define RHS from boundary conditions; also build initial guess
write(*,*) 'Allocating B'
Call F90_PSDSALL(N,B,IERRV,DESC_A)
write(*,*) 'Allocating T'
Call F90_PSDSALL(N,T,IERRV,DESC_A)
! We build an auxiliary matrix consisting of one row at a
! time; just a small matrix. Might be extended to generate
! a bunch of rows per call.
!
ROW_MAT%DESCRA(1:1) = 'G'
ROW_MAT%FIDA = 'CSR'
write(*,*) 'Allocating ROW_MAT',20*nbmax
ALLOCATE(ROW_MAT%ASPK(20*nbmax),ROW_MAT%IA1(20*nbmax),&
&ROW_MAT%IA2(20*nbmax),PRV(NPROW),stat=info)
if (info.ne.0 ) then
write(*,*) 'Memory allocation error'
call blacs_abort(icontxt,-1)
endif
TINS = 0.D0
CALL BLACS_BARRIER(ICONTXT,'ALL')
T1 = MPI_WTIME()
! Loop over rows belonging to current process in a BLOCK
! distribution.
Z=0
ROW_MAT%IA2(1)=1
DO GLOB_ROW = 1, N
CALL PARTS(GLOB_ROW,N,NPROW,PRV,NV)
DO INV = 1, NV
INDX_OWNER = PRV(INV)
IF (INDX_OWNER == MYPROW) THEN
! Local matrix pointer
ELEMENT=1
! Compute gridpoint Coordinates
IF (MOD(GLOB_ROW,(IDIM)).EQ.0) THEN
X = GLOB_ROW/(IDIM)
ELSE
X = GLOB_ROW/(IDIM)+1
ENDIF
Y = GLOB_ROW-(X-1)*IDIM
! GLOB_X, GLOB_Y, GLOB_X coordinates
GLOB_X=X*DELTAH
GLOB_Y=Y*DELTAH
GLOB_Z=Z*DELTAH
! Check on boundary points
!!$ IF (X.EQ.1) THEN
!!$ ROW_MAT%ASPK(ELEMENT)=ONE
!!$ ROW_MAT%IA1(ELEMENT)=(X-1)*IDIM*IDIM+(Y-1)*IDIM+(Z)
!!$ ELEMENT=ELEMENT+1
!!$ ELSE IF (Y.EQ.1) THEN
!!$ ROW_MAT%ASPK(ELEMENT)=ONE
!!$ ROW_MAT%IA1(ELEMENT)=(X-1)*IDIM*IDIM+(Y-1)*IDIM+(Z)
!!$ ELEMENT=ELEMENT+1
!!$ ELSE IF (Z.EQ.1) THEN
!!$ ROW_MAT%ASPK(ELEMENT)=ONE
!!$ ROW_MAT%IA1(ELEMENT)=(X-1)*IDIM*IDIM+(Y-1)*IDIM+(Z)
!!$ ELEMENT=ELEMENT+1
!!$ ELSE IF (X.EQ.IDIM) THEN
!!$ ROW_MAT%ASPK(ELEMENT)=ONE
!!$ ROW_MAT%IA1(ELEMENT)=(X-1)*IDIM*IDIM+(Y-1)*IDIM+(Z)
!!$ ELEMENT=ELEMENT+1
!!$ ELSE IF (Y.EQ.IDIM) THEN
!!$ ROW_MAT%ASPK(ELEMENT)=ONE
!!$ ROW_MAT%IA1(ELEMENT)=(X-1)*IDIM*IDIM+(Y-1)*IDIM+(Z)
!!$ ELEMENT=ELEMENT+1
!!$ ELSE IF (Z.EQ.IDIM) THEN
!!$ ROW_MAT%ASPK(ELEMENT)=ONE
!!$ ROW_MAT%IA1(ELEMENT)=(X-1)*IDIM*IDIM+(Y-1)*IDIM+(Z)
!!$ ELEMENT=ELEMENT+1
!!$ ELSE
zt(1) = 0.d0
! Internal point: build discretization
!
! Term depending on (x-1,y,z)
!
if (x==1) then
ROW_MAT%ASPK(ELEMENT)=-B1(GLOB_X,GLOB_Y,GLOB_Z)&
& -A1(GLOB_X,GLOB_Y,GLOB_Z)
ROW_MAT%ASPK(ELEMENT) = ROW_MAT%ASPK(ELEMENT)/(DELTAH*&
& DELTAH)
ZT(1) = EXP(-GLOB_Y**2-GLOB_Z**2)*(-ROW_MAT%ASPK(ELEMENT))
else
ROW_MAT%ASPK(ELEMENT)=-B1(GLOB_X,GLOB_Y,GLOB_Z)&
& -A1(GLOB_X,GLOB_Y,GLOB_Z)
ROW_MAT%ASPK(ELEMENT) = ROW_MAT%ASPK(ELEMENT)/(DELTAH*&
& DELTAH)
ROW_MAT%IA1(ELEMENT)=(X-2)*IDIM+(Y)
ELEMENT=ELEMENT+1
endif
! Term depending on (x,y-1,z)
if (y==1) then
ROW_MAT%ASPK(ELEMENT)=-B2(GLOB_X,GLOB_Y,GLOB_Z)&
& -A2(GLOB_X,GLOB_Y,GLOB_Z)
ROW_MAT%ASPK(ELEMENT) = ROW_MAT%ASPK(ELEMENT)/(DELTAH*&
& DELTAH)
ZT(1) = EXP(-GLOB_Y**2-GLOB_Z**2)*EXP(-GLOB_X)*(-ROW_MAT%ASPK(ELEMENT))
else
ROW_MAT%ASPK(ELEMENT)=-B2(GLOB_X,GLOB_Y,GLOB_Z)&
& -A2(GLOB_X,GLOB_Y,GLOB_Z)
ROW_MAT%ASPK(ELEMENT) = ROW_MAT%ASPK(ELEMENT)/(DELTAH*&
& DELTAH)
ROW_MAT%IA1(ELEMENT)=(X-1)*IDIM+(Y-1)
ELEMENT=ELEMENT+1
endif
! Term depending on (x,y,z-1)
!!$ if (z==1) then
!!$ ROW_MAT%ASPK(ELEMENT)=-B3(GLOB_X,GLOB_Y,GLOB_Z)&
!!$ & -A3(GLOB_X,GLOB_Y,GLOB_Z)
!!$ ROW_MAT%ASPK(ELEMENT) = ROW_MAT%ASPK(ELEMENT)/(DELTAH*&
!!$ & DELTAH)
!!$ ZT(1) = EXP(-GLOB_Y**2-GLOB_Z**2)*EXP(-GLOB_X)*(-ROW_MAT%ASPK(ELEMENT))
!!$ else
!!$ ROW_MAT%ASPK(ELEMENT)=-B3(GLOB_X,GLOB_Y,GLOB_Z)&
!!$ & -A3(GLOB_X,GLOB_Y,GLOB_Z)
!!$ ROW_MAT%ASPK(ELEMENT) = ROW_MAT%ASPK(ELEMENT)/(DELTAH*&
!!$ & DELTAH)
!!$ ROW_MAT%IA1(ELEMENT)=(X-1)*IDIM*IDIM+(Y-1)*IDIM+(Z-1)
!!$ ELEMENT=ELEMENT+1
!!$ endif
! Term depending on (x,y,z)
ROW_MAT%ASPK(ELEMENT)=2*B1(GLOB_X,GLOB_Y,GLOB_Z)&
& +2*B2(GLOB_X,GLOB_Y,GLOB_Z)&
& +A1(GLOB_X,GLOB_Y,GLOB_Z)&
& +A2(GLOB_X,GLOB_Y,GLOB_Z)
ROW_MAT%ASPK(ELEMENT) = ROW_MAT%ASPK(ELEMENT)/(DELTAH*&
& DELTAH)
ROW_MAT%IA1(ELEMENT)=(X-1)*IDIM+(Y)
ELEMENT=ELEMENT+1
! Term depending on (x,y,z+1)
!!$ if (z==idim) then
!!$ ROW_MAT%ASPK(ELEMENT)=-B1(GLOB_X,GLOB_Y,GLOB_Z)
!!$ ROW_MAT%ASPK(ELEMENT) = ROW_MAT%ASPK(ELEMENT)/(DELTAH*&
!!$ & DELTAH)
!!$ ZT(1) = EXP(-GLOB_Y**2-GLOB_Z**2)*EXP(-GLOB_X)*(-ROW_MAT%ASPK(ELEMENT))
!!$ else
!!$ ROW_MAT%ASPK(ELEMENT)=-B1(GLOB_X,GLOB_Y,GLOB_Z)
!!$ ROW_MAT%ASPK(ELEMENT) = ROW_MAT%ASPK(ELEMENT)/(DELTAH*&
!!$ & DELTAH)
!!$ ROW_MAT%IA1(ELEMENT)=(X-1)*IDIM*IDIM+(Y-1)*IDIM+(Z+1)
!!$ ELEMENT=ELEMENT+1
!!$ endif
! Term depending on (x,y+1,z)
if (y==idim) then
ROW_MAT%ASPK(ELEMENT)=-B2(GLOB_X,GLOB_Y,GLOB_Z)
ROW_MAT%ASPK(ELEMENT) = ROW_MAT%ASPK(ELEMENT)/(DELTAH*&
& DELTAH)
ZT(1) = EXP(-GLOB_Y**2-GLOB_Z**2)*EXP(-GLOB_X)*(-ROW_MAT%ASPK(ELEMENT))
else
ROW_MAT%ASPK(ELEMENT)=-B2(GLOB_X,GLOB_Y,GLOB_Z)
ROW_MAT%ASPK(ELEMENT) = ROW_MAT%ASPK(ELEMENT)/(DELTAH*&
& DELTAH)
ROW_MAT%IA1(ELEMENT)=(X-1)*IDIM+(Y+1)
ELEMENT=ELEMENT+1
endif
! Term depending on (x+1,y,z)
if (x<idim) then
ROW_MAT%ASPK(ELEMENT)=-B3(GLOB_X,GLOB_Y,GLOB_Z)
ROW_MAT%ASPK(ELEMENT) = ROW_MAT%ASPK(ELEMENT)/(DELTAH*&
& DELTAH)
ROW_MAT%IA1(ELEMENT)=(X)*IDIM+(Y)
ELEMENT=ELEMENT+1
endif
!!$ ENDIF
ROW_MAT%M=1
ROW_MAT%K=N
ROW_MAT%IA2(2)=ELEMENT
! IA== GLOBAL ROW INDEX
IA=GLOB_ROW
!!$ IA=(X-1)*IDIM*IDIM+(Y-1)*IDIM+(Z)
!!$ write(0,*) 'Inserting row ',ia,' On proc',myprow
T3 = MPI_WTIME()
CALL F90_PSSPINS(A,IA,1,ROW_MAT,IERRV,DESC_A)
if (ierrv(1).ne.0) then
write(0,*) 'On row ',ia,' IERRV:',ierrv(:)
endif
TINS = TINS + (MPI_WTIME()-T3)
! Build RHS
!!$ IF (X==1) THEN
!!$ GLOB_Y=(Y-IDIM/2)*DELTAH
!!$ GLOB_Z=(Z-IDIM/2)*DELTAH
!!$ ZT(1) = EXP(-GLOB_Y**2-GLOB_Z**2)
!!$ ELSE IF ((Y==1).OR.(Y==IDIM).OR.(Z==1).OR.(Z==IDIM)) THEN
!!$ GLOB_X=3*(X-1)*DELTAH
!!$ GLOB_Y=(Y-IDIM/2)*DELTAH
!!$ GLOB_Z=(Z-IDIM/2)*DELTAH
!!$ ZT(1) = EXP(-GLOB_Y**2-GLOB_Z**2)*EXP(-GLOB_X)
!!$ ELSE
!!$ ZT(1) = 0.D0
!!$ ENDIF
CALL F90_PSDSINS(1,B,IA,ZT(1:1),IERRV,DESC_A)
ZT(1)=0.D0
CALL F90_PSDSINS(1,T,IA,ZT(1:1),IERRV,DESC_A)
END IF
END DO
END DO
CALL BLACS_BARRIER(ICONTXT,'ALL')
T2 = MPI_WTIME()
