|
|
|
@ -26,7 +26,9 @@ dense matrix sum:
|
|
|
|
|
\hline
|
|
|
|
|
$x$, $y$, $\alpha$, $\beta$ & {\bf Subroutine}\\
|
|
|
|
|
\hline
|
|
|
|
|
Short Precision Real & psb\_geaxpby \\
|
|
|
|
|
Long Precision Real & psb\_geaxpby \\
|
|
|
|
|
Short Precision Complex & psb\_geaxpby \\
|
|
|
|
|
Long Precision Complex & psb\_geaxpby \\
|
|
|
|
|
\hline
|
|
|
|
|
\end{tabular}
|
|
|
|
@ -113,10 +115,10 @@ An integer value; 0 means no error has been detected.
|
|
|
|
|
|
|
|
|
|
This function computes dot product between two vectors $x$ and
|
|
|
|
|
$y$.\\
|
|
|
|
|
If $x$ and $y$ are double precision real vectors
|
|
|
|
|
computes dot-product as:
|
|
|
|
|
If $x$ and $y$ are real vectors
|
|
|
|
|
it computes dot-product as:
|
|
|
|
|
\[dot \leftarrow x^T y\]
|
|
|
|
|
Else if $x$ and $y$ are double precision complex vectors then computes dot-product as:
|
|
|
|
|
Else if $x$ and $y$ are complex vectors then it computes dot-product as:
|
|
|
|
|
\[dot \leftarrow x^H y\]
|
|
|
|
|
%% where:
|
|
|
|
|
%% \begin{description}
|
|
|
|
@ -132,7 +134,9 @@ Else if $x$ and $y$ are double precision complex vectors then computes dot-produ
|
|
|
|
|
\hline
|
|
|
|
|
$dot$, $x$, $y$ & {\bf Function}\\
|
|
|
|
|
\hline
|
|
|
|
|
Short Precision Real & psb\_gedot \\
|
|
|
|
|
Long Precision Real & psb\_gedot \\
|
|
|
|
|
Short Precision Complex & psb\_gedot \\
|
|
|
|
|
Long Precision Complex & psb\_gedot \\
|
|
|
|
|
\hline
|
|
|
|
|
\end{tabular}
|
|
|
|
@ -213,7 +217,9 @@ is a rank one array.
|
|
|
|
|
\hline
|
|
|
|
|
$res$, $x$, $y$ & {\bf Subroutine}\\
|
|
|
|
|
\hline
|
|
|
|
|
Short Precision Real & psb\_gedots \\
|
|
|
|
|
Long Precision Real & psb\_gedots \\
|
|
|
|
|
Short Precision Complex & psb\_gedots \\
|
|
|
|
|
Long Precision Complex & psb\_gedots \\
|
|
|
|
|
\hline
|
|
|
|
|
\end{tabular}
|
|
|
|
@ -269,10 +275,10 @@ An integer value; 0 means no error has been detected.
|
|
|
|
|
|
|
|
|
|
This function computes
|
|
|
|
|
the infinity-norm of a vector $x$.\\
|
|
|
|
|
If $x$ is a double precision real vector
|
|
|
|
|
computes infinity norm as:
|
|
|
|
|
If $x$ is a real vector
|
|
|
|
|
it computes infinity norm as:
|
|
|
|
|
\[ amax \leftarrow \max_i |x_i|\]
|
|
|
|
|
else if $x$ is a double precision complex vector then computes infinity-norm as:
|
|
|
|
|
else if $x$ is a complex vector then it computes infinity-norm as:
|
|
|
|
|
\[ amax \leftarrow \max_i {(|re(x_i)| + |im(x_i)|)}\]
|
|
|
|
|
%% where:
|
|
|
|
|
%% \begin{description}
|
|
|
|
@ -288,7 +294,9 @@ else if $x$ is a double precision complex vector then computes infinity-norm as
|
|
|
|
|
\hline
|
|
|
|
|
$amax$ & $x$ & {\bf Function}\\
|
|
|
|
|
\hline
|
|
|
|
|
Short Precision Real& Short Precision Real & psb\_geamax \\
|
|
|
|
|
Long Precision Real&Long Precision Real & psb\_geamax \\
|
|
|
|
|
Short Precision Real&Short Precision Complex & psb\_geamax \\
|
|
|
|
|
Long Precision Real&Long Precision Complex & psb\_geamax \\
|
|
|
|
|
\hline
|
|
|
|
|
\end{tabular}
|
|
|
|
@ -351,7 +359,9 @@ a dense matrix $x$:
|
|
|
|
|
\hline
|
|
|
|
|
$res$& $x$& {\bf Subroutine}\\
|
|
|
|
|
\hline
|
|
|
|
|
Short Precision Real &Short Precision Real & psb\_geamaxs\\
|
|
|
|
|
Long Precision Real &Long Precision Real & psb\_geamaxs\\
|
|
|
|
|
Short Precision Real &Short Precision Complex & psb\_geamaxs\\
|
|
|
|
|
Long Precision Real &Long Precision Complex & psb\_geamaxs\\
|
|
|
|
|
\hline
|
|
|
|
|
\end{tabular}
|
|
|
|
@ -397,10 +407,10 @@ An integer value; 0 means no error has been detected.