WRITE(*,*) ' pspins time',TINS
WRITE(*,*) ' Insert time',(T2-T1)
DEALLOCATE(ROW_MAT%ASPK,ROW_MAT%IA1,ROW_MAT%IA2)
write(*,*) 'Calling SPASB'
CALL BLACS_BARRIER(ICONTXT,'ALL')
T1 = MPI_WTIME()
CALL F90_PSSPASB(A,IERRV,DESC_A,AFMT=AFMT,DUP=2)
CALL BLACS_BARRIER(ICONTXT,'ALL')
T2 = MPI_WTIME()
WRITE(0,*) ' Assembly time',(T2-T1),' ',a%fida(1:4)
CALL F90_PSDSASB(B,IERRV,DESC_A)
CALL F90_PSDSASB(T,IERRV,DESC_A)
IF (MYPROW.EQ.0) THEN
WRITE(0,*) ' End CREATE_MATRIX'
ENDIF
RETURN
END SUBROUTINE CREATE_MATRIX
END PROGRAM PDE90
!
! Functions parametrizing the differential equation
!
FUNCTION A1(X,Y,Z)
REAL(KIND(1.D0)) :: A1
REAL(KIND(1.D0)) :: X,Y,Z
A1=1.D0
END FUNCTION A1
FUNCTION A2(X,Y,Z)
REAL(KIND(1.D0)) :: A2
REAL(KIND(1.D0)) :: X,Y,Z
A2=2.D1*Y
END FUNCTION A2
FUNCTION A3(X,Y,Z)
REAL(KIND(1.D0)) :: A3
REAL(KIND(1.D0)) :: X,Y,Z
A3=1.D0
END FUNCTION A3
FUNCTION A4(X,Y,Z)
REAL(KIND(1.D0)) :: A4
REAL(KIND(1.D0)) :: X,Y,Z
A4=1.D0
END FUNCTION A4
FUNCTION B1(X,Y,Z)
REAL(KIND(1.D0)) :: B1
REAL(KIND(1.D0)) :: X,Y,Z
B1=1.D0
END FUNCTION B1
FUNCTION B2(X,Y,Z)
REAL(KIND(1.D0)) :: B2
REAL(KIND(1.D0)) :: X,Y,Z
B2=1.D0
END FUNCTION B2
FUNCTION B3(X,Y,Z)
REAL(KIND(1.D0)) :: B3
REAL(KIND(1.D0)) :: X,Y,Z
B3=1.D0
END FUNCTION B3

@ -56,7 +56,7 @@ program pde90
end interface
! input parameters
character :: cmethd*10, prec*10, afmt*5
integer :: idim, iret
integer :: idim, iret, igsmth, matop
! miscellaneous
character, parameter :: order='r'
@ -121,32 +121,44 @@ program pde90
goto 9999
end if
dim=size(a%aspk)
call dgamx2d(icontxt,'a',' ',ione, ione,t2,ione,t1,t1,-1,-1,-1)
if (iam.eq.0) write(*,'("Overall matrix creation time : ",es10.4)')t2
if (iam.eq.0) write(*,'(" ")')
!
! prepare the preconditioner.
!
matop=1
igsmth=-1
if(iam.eq.psb_root_) write(0,'("Setting preconditioner to : ",a)')pr_to_str(iprec)
select case(iprec)
case(noprec_)
call psb_precset(pre,'noprec')
call psb_precset(pre,'noprec')
case(diagsc_)
call psb_precset(pre,'diagsc')
call psb_precset(pre,'diagsc')
case(bja_)
call psb_precset(pre,'ilu')
call psb_precset(pre,'ilu')
case(asm_)
call psb_precset(pre,'asm',iv=(/novr,halo_,sum_/))
call psb_precset(pre,'asm',iv=(/novr,halo_,sum_/))
case(ash_)
call psb_precset(pre,'asm',iv=(/novr,nohalo_,sum_/))
call psb_precset(pre,'asm',iv=(/novr,nohalo_,sum_/))
case(ras_)
call psb_precset(pre,'asm',iv=(/novr,halo_,none_/))
call psb_precset(pre,'asm',iv=(/novr,halo_,none_/))
case(rash_)
call psb_precset(pre,'asm',iv=(/novr,nohalo_,none_/))
call psb_precset(pre,'asm',iv=(/novr,nohalo_,none_/))
case(ras2lv_)
ptype='asm'
call psb_precset(pre,ptype,iv=(/novr,halo_,none_/))
ptype='ml'
call psb_precset(pre,ptype,&
&iv=(/add_ml_prec_,glb_aggr_,pre_smooth_,igsmth,matop/),rs=0.d0)
case(ras2lvm_)
ptype='asm'
call psb_precset(pre,ptype,iv=(/novr,halo_,none_/))
ptype='ml'
call psb_precset(pre,ptype,&
& iv=(/mult_ml_prec_,glb_aggr_,pre_smooth_,igsmth,matop/),rs=0.d0)
end select
call blacs_barrier(icontxt,'ALL')
t1 = mpi_wtime()
call psb_precbld(a,pre,desc_a,info)!,'f')

@ -1,682 +0,0 @@
!
! This sample program shows how to build and solve a sparse linear
!
! The program solves a linear system based on the partial differential
! equation
!
!
!
! the equation generated is:
! b1 d d (u) b2 d d (u) a1 d (u)) a2 d (u)))
! - ------ - ------ + ----- + ------ + a3 u = 0
! dx dx dy dy dx dy
!
!
! with Dirichlet boundary conditions on the unit cube
!
! 0<=x,y,z<=1
!
! The equation is discretized with finite differences and uniform stepsize;
! the resulting discrete equation is
!
! ( u(x,y,z)(2b1+2b2+a1+a2)+u(x-1,y)(-b1-a1)+u(x,y-1)(-b2-a2)+
! -u(x+1,y)b1-u(x,y+1)b2)*(1/h**2)
!
! Example taken from: C.T.Kelley
! Iterative Methods for Linear and Nonlinear Equations
! SIAM 1995
!
!
! In this sample program the index space of the discretized
! computational domain is first numbered sequentially in a standard way,
! then the corresponding vector is distributed according to an HPF BLOCK
! distribution directive.
!
! Boundary conditions are set in a very simple way, by adding
! equations of the form
!
! u(x,y) = rhs(x,y)
!
Program PDE90
USE TYPESP
USE TYPEDESC
USE TYPEPREC
USE F90TOOLS
USE F90METHD
USE F90PREC
use mpi
Implicit none
interface
!.....user passed subroutine.....
subroutine part_block(glob_index,n,np,pv,nv)
INTEGER, INTENT(IN) :: GLOB_INDEX, N, NP
INTEGER, INTENT(OUT) :: NV
INTEGER, INTENT(OUT) :: PV(*)
end subroutine part_block
end interface
! input parameters
Character :: CMETHD*10, PREC*10, AFMT*5
Integer :: IDIM, IRET
! Miscellaneous
Integer, Parameter :: IZERO=0, IONE=1
Character, PARAMETER :: ORDER='R'
INTEGER :: IARGC,CONVERT_DESCR,dim, CHECK_DESCR
REAL(KIND(1.D0)), PARAMETER :: DZERO = 0.D0, ONE = 1.D0
REAL(KIND(1.D0)) :: T1, T2, TPREC, TSOLVE, T3, T4
!!$ EXTERNAL MPI_WTIME
integer mpe_log_get_event_number,mpe_Describe_state,mpe_log_event
! Sparse Matrix and preconditioner
TYPE(D_SPMAT) :: A, L, U, H
TYPE(PREC_DATA) :: PRE
! Descriptor
TYPE(desc_type) :: DESC_A, DESC_A_OUT
! Dense Matrices
REAL(KIND(1.d0)), POINTER :: B(:), X(:), D(:), LD(:)
INTEGER, pointer :: WORK(:)
! BLACS parameters
INTEGER :: nprow, npcol, icontxt, iam, np, myprow, mypcol
! Solver parameters
INTEGER :: ITER, ITMAX,IERR,ITRACE, METHD,IPREC, ISTOPC,&
& IPARM(20), ML
REAL(KIND(1.D0)) :: ERR, EPS, RPARM(20)
! Other variables
INTEGER :: I,INFO,iprecb,iprece,islvb,islve
INTEGER :: INTERNAL, M,II
! Initialize BLACS
CALL BLACS_PINFO(IAM, NP)
CALL BLACS_GET(IZERO, IZERO, ICONTXT)
iprecb = mpe_log_get_event_number()
iprece = mpe_log_get_event_number()
islvb = mpe_log_get_event_number()
islve = mpe_log_get_event_number()
if (iam==0) then
info = mpe_describe_state(iprecb,iprece,"Preconditioner","OrangeRed")
info = mpe_describe_state(islvb,islve,"Solver","DarkGreen")
endif
! Rectangular Grid, P x 1
CALL BLACS_GRIDINIT(ICONTXT, ORDER, NP, IONE)
CALL BLACS_GRIDINFO(ICONTXT, NPROW, NPCOL, MYPROW, MYPCOL)
!
! Get parameters
!
CALL GET_PARMS(ICONTXT,CMETHD,PREC,AFMT,IDIM,ISTOPC,ITMAX,ITRACE,ML)
!
! Allocate and fill in the coefficient matrix, RHS and initial guess
!
CALL BLACS_BARRIER(ICONTXT,'All')
T1 = MPI_WTIME()
CALL CREATE_MATRIX(IDIM,A,B,X,DESC_A,PART_BLOCK,ICONTXT,AFMT)
T2 = MPI_WTIME() - T1
DIM=SIZE(A%ASPK)
ALLOCATE(H%ASPK(DIM),H%IA1(DIM),H%IA2(DIM),H%PL(SIZE(A%PL)),&
& H%PL(SIZE(A%PL)),D(SIZE(A%PL)),&
& DESC_A_OUT%MATRIX_DATA(SIZE(DESC_A%MATRIX_DATA)),&
& DESC_A_OUT%HALO_INDEX(SIZE(DESC_A%HALO_INDEX)),&
& DESC_A_OUT%OVRLAP_INDEX(SIZE(DESC_A%OVRLAP_INDEX)),&
& DESC_A_OUT%OVRLAP_ELEM(SIZE(DESC_A%OVRLAP_ELEM)),&
& DESC_A_OUT%LOC_TO_GLOB(SIZE(DESC_A%LOC_TO_GLOB)),&
& DESC_A_OUT%GLOB_TO_LOC(SIZE(DESC_A%GLOB_TO_LOC)), WORK(1024))
check_descr=15
! work(5)=9
!!$ WRITE(0,*)'CALLING VERIFY'
!!$ CALL F90_PSVERIFY(D,A,DESC_A,CHECK_DESCR,CONVERT_DESCR,H,&
!!$ & DESC_A_OUT,WORK)
!!$ WRITE(0,*)'VERIFY DONE',CONVERT_DESCR
deallocate(work)
CALL DGAMX2D(ICONTXT,'A',' ',IONE, IONE,T2,IONE,T1,T1,-1,-1,-1)
IF (IAM.EQ.0) Write(6,*) 'Matrix creation Time : ',T2
!
! Prepare the preconditioner.
!
write(0,*)'PRECONDIZIONATORE=',prec
SELECT CASE (PREC)
CASE ('SCHW6')
IPREC = 6
CASE ('SCHW5')
IPREC = 5
CASE ('SCHW4')
IPREC = 4
CASE ('SCHW3')
IPREC = 3
CASE ('ILU')
IPREC = 2
CASE ('DIAGSC')
IPREC = 1
CASE ('NONE')
IPREC = 0
CASE DEFAULT
WRITE(0,*) 'Unknown preconditioner'
CALL BLACS_ABORT(ICONTXT,-1)
END SELECT
pre%prec=iprec
CALL BLACS_BARRIER(ICONTXT,'All')
T1 = MPI_WTIME()
info = MPE_Log_event( iprecb, 0, "start Precond" )
CALL PRECONDITIONER(A,PRE,DESC_A,IRET)
!!$ CALL PRECONDITIONER(IPREC,A,L,U,D,DESC_A,IRET)
info = MPE_Log_event( iprece, 0, "end Precond" )
TPREC = MPI_WTIME()-T1
CALL DGAMX2D(icontxt,'A',' ',IONE, IONE,TPREC,IONE,t1,t1,-1,-1,-1)
IF (IAM.EQ.0) WRITE(6,*) 'Preconditioner Time : ',TPREC
IF (IRET.NE.0) THEN
WRITE(0,*) 'Error on preconditioner',IRET
CALL BLACS_ABORT(ICONTXT,-1)
STOP
END IF
!
! Iterative method parameters
!
write(*,*) 'Calling Iterative method', size(b),ml
CALL BLACS_BARRIER(ICONTXT,'All')
T1 = MPI_WTIME()
EPS = 1.D-9
info = MPE_Log_event( islvb, 0, "start Solver" )
IF (CMETHD.EQ.'BICGSTAB') THEN
CALL F90_BICGSTAB(A,PRE,B,X,EPS,DESC_A,&
& ITMAX,ITER,ERR,IERR,ITRACE)
!!$ ELSE IF (CMETHD.EQ.'BICG') THEN
!!$ CALL F90_BICG(A,PRE,B,X,EPS,DESC_A,&
!!$ & ITMAX,ITER,ERR,IERR,ITRACE)
!!$ ELSE IF (CMETHD.EQ.'CGS') THEN
!!$ CALL F90_CGS(A,PRE,B,X,EPS,DESC_A,&
!!$ & ITMAX,ITER,ERR,IERR,ITRACE)
!!$ ELSE IF (CMETHD.EQ.'BICGSTABL') THEN
!!$ CALL F90_BICGSTABL(A,PRE,B,X,EPS,DESC_A,&
!!$ & ITMAX,ITER,ERR,IERR,ITRACE,ML)
ELSE
write(0,*) 'Unknown method ',cmethd
end IF
info = MPE_Log_event( islve, 0, "end Solver" )
CALL BLACS_BARRIER(ICONTXT,'All')
T2 = MPI_WTIME() - T1
CALL DGAMX2D(ICONTXT,'A',' ',IONE, IONE,T2,IONE,T1,T1,-1,-1,-1)
IF (IAM.EQ.0) THEN
WRITE(6,*) 'Time to Solve Matrix : ',T2
WRITE(6,*) 'Time per iteration : ',T2/ITER
WRITE(6,*) 'Number of iterations : ',ITER
WRITE(6,*) 'Error on exit : ',ERR
WRITE(6,*) 'INFO on exit : ',IERR
END IF
!
! Cleanup storage and exit
!
CALL F90_PSDSFREE(B,DESC_A)
CALL F90_PSDSFREE(X,DESC_A)
!!$ CALL F90_PSDSFREE(D,DESC_A)
CALL F90_PSSPFREE(A,DESC_A)
!!$ CALL F90_PSSPFREE(L,DESC_A)
!!$ CALL F90_PSSPFREE(U,DESC_A)
CALL F90_PSDSCFREE(DESC_A,info)
CALL BLACS_GRIDEXIT(ICONTXT)
CALL BLACS_EXIT(0)
STOP
CONTAINS
!
! Get iteration parameters from the command line
!
SUBROUTINE GET_PARMS(ICONTXT,CMETHD,PREC,AFMT,IDIM,ISTOPC,ITMAX,ITRACE,ML)
integer :: icontxt
Character :: CMETHD*10, PREC*10, AFMT*5
Integer :: IDIM, IRET, ISTOPC,ITMAX,ITRACE,ML
Character*40 :: CHARBUF
INTEGER :: IARGC, NPROW, NPCOL, MYPROW, MYPCOL
EXTERNAL IARGC
INTEGER :: INTBUF(10), IP
CALL BLACS_GRIDINFO(ICONTXT, NPROW, NPCOL, MYPROW, MYPCOL)
IF (MYPROW==0) THEN
READ(*,*) IP
IF (IP.GE.3) THEN
READ(*,*) CMETHD
READ(*,*) PREC
READ(*,*) AFMT
! Convert strings in array
DO I = 1, LEN(CMETHD)
INTBUF(I) = IACHAR(CMETHD(I:I))
END DO
! Broadcast parameters to all processors
CALL IGEBS2D(ICONTXT,'ALL',' ',10,1,INTBUF,10)
DO I = 1, LEN(PREC)
INTBUF(I) = IACHAR(PREC(I:I))
END DO
! Broadcast parameters to all processors
CALL IGEBS2D(ICONTXT,'ALL',' ',10,1,INTBUF,10)
DO I = 1, LEN(AFMT)
INTBUF(I) = IACHAR(AFMT(I:I))
END DO
! Broadcast parameters to all processors
CALL IGEBS2D(ICONTXT,'ALL',' ',10,1,INTBUF,10)
READ(*,*) IDIM
IF (IP.GE.4) THEN
READ(*,*) ISTOPC
ELSE
ISTOPC=1
ENDIF
IF (IP.GE.5) THEN
READ(*,*) ITMAX
ELSE
ITMAX=500
ENDIF
IF (IP.GE.6) THEN
READ(*,*) ITRACE
ELSE
ITRACE=-1
ENDIF
IF (IP.GE.7) THEN
READ(*,*) ML
ELSE
ML=1
ENDIF
! Broadcast parameters to all processors
INTBUF(1) = IDIM
INTBUF(2) = ISTOPC
INTBUF(3) = ITMAX
INTBUF(4) = ITRACE
INTBUF(5) = ML
CALL IGEBS2D(ICONTXT,'ALL',' ',5,1,INTBUF,5)
WRITE(6,*)'Solving matrix: ELL1'
WRITE(6,*)'on grid',IDIM,'x',IDIM,'x',IDIM
WRITE(6,*)' with BLOCK data distribution, NP=',Np,&
& ' Preconditioner=',PREC,&
& ' Iterative methd=',CMETHD
ELSE
! Wrong number of parameter, print an error message and exit
CALL PR_USAGE(0)
CALL BLACS_ABORT(ICONTXT,-1)
STOP 1
ENDIF
ELSE
! Receive Parameters
CALL IGEBR2D(ICONTXT,'ALL',' ',10,1,INTBUF,10,0,0)
DO I = 1, 10
CMETHD(I:I) = ACHAR(INTBUF(I))
END DO
CALL IGEBR2D(ICONTXT,'ALL',' ',10,1,INTBUF,10,0,0)
DO I = 1, 10
PREC(I:I) = ACHAR(INTBUF(I))
END DO
CALL IGEBR2D(ICONTXT,'ALL',' ',10,1,INTBUF,10,0,0)
DO I = 1, 5
AFMT(I:I) = ACHAR(INTBUF(I))
END DO
CALL IGEBR2D(ICONTXT,'ALL',' ',5,1,INTBUF,5,0,0)
IDIM = INTBUF(1)
ISTOPC = INTBUF(2)
ITMAX = INTBUF(3)
ITRACE = INTBUF(4)
ML = INTBUF(5)
END IF
RETURN
END SUBROUTINE GET_PARMS
!