|
|
|
|
|
\subroutine{psb\_geasum}{1-Norm of Vector}
|
|
|
|
|
|
|
|
|
|
This function computes the 1-norm of a vector $x$.\\
|
|
|
|
|
If $x$ is a double precision real vector
|
|
|
|
|
computes 1-norm as:
|
|
|
|
|
If $x$ is a real vector
|
|
|
|
|
it computes 1-norm as:
|
|
|
|
|
\[ asum \leftarrow \|x_i\|\]
|
|
|
|
|
else if $x$ is double precision complex vector then computes 1-norm as:
|
|
|
|
|
else if $x$ is a vector then it computes 1-norm as:
|
|
|
|
|
\[ asum \leftarrow \|re(x)\|_1 + \|im(x)\|_1\]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@ -412,7 +422,9 @@ else if $x$ is double precision complex vector then computes 1-norm as:
|
|
|
|
|
\hline
|
|
|
|
|
$asum$ & $x$ & {\bf Function}\\
|
|
|
|
|
\hline
|
|
|
|
|
Short Precision Real&Short Precision Real & psb\_geasum \\
|
|
|
|
|
Long Precision Real&Long Precision Real & psb\_geasum \\
|
|
|
|
|
Short Precision Real&Short Precision Complex & psb\_geasum \\
|
|
|
|
|
Long Precision Real&Long Precision Complex & psb\_geasum \\
|
|
|
|
|
\hline
|
|
|
|
|
\end{tabular}
|
|
|
|
@ -457,10 +469,10 @@ This subroutine computes a series of 1-norms on the columns of
|
|
|
|
|
a dense matrix $x$:
|
|
|
|
|
\[ res(i) \leftarrow \max_k |x(k,i)| \]
|
|
|
|
|
This function computes the 1-norm of a vector $x$.\\
|
|
|
|
|
If $x$ is a double precision real vector
|
|
|
|
|
computes 1-norm as:
|
|
|
|
|
If $x$ is a real vector
|
|
|
|
|
it computes 1-norm as:
|
|
|
|
|
\[ res(i) \leftarrow \|x_i\|\]
|
|
|
|
|
else if $x$ is double precision complex vector then computes 1-norm as:
|
|
|
|
|
else if $x$ is a complex vector then it computes 1-norm as:
|
|
|
|
|
\[ res(i) \leftarrow \|re(x)\|_1 + \|im(x)\|_1\]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@ -472,7 +484,9 @@ else if $x$ is double precision complex vector then computes 1-norm as:
|
|
|
|
|
\hline
|
|
|
|
|
$res$ & $x$ & {\bf Subroutine}\\
|
|
|
|
|
\hline
|
|
|
|
|
Short Precision Real&Short Precision Real & psb\_geasums \\
|
|
|
|
|
Long Precision Real&Long Precision Real & psb\_geasums \\
|
|
|
|
|
Short Precision Real&Short Precision Complex & psb\_geasums \\
|
|
|
|
|
Long Precision Real&Long Precision Complex & psb\_geasums \\
|
|
|
|
|
\hline
|
|
|
|
|
\end{tabular}
|
|
|
|
@ -503,6 +517,7 @@ Specified as: a structured data of type \descdata.
|
|
|
|
|
\item[res] contains the 1-norm of (the columns of) $x$.\\
|
|
|
|
|
Scope: {\bf global} \\
|
|
|
|
|
Intent: {\bf out}.\\
|
|
|
|
|
Short as: a long precision real number.
|
|
|
|
|
Specified as: a long precision real number.
|
|
|
|
|
\item[info] Error code.\\
|
|
|
|
|
Scope: {\bf local} \\
|
|
|
|
@ -523,9 +538,9 @@ An integer value; 0 means no error has been detected.