! Print an error message
!
SUBROUTINE PR_USAGE(IOUT)
INTEGER :: IOUT
WRITE(IOUT,*)'Incorrect parameter(s) found'
WRITE(IOUT,*)' Usage: pde90 methd prec dim &
&[istop itmax itrace]'
WRITE(IOUT,*)' Where:'
WRITE(IOUT,*)' methd: CGSTAB TFQMR CGS'
WRITE(IOUT,*)' prec : ILU DIAGSC NONE'
WRITE(IOUT,*)' dim number of points along each axis'
WRITE(IOUT,*)' the size of the resulting linear '
WRITE(IOUT,*)' system is dim**3'
WRITE(IOUT,*)' istop Stopping criterion 1, 2 or 3 [1] '
WRITE(IOUT,*)' itmax Maximum number of iterations [500] '
WRITE(IOUT,*)' itrace 0 (no tracing, default) or '
WRITE(IOUT,*)' >= 0 do tracing every ITRACE'
WRITE(IOUT,*)' iterations '
END SUBROUTINE PR_USAGE
!
! Subroutine to allocate and fill in the coefficient matrix and
! the RHS.
!
SUBROUTINE CREATE_MATRIX(IDIM,A,B,T,DESC_A,PARTS,ICONTXT,AFMT)
!
! Discretize the partial diferential equation
!
! b1 dd(u) b2 dd(u) b3 dd(u) a1 d(u) a2 d(u) a3 d(u)
! - ------ - ------ - ------ - ----- - ------ - ------ + a4 u
! dxdx dydy dzdz dx dy dz
!
! = 0
!
! boundary condition: Dirichlet
! 0< x,y,z<1
!
! u(x,y,z)(2b1+2b2+2b3+a1+a2+a3)+u(x-1,y,z)(-b1-a1)+u(x,y-1,z)(-b2-a2)+
! + u(x,y,z-1)(-b3-a3)-u(x+1,y,z)b1-u(x,y+1,z)b2-u(x,y,z+1)b3
USE TYPESP
USE TYPEDESC
USE F90TOOLS
USE F90METHD
Implicit None
INTEGER :: IDIM
integer, parameter :: nbmax=10
Real(Kind(1.D0)),Pointer :: B(:),T(:)
Type (desc_type) :: DESC_A
Integer :: ICONTXT
INTERFACE
! .....user passed subroutine.....
SUBROUTINE PARTS(GLOBAL_INDX,N,NP,PV,NV)
IMPLICIT NONE
INTEGER, INTENT(IN) :: GLOBAL_INDX, N, NP
INTEGER, INTENT(OUT) :: NV
INTEGER, INTENT(OUT) :: PV(*)
END SUBROUTINE PARTS
END INTERFACE ! Local variables
Type(D_SPMAT) :: A
Real(Kind(1.d0)) :: ZT(NBMAX),GLOB_X,GLOB_Y,GLOB_Z
Integer :: M,N,NNZ,GLOB_ROW,J
Type (D_SPMAT) :: ROW_MAT
Integer :: X,Y,Z,COUNTER,IA,I,INDX_OWNER
INTEGER :: NPROW,NPCOL,MYPROW,MYPCOL
Integer :: ELEMENT
INTEGER :: INFO, NV, INV
INTEGER, ALLOCATABLE :: PRV(:)
INTEGER, pointer :: ierrv(:)
Real(Kind(1.d0)), pointer :: DWORK(:)
INTEGER,POINTER :: IWORK(:)
character :: afmt*5
! deltah dimension of each grid cell
! deltat discretization time
Real(Kind(1.D0)) :: DELTAH
Real(Kind(1.d0)),Parameter :: RHS=0.d0,ONE=1.d0,ZERO=0.d0
Real(Kind(1.d0)) :: MPI_WTIME, T1, T2, T3, TINS
Real(Kind(1.d0)) :: a1, a2, a3, a4, b1, b2, b3
external mpi_wtime,a1, a2, a3, a4, b1, b2, b3
integer :: nb, ir1, ir2, ipr
logical :: own
! common area
CALL BLACS_GRIDINFO(ICONTXT, NPROW, NPCOL, MYPROW, MYPCOL)
DELTAH = 1.D0/(IDIM-1)
! Initialize array descriptor and sparse matrix storage. Provide an
! estimate of the number of non zeroes
CALL SETERR(2)
allocate(ierrv(6))
ierrv(:) = 0
M = IDIM*IDIM*IDIM
N = M
NNZ = ((N*9)/(NPROW*NPCOL))
write(*,*) 'Size: n ',n
Call F90_PSDSCALL(N,N,PARTS,ICONTXT,IERRV,DESC_A)
write(*,*) 'Allocating A : nnz',nnz
Call F90_PSSPALL(A,IERRV,DESC_A,NNZ=NNZ)
! Define RHS from boundary conditions; also build initial guess
write(*,*) 'Allocating B'
Call F90_PSDSALL(N,B,IERRV,DESC_A)
write(*,*) 'Allocating T'
Call F90_PSDSALL(N,T,IERRV,DESC_A)
! We build an auxiliary matrix consisting of one row at a
! time; just a small matrix. Might be extended to generate
! a bunch of rows per call.
!
ROW_MAT%DESCRA(1:1) = 'G'
ROW_MAT%FIDA = 'CSR'
write(*,*) 'Allocating ROW_MAT',20*nbmax
ALLOCATE(ROW_MAT%ASPK(20*nbmax),ROW_MAT%IA1(20*nbmax),&
&ROW_MAT%IA2(20*nbmax),PRV(NPROW),stat=info)
if (info.ne.0 ) then
write(*,*) 'Memory allocation error'
call blacs_abort(icontxt,-1)
endif
TINS = 0.D0
CALL BLACS_BARRIER(ICONTXT,'ALL')
T1 = MPI_WTIME()
! Loop over rows belonging to current process in a BLOCK
! distribution.
ROW_MAT%IA2(1)=1
DO GLOB_ROW = 1, N
CALL PARTS(GLOB_ROW,N,NPROW,PRV,NV)
DO INV = 1, NV
INDX_OWNER = PRV(INV)
IF (INDX_OWNER == MYPROW) THEN
! Local matrix pointer
ELEMENT=1
! Compute gridpoint Coordinates
IF (MOD(GLOB_ROW,(IDIM*IDIM)).EQ.0) THEN
X = GLOB_ROW/(IDIM*IDIM)
ELSE
X = GLOB_ROW/(IDIM*IDIM)+1
ENDIF
IF (MOD((GLOB_ROW-(X-1)*IDIM*IDIM),IDIM).EQ.0) THEN
Y = (GLOB_ROW-(X-1)*IDIM*IDIM)/IDIM
ELSE
Y = (GLOB_ROW-(X-1)*IDIM*IDIM)/IDIM+1
ENDIF
Z = GLOB_ROW-(X-1)*IDIM*IDIM-(Y-1)*IDIM
! GLOB_X, GLOB_Y, GLOB_X coordinates
GLOB_X=X*DELTAH
GLOB_Y=Y*DELTAH
GLOB_Z=Z*DELTAH
! Check on boundary points
IF (X.EQ.1) THEN
ROW_MAT%ASPK(ELEMENT)=ONE
ROW_MAT%IA1(ELEMENT)=(X-1)*IDIM*IDIM+(Y-1)*IDIM+(Z)
ELEMENT=ELEMENT+1
ELSE IF (Y.EQ.1) THEN
ROW_MAT%ASPK(ELEMENT)=ONE
ROW_MAT%IA1(ELEMENT)=(X-1)*IDIM*IDIM+(Y-1)*IDIM+(Z)
ELEMENT=ELEMENT+1
ELSE IF (Z.EQ.1) THEN
ROW_MAT%ASPK(ELEMENT)=ONE
ROW_MAT%IA1(ELEMENT)=(X-1)*IDIM*IDIM+(Y-1)*IDIM+(Z)
ELEMENT=ELEMENT+1
ELSE IF (X.EQ.IDIM) THEN
ROW_MAT%ASPK(ELEMENT)=ONE
ROW_MAT%IA1(ELEMENT)=(X-1)*IDIM*IDIM+(Y-1)*IDIM+(Z)
ELEMENT=ELEMENT+1
ELSE IF (Y.EQ.IDIM) THEN
ROW_MAT%ASPK(ELEMENT)=ONE
ROW_MAT%IA1(ELEMENT)=(X-1)*IDIM*IDIM+(Y-1)*IDIM+(Z)
ELEMENT=ELEMENT+1
ELSE IF (Z.EQ.IDIM) THEN
ROW_MAT%ASPK(ELEMENT)=ONE
ROW_MAT%IA1(ELEMENT)=(X-1)*IDIM*IDIM+(Y-1)*IDIM+(Z)
ELEMENT=ELEMENT+1
ELSE
! Internal point: build discretization
!
! Term depending on (x-1,y,z)
!
ROW_MAT%ASPK(ELEMENT)=-B1(GLOB_X,GLOB_Y,GLOB_Z)&
& -A1(GLOB_X,GLOB_Y,GLOB_Z)
ROW_MAT%ASPK(ELEMENT) = ROW_MAT%ASPK(ELEMENT)/(DELTAH*&
& DELTAH)
ROW_MAT%IA1(ELEMENT)=(X-2)*IDIM*IDIM+(Y-1)*IDIM+(Z)
ELEMENT=ELEMENT+1
! Term depending on (x,y-1,z)
ROW_MAT%ASPK(ELEMENT)=-B2(GLOB_X,GLOB_Y,GLOB_Z)&
& -A2(GLOB_X,GLOB_Y,GLOB_Z)
ROW_MAT%ASPK(ELEMENT) = ROW_MAT%ASPK(ELEMENT)/(DELTAH*&
& DELTAH)
ROW_MAT%IA1(ELEMENT)=(X-1)*IDIM*IDIM+(Y-2)*IDIM+(Z)
ELEMENT=ELEMENT+1
! Term depending on (x,y,z-1)
ROW_MAT%ASPK(ELEMENT)=-B3(GLOB_X,GLOB_Y,GLOB_Z)&
& -A3(GLOB_X,GLOB_Y,GLOB_Z)
ROW_MAT%ASPK(ELEMENT) = ROW_MAT%ASPK(ELEMENT)/(DELTAH*&
& DELTAH)
ROW_MAT%IA1(ELEMENT)=(X-1)*IDIM*IDIM+(Y-1)*IDIM+(Z-1)
ELEMENT=ELEMENT+1
! Term depending on (x,y,z)
ROW_MAT%ASPK(ELEMENT)=2*B1(GLOB_X,GLOB_Y,GLOB_Z)&
& +2*B2(GLOB_X,GLOB_Y,GLOB_Z)&
& +2*B3(GLOB_X,GLOB_Y,GLOB_Z)&
& +A1(GLOB_X,GLOB_Y,GLOB_Z)&
& +A2(GLOB_X,GLOB_Y,GLOB_Z)&
& +A3(GLOB_X,GLOB_Y,GLOB_Z)
ROW_MAT%ASPK(ELEMENT) = ROW_MAT%ASPK(ELEMENT)/(DELTAH*&
& DELTAH)
ROW_MAT%IA1(ELEMENT)=(X-1)*IDIM*IDIM+(Y-1)*IDIM+(Z)
ELEMENT=ELEMENT+1
! Term depending on (x,y,z+1)
ROW_MAT%ASPK(ELEMENT)=-B1(GLOB_X,GLOB_Y,GLOB_Z)
ROW_MAT%ASPK(ELEMENT) = ROW_MAT%ASPK(ELEMENT)/(DELTAH*&
& DELTAH)
ROW_MAT%IA1(ELEMENT)=(X-1)*IDIM*IDIM+(Y-1)*IDIM+(Z+1)
ELEMENT=ELEMENT+1
! Term depending on (x,y+1,z)
ROW_MAT%ASPK(ELEMENT)=-B2(GLOB_X,GLOB_Y,GLOB_Z)
ROW_MAT%ASPK(ELEMENT) = ROW_MAT%ASPK(ELEMENT)/(DELTAH*&
& DELTAH)
ROW_MAT%IA1(ELEMENT)=(X-1)*IDIM*IDIM+(Y)*IDIM+(Z)
ELEMENT=ELEMENT+1
! Term depending on (x+1,y,z)
ROW_MAT%ASPK(ELEMENT)=-B3(GLOB_X,GLOB_Y,GLOB_Z)
ROW_MAT%ASPK(ELEMENT) = ROW_MAT%ASPK(ELEMENT)/(DELTAH*&
& DELTAH)
ROW_MAT%IA1(ELEMENT)=(X)*IDIM*IDIM+(Y-1)*IDIM+(Z)
ELEMENT=ELEMENT+1
ENDIF
ROW_MAT%M=1
ROW_MAT%K=N
ROW_MAT%IA2(2)=ELEMENT
! IA== GLOBAL ROW INDEX
IA=GLOB_ROW
!!$ IA=(X-1)*IDIM*IDIM+(Y-1)*IDIM+(Z)
!!$ write(0,*) 'Inserting row ',ia,' On proc',myprow
T3 = MPI_WTIME()
CALL F90_PSSPINS(A,IA,1,ROW_MAT,IERRV,DESC_A)
if (ierrv(1).ne.0) then
write(0,*) 'On row ',ia,' IERRV:',ierrv(:)
endif
TINS = TINS + (MPI_WTIME()-T3)
! Build RHS
IF (X==1) THEN
GLOB_Y=(Y-IDIM/2)*DELTAH
GLOB_Z=(Z-IDIM/2)*DELTAH
ZT(1) = EXP(-GLOB_Y**2-GLOB_Z**2)
ELSE IF ((Y==1).OR.(Y==IDIM).OR.(Z==1).OR.(Z==IDIM)) THEN
GLOB_X=3*(X-1)*DELTAH
GLOB_Y=(Y-IDIM/2)*DELTAH
GLOB_Z=(Z-IDIM/2)*DELTAH
ZT(1) = EXP(-GLOB_Y**2-GLOB_Z**2)*EXP(-GLOB_X)
ELSE
ZT(1) = 0.D0
ENDIF
CALL F90_PSDSINS(1,B,IA,ZT(1:1),IERRV,DESC_A)
ZT(1)=0.D0
CALL F90_PSDSINS(1,T,IA,ZT(1:1),IERRV,DESC_A)
END IF
END DO
END DO
CALL BLACS_BARRIER(ICONTXT,'ALL')
T2 = MPI_WTIME()
WRITE(*,*) ' pspins time',TINS
WRITE(*,*) ' Insert time',(T2-T1)
DEALLOCATE(ROW_MAT%ASPK,ROW_MAT%IA1,ROW_MAT%IA2)
write(*,*) 'Calling SPASB'
CALL BLACS_BARRIER(ICONTXT,'ALL')
T1 = MPI_WTIME()
CALL F90_PSSPASB(A,IERRV,DESC_A,AFMT=AFMT,DUP=2)
CALL BLACS_BARRIER(ICONTXT,'ALL')
T2 = MPI_WTIME()
WRITE(0,*) ' Assembly time',(T2-T1),' ',a%fida(1:4)
CALL F90_PSDSASB(B,IERRV,DESC_A)
CALL F90_PSDSASB(T,IERRV,DESC_A)
IF (MYPROW.EQ.0) THEN
WRITE(0,*) ' End CREATE_MATRIX'
ENDIF
RETURN
END SUBROUTINE CREATE_MATRIX
END PROGRAM PDE90
!
! Functions parametrizing the differential equation
!
FUNCTION A1(X,Y,Z)
REAL(KIND(1.D0)) :: A1
REAL(KIND(1.D0)) :: X,Y,Z
A1=1.D0
END FUNCTION A1
FUNCTION A2(X,Y,Z)
REAL(KIND(1.D0)) :: A2
REAL(KIND(1.D0)) :: X,Y,Z
A2=2.D1*Y
END FUNCTION A2
FUNCTION A3(X,Y,Z)
REAL(KIND(1.D0)) :: A3
REAL(KIND(1.D0)) :: X,Y,Z
A3=1.D0
END FUNCTION A3
FUNCTION A4(X,Y,Z)
REAL(KIND(1.D0)) :: A4
REAL(KIND(1.D0)) :: X,Y,Z
A4=1.D0
END FUNCTION A4
FUNCTION B1(X,Y,Z)
REAL(KIND(1.D0)) :: B1
REAL(KIND(1.D0)) :: X,Y,Z
B1=1.D0
END FUNCTION B1
FUNCTION B2(X,Y,Z)
REAL(KIND(1.D0)) :: B2
REAL(KIND(1.D0)) :: X,Y,Z
B2=1.D0
END FUNCTION B2
FUNCTION B3(X,Y,Z)
REAL(KIND(1.D0)) :: B3
REAL(KIND(1.D0)) :: X,Y,Z
B3=1.D0
END FUNCTION B3

@ -1,707 +0,0 @@
!
! This sample program shows how to build and solve a sparse linear
!
! The program solves a linear system based on the partial differential
! equation
!
!
!
! the equation generated is:
! b1 d d (u) b2 d d (u) a1 d (u)) a2 d (u)))
! - ------ - ------ + ----- + ------ + a3 u = 0
! dx dx dy dy dx dy
!
!
! with Dirichlet boundary conditions on the unit cube
!
! 0<=x,y,z<=1
!
! The equation is discretized with finite differences and uniform stepsize;
! the resulting discrete equation is
!
! ( u(x,y,z)(2b1+2b2+a1+a2)+u(x-1,y)(-b1-a1)+u(x,y-1)(-b2-a2)+
! -u(x+1,y)b1-u(x,y+1)b2)*(1/h**2)
!
! Example taken from: C.T.Kelley
! Iterative Methods for Linear and Nonlinear Equations
! SIAM 1995
!
!
! In this sample program the index space of the discretized
! computational domain is first numbered sequentially in a standard way,
! then the corresponding vector is distributed according to an HPF BLOCK
! distribution directive.
!
! Boundary conditions are set in a very simple way, by adding
! equations of the form
!
! u(x,y) = rhs(x,y)
!
Program PDE90
USE F90SPARSE
Implicit none
interface
!.....user passed subroutine.....
subroutine part_block(glob_index,n,np,pv,nv)
INTEGER, INTENT(IN) :: GLOB_INDEX, N, NP
INTEGER, INTENT(OUT) :: NV
INTEGER, INTENT(OUT) :: PV(*)
end subroutine part_block
end interface
! input parameters
Character :: CMETHD*10, PREC*10, AFMT*5
Integer :: IDIM, IRET
! Miscellaneous
Integer, Parameter :: IZERO=0, IONE=1
Character, PARAMETER :: ORDER='R'
INTEGER :: IARGC,CONVERT_DESCR,dim, CHECK_DESCR
REAL(KIND(1.D0)), PARAMETER :: DZERO = 0.D0, ONE = 1.D0
REAL(KIND(1.D0)) :: MPI_WTIME, T1, T2, TPREC, TSOLVE, T3, T4
EXTERNAL MPI_WTIME
! Sparse Matrix and preconditioner
TYPE(D_SPMAT) :: A, L, U, H
TYPE(D_PREC) :: PRE
! Descriptor
TYPE(desc_type) :: DESC_A, DESC_A_OUT
! Dense Matrices
REAL(KIND(1.d0)), POINTER :: B(:), X(:), D(:),LD(:)
INTEGER, pointer :: WORK(:)
! BLACS parameters
INTEGER :: nprow, npcol, icontxt, iam, np, myprow, mypcol
! Solver parameters
INTEGER :: ITER, ITMAX,IERR,ITRACE, METHD,IPREC, ISTOPC,&
& IPARM(20), ML
REAL(KIND(1.D0)) :: ERR, EPS, RPARM(20)
! Other variables
INTEGER :: I,INFO
INTEGER :: INTERNAL, M,II
! Initialize BLACS
CALL BLACS_PINFO(IAM, NP)
CALL BLACS_GET(IZERO, IZERO, ICONTXT)
! Rectangular Grid, P x 1
CALL BLACS_GRIDINIT(ICONTXT, ORDER, NP, IONE)
CALL BLACS_GRIDINFO(ICONTXT, NPROW, NPCOL, MYPROW, MYPCOL)
!