|
|
|
|
|
|
|
|
|
|
This function computes the 2-norm of a vector $x$.\\
|
|
|
|
|
If $x$ is a double precision real vector
|
|
|
|
|
computes 2-norm as:
|
|
|
|
|
it computes 2-norm as:
|
|
|
|
|
\[ nrm2 \leftarrow \sqrt{x^T x}\]
|
|
|
|
|
else if $x$ is double precision complex vector then computes 2-norm as:
|
|
|
|
|
else if $x$ is double precision complex vector then it computes 2-norm as:
|
|
|
|
|
\[ nrm2 \leftarrow \sqrt{x^H x}\]
|
|
|
|
|
%% where:
|
|
|
|
|
%% \begin{description}
|
|
|
|
@ -538,7 +553,9 @@ else if $x$ is double precision complex vector then computes 2-norm as:
|
|
|
|
|
\hline
|
|
|
|
|
$nrm2$ & $x$ & {\bf Function}\\
|
|
|
|
|
\hline
|
|
|
|
|
Short Precision Real&Short Precision Real & psb\_genrm2 \\
|
|
|
|
|
Long Precision Real&Long Precision Real & psb\_genrm2 \\
|
|
|
|
|
Short Precision Real&Short Precision Complex & psb\_genrm2 \\
|
|
|
|
|
Long Precision Real&Long Precision Complex & psb\_genrm2 \\
|
|
|
|
|
\hline
|
|
|
|
|
\end{tabular}
|
|
|
|
@ -593,11 +610,10 @@ This subroutine computes a series of 1-norms on the columns of
|
|
|
|
|
a dense matrix $x$:
|
|
|
|
|
\[ res(i) \leftarrow \max_k |x(k,i)| \]
|
|
|
|
|
This function computes the 1-norm of a vector $x$.\\
|
|
|
|
|
If $x$ is a double precision real vector
|
|
|
|
|
computes 1-norm as:
|
|
|
|
|
If $x$ is a real vector
|
|
|
|
|
it computes 1-norm as:
|
|
|
|
|
\[ res(i) \leftarrow \sqrt{x^T x}\]
|
|
|
|
|
|
|
|
|
|
else if $x$ is double precision complex vector then computes 1-norm as:
|
|
|
|
|
else if $x$ is a complex vector then it computes 1-norm as:
|
|
|
|
|
\[ res(i) \leftarrow \sqrt{x^H x}\]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@ -609,7 +625,9 @@ else if $x$ is double precision complex vector then computes 1-norm as:
|
|
|
|
|
\hline
|
|
|
|
|
$res$ & $x$ & {\bf Subroutine}\\
|
|
|
|
|
\hline
|
|
|
|
|
Short Precision Real&Short Precision Real & psb\_genrm2s \\
|
|
|
|
|
Long Precision Real&Long Precision Real & psb\_genrm2s \\
|
|
|
|
|
Short Precision Real&Short Precision Complex & psb\_genrm2s \\
|
|
|
|
|
Long Precision Real&Long Precision Complex & psb\_genrm2s \\
|
|
|
|
|
\hline
|
|
|
|
|
\end{tabular}
|
|
|
|
@ -673,7 +691,9 @@ where:
|
|
|
|
|
\hline
|
|
|
|
|
$A$ & {\bf Function}\\
|
|
|
|
|
\hline
|
|
|
|
|
Short Precision Real & psb\_spnrmi \\
|
|
|
|
|
Long Precision Real & psb\_spnrmi \\
|
|
|
|
|
Short Precision Complex & psb\_spnrmi \\
|
|
|
|
|
Long Precision Complex & psb\_spnrmi \\
|
|
|
|
|
\hline
|
|
|
|
|
\end{tabular}
|
|
|
|
@ -747,7 +767,9 @@ where:
|
|
|
|
|
\hline
|
|
|
|
|
$A$, $x$, $y$, $\alpha$, $\beta$ & {\bf Subroutine}\\
|
|
|
|
|
\hline
|
|
|
|
|
Short Precision Real & psb\_spmm \\
|
|
|
|
|
Long Precision Real & psb\_spmm \\
|
|
|
|
|
Short Precision Complex & psb\_spmm \\
|
|
|
|
|
Long Precision Complex & psb\_spmm \\
|
|
|
|
|
\hline
|
|
|
|
|
\end{tabular}
|
|
|
|
@ -900,7 +922,9 @@ trans, unit, choice, diag, work}
|
|
|
|
|
\hline
|
|
|
|
|
$T$, $x$, $y$, $D$, $\alpha$, $\beta$ & {\bf Subroutine}\\
|
|
|
|
|
\hline
|
|
|
|
|
Short Precision Real & psb\_spsm \\
|
|
|
|
|
Long Precision Real & psb\_spsm \\
|
|
|
|
|
Short Precision Complex & psb\_spsm \\
|
|
|
|
|
Long Precision Complex & psb\_spsm \\
|
|
|
|
|
\hline
|
|
|
|
|
\end{tabular}
|
|
|
|
|