! Get parameters
!
CALL GET_PARMS(ICONTXT,CMETHD,PREC,AFMT,IDIM,ISTOPC,ITMAX,ITRACE,ML)
!
! Allocate and fill in the coefficient matrix, RHS and initial guess
!
CALL BLACS_BARRIER(ICONTXT,'All')
T1 = MPI_WTIME()
CALL CREATE_MATRIX(IDIM,A,B,X,DESC_A,PART_BLOCK,ICONTXT,AFMT)
T2 = MPI_WTIME() - T1
DIM=SIZE(A%ASPK)
ALLOCATE(H%ASPK(DIM),H%IA1(DIM),H%IA2(DIM),H%PL(SIZE(A%PL)),&
& H%PL(SIZE(A%PL)),D(SIZE(A%PL)),&
& DESC_A_OUT%MATRIX_DATA(SIZE(DESC_A%MATRIX_DATA)),&
& DESC_A_OUT%HALO_INDEX(SIZE(DESC_A%HALO_INDEX)),&
& DESC_A_OUT%OVRLAP_INDEX(SIZE(DESC_A%OVRLAP_INDEX)),&
& DESC_A_OUT%OVRLAP_ELEM(SIZE(DESC_A%OVRLAP_ELEM)),&
& DESC_A_OUT%LOC_TO_GLOB(SIZE(DESC_A%LOC_TO_GLOB)),&
& DESC_A_OUT%GLOB_TO_LOC(SIZE(DESC_A%GLOB_TO_LOC)), WORK(1024))
check_descr=15
! work(5)=9
!!$ WRITE(0,*)'CALLING VERIFY'
!!$ CALL F90_PSVERIFY(D,A,DESC_A,CHECK_DESCR,CONVERT_DESCR,H,&
!!$ & DESC_A_OUT,WORK)
!!$ WRITE(0,*)'VERIFY DONE',CONVERT_DESCR
deallocate(work)
CALL DGAMX2D(ICONTXT,'A',' ',IONE, IONE,T2,IONE,T1,T1,-1,-1,-1)
IF (IAM.EQ.0) Write(6,*) 'Matrix creation Time : ',T2
!
! Prepare the preconditioner.
!
write(0,*)'PRECONDIZIONATORE=',prec
SELECT CASE (PREC)
CASE ('SCHW6')
IPREC = 6
CASE ('SCHW5')
IPREC = 5
CASE ('SCHW4')
IPREC = 4
CASE ('SCHW3')
IPREC = 3
CASE ('ILU')
IPREC = 2
CASE ('DIAGSC')
IPREC = 1
CASE ('NONE')
IPREC = 0
CASE DEFAULT
WRITE(0,*) 'Unknown preconditioner'
CALL BLACS_ABORT(ICONTXT,-1)
END SELECT
pre%prec=iprec
pre%n_ovr=ml
pre%irenum=0
CALL BLACS_BARRIER(ICONTXT,'All')
T1 = MPI_WTIME()
CALL PRECONDITIONER(A,PRE,DESC_A,IRET)
!!$ CALL PRECONDITIONER(IPREC,A,L,U,D,DESC_A,IRET)
TPREC = MPI_WTIME()-T1
CALL DGAMX2D(icontxt,'A',' ',IONE, IONE,TPREC,IONE,t1,t1,-1,-1,-1)
IF (IAM.EQ.0) WRITE(6,*) 'Preconditioner Time : ',TPREC
IF (IRET.NE.0) THEN
WRITE(0,*) 'Error on preconditioner',IRET
CALL BLACS_ABORT(ICONTXT,-1)
STOP
END IF
!
! Iterative method parameters
!
call dcsprt90(80+myprow,a,head='% Local A')
write(*,*) 'Calling Iterative method', size(b),ml
CALL BLACS_BARRIER(ICONTXT,'All')
T1 = MPI_WTIME()
EPS = 1.D-9
IF (CMETHD.EQ.'BICGSTAB') THEN
CALL F90_BICGSTAB(A,PRE,B,X,EPS,DESC_A,&
& ITMAX,ITER,ERR,IERR,ITRACE)
!!$ ELSE IF (CMETHD.EQ.'BICG') THEN
!!$ CALL F90_BICG(A,PRE,B,X,EPS,DESC_A,&
!!$ & ITMAX,ITER,ERR,IERR,ITRACE)
ELSE IF (CMETHD.EQ.'CGS') THEN
CALL F90_CGS(A,PRE,B,X,EPS,DESC_A,&
& ITMAX,ITER,ERR,IERR,ITRACE)
ELSE IF (CMETHD.EQ.'BICGSTABL') THEN
CALL F90_BICGSTABL(A,PRE,B,X,EPS,DESC_A,&
& ITMAX,ITER,ERR,IERR,ITRACE,ML)
ELSE
write(0,*) 'Unknown method ',cmethd
end IF
CALL BLACS_BARRIER(ICONTXT,'All')
T2 = MPI_WTIME() - T1
CALL DGAMX2D(ICONTXT,'A',' ',IONE, IONE,T2,IONE,T1,T1,-1,-1,-1)
IF (IAM.EQ.0) THEN
WRITE(6,*) 'Time to Solve Matrix : ',T2
WRITE(6,*) 'Time per iteration : ',T2/ITER
WRITE(6,*) 'Number of iterations : ',ITER
WRITE(6,*) 'Error on exit : ',ERR
WRITE(6,*) 'INFO on exit : ',IERR
END IF
!
! Cleanup storage and exit
!
CALL F90_PSDSFREE(B,DESC_A)
CALL F90_PSDSFREE(X,DESC_A)
!!$ CALL F90_PSDSFREE(D,DESC_A)
CALL F90_PSSPFREE(A,DESC_A)
!!$ CALL F90_PSSPFREE(L,DESC_A)
!!$ CALL F90_PSSPFREE(U,DESC_A)
CALL F90_PSDSCFREE(DESC_A,info)
CALL BLACS_GRIDEXIT(ICONTXT)
CALL BLACS_EXIT(0)
STOP
CONTAINS
!
! Get iteration parameters from the command line
!
SUBROUTINE GET_PARMS(ICONTXT,CMETHD,PREC,AFMT,IDIM,ISTOPC,ITMAX,ITRACE,ML)
integer :: icontxt
Character :: CMETHD*10, PREC*10, AFMT*5
Integer :: IDIM, IRET, ISTOPC,ITMAX,ITRACE,ML
Character*40 :: CHARBUF
INTEGER :: IARGC, NPROW, NPCOL, MYPROW, MYPCOL
EXTERNAL IARGC
INTEGER :: INTBUF(10), IP
CALL BLACS_GRIDINFO(ICONTXT, NPROW, NPCOL, MYPROW, MYPCOL)
IF (MYPROW==0) THEN
READ(*,*) IP
IF (IP.GE.3) THEN
READ(*,*) CMETHD
READ(*,*) PREC
READ(*,*) AFMT
! Convert strings in array
DO I = 1, LEN(CMETHD)
INTBUF(I) = IACHAR(CMETHD(I:I))
END DO
! Broadcast parameters to all processors
CALL IGEBS2D(ICONTXT,'ALL',' ',10,1,INTBUF,10)
DO I = 1, LEN(PREC)
INTBUF(I) = IACHAR(PREC(I:I))
END DO
! Broadcast parameters to all processors
CALL IGEBS2D(ICONTXT,'ALL',' ',10,1,INTBUF,10)
DO I = 1, LEN(AFMT)
INTBUF(I) = IACHAR(AFMT(I:I))
END DO
! Broadcast parameters to all processors
CALL IGEBS2D(ICONTXT,'ALL',' ',10,1,INTBUF,10)
READ(*,*) IDIM
IF (IP.GE.4) THEN
READ(*,*) ISTOPC
ELSE
ISTOPC=1
ENDIF
IF (IP.GE.5) THEN
READ(*,*) ITMAX
ELSE
ITMAX=500
ENDIF
IF (IP.GE.6) THEN
READ(*,*) ITRACE
ELSE
ITRACE=-1
ENDIF
IF (IP.GE.7) THEN
READ(*,*) ML
ELSE
ML=1
ENDIF
! Broadcast parameters to all processors
INTBUF(1) = IDIM
INTBUF(2) = ISTOPC
INTBUF(3) = ITMAX
INTBUF(4) = ITRACE
INTBUF(5) = ML
CALL IGEBS2D(ICONTXT,'ALL',' ',5,1,INTBUF,5)
WRITE(6,*)'Solving matrix: ELL1'
WRITE(6,*)'on grid',IDIM,'x',IDIM,'x',IDIM
WRITE(6,*)' with BLOCK data distribution, NP=',Np,&
& ' Preconditioner=',PREC,&
& ' Iterative methd=',CMETHD
ELSE
! Wrong number of parameter, print an error message and exit
CALL PR_USAGE(0)
CALL BLACS_ABORT(ICONTXT,-1)
STOP 1
ENDIF
ELSE
! Receive Parameters
CALL IGEBR2D(ICONTXT,'ALL',' ',10,1,INTBUF,10,0,0)
DO I = 1, 10
CMETHD(I:I) = ACHAR(INTBUF(I))
END DO
CALL IGEBR2D(ICONTXT,'ALL',' ',10,1,INTBUF,10,0,0)
DO I = 1, 10
PREC(I:I) = ACHAR(INTBUF(I))
END DO
CALL IGEBR2D(ICONTXT,'ALL',' ',10,1,INTBUF,10,0,0)
DO I = 1, 5
AFMT(I:I) = ACHAR(INTBUF(I))
END DO
CALL IGEBR2D(ICONTXT,'ALL',' ',5,1,INTBUF,5,0,0)
IDIM = INTBUF(1)
ISTOPC = INTBUF(2)
ITMAX = INTBUF(3)
ITRACE = INTBUF(4)
ML = INTBUF(5)
END IF
RETURN
END SUBROUTINE GET_PARMS
!
! Print an error message
!
SUBROUTINE PR_USAGE(IOUT)
INTEGER :: IOUT
WRITE(IOUT,*)'Incorrect parameter(s) found'
WRITE(IOUT,*)' Usage: pde90 methd prec dim &
&[istop itmax itrace]'
WRITE(IOUT,*)' Where:'
WRITE(IOUT,*)' methd: CGSTAB TFQMR CGS'
WRITE(IOUT,*)' prec : ILU DIAGSC NONE'
WRITE(IOUT,*)' dim number of points along each axis'
WRITE(IOUT,*)' the size of the resulting linear '
WRITE(IOUT,*)' system is dim**3'
WRITE(IOUT,*)' istop Stopping criterion 1, 2 or 3 [1] '
WRITE(IOUT,*)' itmax Maximum number of iterations [500] '
WRITE(IOUT,*)' itrace 0 (no tracing, default) or '
WRITE(IOUT,*)' >= 0 do tracing every ITRACE'
WRITE(IOUT,*)' iterations '
END SUBROUTINE PR_USAGE
!
! Subroutine to allocate and fill in the coefficient matrix and
! the RHS.
!
SUBROUTINE CREATE_MATRIX(IDIM,A,B,T,DESC_A,PARTS,ICONTXT,AFMT)
!
! Discretize the partial diferential equation
!
! b1 dd(u) b2 dd(u) b3 dd(u) a1 d(u) a2 d(u) a3 d(u)
! - ------ - ------ - ------ - ----- - ------ - ------ + a4 u
! dxdx dydy dzdz dx dy dz
!
! = 0
!
! boundary condition: Dirichlet
! 0< x,y,z<1
!
! u(x,y,z)(2b1+2b2+2b3+a1+a2+a3)+u(x-1,y,z)(-b1-a1)+u(x,y-1,z)(-b2-a2)+
! + u(x,y,z-1)(-b3-a3)-u(x+1,y,z)b1-u(x,y+1,z)b2-u(x,y,z+1)b3
USE TYPESP
USE TYPEDESC
USE F90TOOLS
USE F90METHD
Implicit None
INTEGER :: IDIM
integer, parameter :: nbmax=10
Real(Kind(1.D0)),Pointer :: B(:),T(:)
Type (desc_type) :: DESC_A
Integer :: ICONTXT
INTERFACE
! .....user passed subroutine.....
SUBROUTINE PARTS(GLOBAL_INDX,N,NP,PV,NV)
IMPLICIT NONE
INTEGER, INTENT(IN) :: GLOBAL_INDX, N, NP
INTEGER, INTENT(OUT) :: NV
INTEGER, INTENT(OUT) :: PV(*)
END SUBROUTINE PARTS
END INTERFACE ! Local variables
Type(D_SPMAT) :: A
Real(Kind(1.d0)) :: ZT(NBMAX),GLOB_X,GLOB_Y,GLOB_Z
Integer :: M,N,NNZ,GLOB_ROW,J
Type (D_SPMAT) :: ROW_MAT
Integer :: X,Y,Z,COUNTER,IA,I,INDX_OWNER
INTEGER :: NPROW,NPCOL,MYPROW,MYPCOL
Integer :: ELEMENT
INTEGER :: INFO, NV, INV
INTEGER, ALLOCATABLE :: PRV(:)
INTEGER, pointer :: ierrv(:)
Real(Kind(1.d0)), pointer :: DWORK(:)
INTEGER,POINTER :: IWORK(:)
character :: afmt*5
! deltah dimension of each grid cell
! deltat discretization time
Real(Kind(1.D0)) :: DELTAH
Real(Kind(1.d0)),Parameter :: RHS=0.d0,ONE=1.d0,ZERO=0.d0
Real(Kind(1.d0)) :: MPI_WTIME, T1, T2, T3, TINS
Real(Kind(1.d0)) :: a1, a2, a3, a4, b1, b2, b3
external mpi_wtime,a1, a2, a3, a4, b1, b2, b3
integer :: nb, ir1, ir2, ipr
logical :: own
! common area
CALL BLACS_GRIDINFO(ICONTXT, NPROW, NPCOL, MYPROW, MYPCOL)
DELTAH = 1.D0/(IDIM-1)
! Initialize array descriptor and sparse matrix storage. Provide an
! estimate of the number of non zeroes
CALL SETERR(2)
allocate(ierrv(6))
ierrv(:) = 0
M = IDIM*IDIM*IDIM
N = M
NNZ = ((N*9)/(NPROW*NPCOL))
write(*,*) 'Size: n ',n
Call F90_PSDSCALL(N,N,PARTS,ICONTXT,IERRV,DESC_A)
write(*,*) 'Allocating A : nnz',nnz
Call F90_PSSPALL(A,IERRV,DESC_A,NNZ=NNZ)
! Define RHS from boundary conditions; also build initial guess
write(*,*) 'Allocating B'
Call F90_PSDSALL(N,B,IERRV,DESC_A)
write(*,*) 'Allocating T'
Call F90_PSDSALL(N,T,IERRV,DESC_A)
! We build an auxiliary matrix consisting of one row at a
! time; just a small matrix. Might be extended to generate
! a bunch of rows per call.
!
ROW_MAT%DESCRA(1:1) = 'G'
ROW_MAT%FIDA = 'CSR'
write(*,*) 'Allocating ROW_MAT',20*nbmax
ALLOCATE(ROW_MAT%ASPK(20*nbmax),ROW_MAT%IA1(20*nbmax),&
&ROW_MAT%IA2(20*nbmax),PRV(NPROW),stat=info)
if (info.ne.0 ) then
write(*,*) 'Memory allocation error'
call blacs_abort(icontxt,-1)
endif
TINS = 0.D0
CALL BLACS_BARRIER(ICONTXT,'ALL')
T1 = MPI_WTIME()
! Loop over rows belonging to current process in a BLOCK
! distribution.
ROW_MAT%IA2(1)=1
DO GLOB_ROW = 1, N
CALL PARTS(GLOB_ROW,N,NPROW,PRV,NV)
DO INV = 1, NV
INDX_OWNER = PRV(INV)
IF (INDX_OWNER == MYPROW) THEN
! Local matrix pointer
ELEMENT=1
! Compute gridpoint Coordinates
IF (MOD(GLOB_ROW,(IDIM*IDIM)).EQ.0) THEN
X = GLOB_ROW/(IDIM*IDIM)
ELSE
X = GLOB_ROW/(IDIM*IDIM)+1
ENDIF
IF (MOD((GLOB_ROW-(X-1)*IDIM*IDIM),IDIM).EQ.0) THEN
Y = (GLOB_ROW-(X-1)*IDIM*IDIM)/IDIM
ELSE
Y = (GLOB_ROW-(X-1)*IDIM*IDIM)/IDIM+1
ENDIF
Z = GLOB_ROW-(X-1)*IDIM*IDIM-(Y-1)*IDIM
! GLOB_X, GLOB_Y, GLOB_X coordinates
GLOB_X=X*DELTAH
GLOB_Y=Y*DELTAH
GLOB_Z=Z*DELTAH
! Check on boundary points
!!$ IF (X.EQ.1) THEN
!!$ ROW_MAT%ASPK(ELEMENT)=ONE
!!$ ROW_MAT%IA1(ELEMENT)=(X-1)*IDIM*IDIM+(Y-1)*IDIM+(Z)
!!$ ELEMENT=ELEMENT+1
!!$ ELSE IF (Y.EQ.1) THEN
!!$ ROW_MAT%ASPK(ELEMENT)=ONE
!!$ ROW_MAT%IA1(ELEMENT)=(X-1)*IDIM*IDIM+(Y-1)*IDIM+(Z)
!!$ ELEMENT=ELEMENT+1
!!$ ELSE IF (Z.EQ.1) THEN
!!$ ROW_MAT%ASPK(ELEMENT)=ONE
!!$ ROW_MAT%IA1(ELEMENT)=(X-1)*IDIM*IDIM+(Y-1)*IDIM+(Z)
!!$ ELEMENT=ELEMENT+1
!!$ ELSE IF (X.EQ.IDIM) THEN
!!$ ROW_MAT%ASPK(ELEMENT)=ONE
!!$ ROW_MAT%IA1(ELEMENT)=(X-1)*IDIM*IDIM+(Y-1)*IDIM+(Z)
!!$ ELEMENT=ELEMENT+1
!!$ ELSE IF (Y.EQ.IDIM) THEN
!!$ ROW_MAT%ASPK(ELEMENT)=ONE
!!$ ROW_MAT%IA1(ELEMENT)=(X-1)*IDIM*IDIM+(Y-1)*IDIM+(Z)
!!$ ELEMENT=ELEMENT+1
!!$ ELSE IF (Z.EQ.IDIM) THEN
!!$ ROW_MAT%ASPK(ELEMENT)=ONE
!!$ ROW_MAT%IA1(ELEMENT)=(X-1)*IDIM*IDIM+(Y-1)*IDIM+(Z)
!!$ ELEMENT=ELEMENT+1
!!$ ELSE
zt(1) = 0.d0
! Internal point: build discretization
!
! Term depending on (x-1,y,z)
!
if (x==1) then
ROW_MAT%ASPK(ELEMENT)=-B1(GLOB_X,GLOB_Y,GLOB_Z)&
& -A1(GLOB_X,GLOB_Y,GLOB_Z)
ROW_MAT%ASPK(ELEMENT) = ROW_MAT%ASPK(ELEMENT)/(DELTAH*&
& DELTAH)
ZT(1) = EXP(-GLOB_Y**2-GLOB_Z**2)*(-ROW_MAT%ASPK(ELEMENT))
else
ROW_MAT%ASPK(ELEMENT)=-B1(GLOB_X,GLOB_Y,GLOB_Z)&
& -A1(GLOB_X,GLOB_Y,GLOB_Z)
ROW_MAT%ASPK(ELEMENT) = ROW_MAT%ASPK(ELEMENT)/(DELTAH*&
& DELTAH)
ROW_MAT%IA1(ELEMENT)=(X-2)*IDIM*IDIM+(Y-1)*IDIM+(Z)
ELEMENT=ELEMENT+1
endif
! Term depending on (x,y-1,z)
if (y==1) then
ROW_MAT%ASPK(ELEMENT)=-B2(GLOB_X,GLOB_Y,GLOB_Z)&
& -A2(GLOB_X,GLOB_Y,GLOB_Z)
ROW_MAT%ASPK(ELEMENT) = ROW_MAT%ASPK(ELEMENT)/(DELTAH*&
& DELTAH)
ZT(1) = EXP(-GLOB_Y**2-GLOB_Z**2)*EXP(-GLOB_X)*(-ROW_MAT%ASPK(ELEMENT))
else
ROW_MAT%ASPK(ELEMENT)=-B2(GLOB_X,GLOB_Y,GLOB_Z)&
& -A2(GLOB_X,GLOB_Y,GLOB_Z)
ROW_MAT%ASPK(ELEMENT) = ROW_MAT%ASPK(ELEMENT)/(DELTAH*&
& DELTAH)
ROW_MAT%IA1(ELEMENT)=(X-1)*IDIM*IDIM+(Y-2)*IDIM+(Z)
ELEMENT=ELEMENT+1
endif
! Term depending on (x,y,z-1)
if (z==1) then
ROW_MAT%ASPK(ELEMENT)=-B3(GLOB_X,GLOB_Y,GLOB_Z)&
& -A3(GLOB_X,GLOB_Y,GLOB_Z)
ROW_MAT%ASPK(ELEMENT) = ROW_MAT%ASPK(ELEMENT)/(DELTAH*&
& DELTAH)
ZT(1) = EXP(-GLOB_Y**2-GLOB_Z**2)*EXP(-GLOB_X)*(-ROW_MAT%ASPK(ELEMENT))
else
ROW_MAT%ASPK(ELEMENT)=-B3(GLOB_X,GLOB_Y,GLOB_Z)&
& -A3(GLOB_X,GLOB_Y,GLOB_Z)
ROW_MAT%ASPK(ELEMENT) = ROW_MAT%ASPK(ELEMENT)/(DELTAH*&
& DELTAH)
ROW_MAT%IA1(ELEMENT)=(X-1)*IDIM*IDIM+(Y-1)*IDIM+(Z-1)
ELEMENT=ELEMENT+1
endif
! Term depending on (x,y,z)
ROW_MAT%ASPK(ELEMENT)=2*B1(GLOB_X,GLOB_Y,GLOB_Z)&
& +2*B2(GLOB_X,GLOB_Y,GLOB_Z)&
& +2*B3(GLOB_X,GLOB_Y,GLOB_Z)&
& +A1(GLOB_X,GLOB_Y,GLOB_Z)&
& +A2(GLOB_X,GLOB_Y,GLOB_Z)&
& +A3(GLOB_X,GLOB_Y,GLOB_Z)
ROW_MAT%ASPK(ELEMENT) = ROW_MAT%ASPK(ELEMENT)/(DELTAH*&
& DELTAH)
ROW_MAT%IA1(ELEMENT)=(X-1)*IDIM*IDIM+(Y-1)*IDIM+(Z)
ELEMENT=ELEMENT+1
! Term depending on (x,y,z+1)
if (z==idim) then
ROW_MAT%ASPK(ELEMENT)=-B1(GLOB_X,GLOB_Y,GLOB_Z)
ROW_MAT%ASPK(ELEMENT) = ROW_MAT%ASPK(ELEMENT)/(DELTAH*&
& DELTAH)
ZT(1) = EXP(-GLOB_Y**2-GLOB_Z**2)*EXP(-GLOB_X)*(-ROW_MAT%ASPK(ELEMENT))
else
ROW_MAT%ASPK(ELEMENT)=-B1(GLOB_X,GLOB_Y,GLOB_Z)
ROW_MAT%ASPK(ELEMENT) = ROW_MAT%ASPK(ELEMENT)/(DELTAH*&
& DELTAH)
ROW_MAT%IA1(ELEMENT)=(X-1)*IDIM*IDIM+(Y-1)*IDIM+(Z+1)
ELEMENT=ELEMENT+1
endif
! Term depending on (x,y+1,z)
if (y==idim) then
ROW_MAT%ASPK(ELEMENT)=-B2(GLOB_X,GLOB_Y,GLOB_Z)
ROW_MAT%ASPK(ELEMENT) = ROW_MAT%ASPK(ELEMENT)/(DELTAH*&
& DELTAH)
ZT(1) = EXP(-GLOB_Y**2-GLOB_Z**2)*EXP(-GLOB_X)*(-ROW_MAT%ASPK(ELEMENT))
else
ROW_MAT%ASPK(ELEMENT)=-B2(GLOB_X,GLOB_Y,GLOB_Z)
ROW_MAT%ASPK(ELEMENT) = ROW_MAT%ASPK(ELEMENT)/(DELTAH*&
& DELTAH)
ROW_MAT%IA1(ELEMENT)=(X-1)*IDIM*IDIM+(Y)*IDIM+(Z)
ELEMENT=ELEMENT+1
endif
! Term depending on (x+1,y,z)
if (x<idim) then
ROW_MAT%ASPK(ELEMENT)=-B3(GLOB_X,GLOB_Y,GLOB_Z)
ROW_MAT%ASPK(ELEMENT) = ROW_MAT%ASPK(ELEMENT)/(DELTAH*&
& DELTAH)
ROW_MAT%IA1(ELEMENT)=(X)*IDIM*IDIM+(Y-1)*IDIM+(Z)
ELEMENT=ELEMENT+1
endif
!!$ ENDIF
ROW_MAT%M=1
ROW_MAT%K=N
ROW_MAT%IA2(2)=ELEMENT
! IA== GLOBAL ROW INDEX
IA=GLOB_ROW
!!$ IA=(X-1)*IDIM*IDIM+(Y-1)*IDIM+(Z)
!!$ write(0,*) 'Inserting row ',ia,' On proc',myprow
T3 = MPI_WTIME()
CALL F90_PSSPINS(A,IA,1,ROW_MAT,IERRV,DESC_A)
if (ierrv(1).ne.0) then
write(0,*) 'On row ',ia,' IERRV:',ierrv(:)
endif
TINS = TINS + (MPI_WTIME()-T3)
! Build RHS
!!$ IF (X==1) THEN
!!$ GLOB_Y=(Y-IDIM/2)*DELTAH
!!$ GLOB_Z=(Z-IDIM/2)*DELTAH
!!$ ZT(1) = EXP(-GLOB_Y**2-GLOB_Z**2)
!!$ ELSE IF ((Y==1).OR.(Y==IDIM).OR.(Z==1).OR.(Z==IDIM)) THEN
!!$ GLOB_X=3*(X-1)*DELTAH
!!$ GLOB_Y=(Y-IDIM/2)*DELTAH
!!$ GLOB_Z=(Z-IDIM/2)*DELTAH
!!$ ZT(1) = EXP(-GLOB_Y**2-GLOB_Z**2)*EXP(-GLOB_X)
!!$ ELSE
!!$ ZT(1) = 0.D0
!!$ ENDIF
CALL F90_PSDSINS(1,B,IA,ZT(1:1),IERRV,DESC_A)
ZT(1)=0.D0
CALL F90_PSDSINS(1,T,IA,ZT(1:1),IERRV,DESC_A)
END IF
END DO
END DO
CALL BLACS_BARRIER(ICONTXT,'ALL')
T2 = MPI_WTIME()
WRITE(*,*) ' pspins time',TINS
WRITE(*,*) ' Insert time',(T2-T1)
DEALLOCATE(ROW_MAT%ASPK,ROW_MAT%IA1,ROW_MAT%IA2)
write(*,*) 'Calling SPASB'
CALL BLACS_BARRIER(ICONTXT,'ALL')
T1 = MPI_WTIME()
CALL F90_PSSPASB(A,IERRV,DESC_A,AFMT=AFMT,DUP=2)
CALL BLACS_BARRIER(ICONTXT,'ALL')
T2 = MPI_WTIME()
WRITE(0,*) ' Assembly time',(T2-T1),' ',a%fida(1:4)
CALL F90_PSDSASB(B,IERRV,DESC_A)
CALL F90_PSDSASB(T,IERRV,DESC_A)
IF (MYPROW.EQ.0) THEN
WRITE(0,*) ' End CREATE_MATRIX'
ENDIF
RETURN
END SUBROUTINE CREATE_MATRIX
END PROGRAM PDE90
!
! Functions parametrizing the differential equation
!
FUNCTION A1(X,Y,Z)
REAL(KIND(1.D0)) :: A1
REAL(KIND(1.D0)) :: X,Y,Z
A1=1.D0
END FUNCTION A1
FUNCTION A2(X,Y,Z)
REAL(KIND(1.D0)) :: A2
REAL(KIND(1.D0)) :: X,Y,Z
A2=2.D1*Y
END FUNCTION A2
FUNCTION A3(X,Y,Z)
REAL(KIND(1.D0)) :: A3
REAL(KIND(1.D0)) :: X,Y,Z
A3=1.D0
END FUNCTION A3
FUNCTION A4(X,Y,Z)
REAL(KIND(1.D0)) :: A4
REAL(KIND(1.D0)) :: X,Y,Z
A4=1.D0
END FUNCTION A4
FUNCTION B1(X,Y,Z)
REAL(KIND(1.D0)) :: B1
REAL(KIND(1.D0)) :: X,Y,Z
B1=1.D0
END FUNCTION B1
FUNCTION B2(X,Y,Z)
REAL(KIND(1.D0)) :: B2
REAL(KIND(1.D0)) :: X,Y,Z
B2=1.D0
END FUNCTION B2
FUNCTION B3(X,Y,Z)
REAL(KIND(1.D0)) :: B3
REAL(KIND(1.D0)) :: X,Y,Z
B3=1.D0
END FUNCTION B3
Loading…
Cancel
Save