! ! Parallel Sparse BLAS version 3.5 ! (C) Copyright 2006-2018 ! Salvatore Filippone ! Alfredo Buttari ! ! Redistribution and use in source and binary forms, with or without ! modification, are permitted provided that the following conditions ! are met: ! 1. Redistributions of source code must retain the above copyright ! notice, this list of conditions and the following disclaimer. ! 2. Redistributions in binary form must reproduce the above copyright ! notice, this list of conditions, and the following disclaimer in the ! documentation and/or other materials provided with the distribution. ! 3. The name of the PSBLAS group or the names of its contributors may ! not be used to endorse or promote products derived from this ! software without specific written permission. ! ! THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ! ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED ! TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR ! PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE PSBLAS GROUP OR ITS CONTRIBUTORS ! BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR ! CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF ! SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS ! INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN ! CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ! ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE ! POSSIBILITY OF SUCH DAMAGE. ! ! ! ! package: psb_s_base_vect_mod ! ! This module contains the definition of the psb_s_base_vect type which ! is a container for dense vectors. ! This is encapsulated instead of being just a simple array to allow for ! more complicated situations, such as GPU programming, where the memory ! area we are interested in is not easily accessible from the host/Fortran ! side. It is also meant to be encapsulated in an outer type, to allow ! runtime switching as per the STATE design pattern, similar to the ! sparse matrix types. ! ! module psb_s_base_vect_mod use psb_const_mod use psb_error_mod use psb_realloc_mod use psb_i_base_vect_mod use psb_l_base_vect_mod !> \namespace psb_base_mod \class psb_s_base_vect_type !! The psb_s_base_vect_type !! defines a middle level real(psb_spk_) encapsulated dense vector. !! The encapsulation is needed, in place of a simple array, to allow !! for complicated situations, such as GPU programming, where the memory !! area we are interested in is not easily accessible from the host/Fortran !! side. It is also meant to be encapsulated in an outer type, to allow !! runtime switching as per the STATE design pattern, similar to the !! sparse matrix types. !! type psb_s_base_vect_type !> Values. real(psb_spk_), allocatable :: v(:) real(psb_spk_), allocatable :: combuf(:) integer(psb_mpk_), allocatable :: comid(:,:) contains ! ! Constructors/allocators ! procedure, pass(x) :: bld_x => s_base_bld_x procedure, pass(x) :: bld_mn => s_base_bld_mn procedure, pass(x) :: bld_en => s_base_bld_en generic, public :: bld => bld_x, bld_mn, bld_en procedure, pass(x) :: all => s_base_all procedure, pass(x) :: mold => s_base_mold ! ! Insert/set. Assembly and free. ! Assembly does almost nothing here, but is important ! in derived classes. ! procedure, pass(x) :: ins_a => s_base_ins_a procedure, pass(x) :: ins_v => s_base_ins_v generic, public :: ins => ins_a, ins_v procedure, pass(x) :: zero => s_base_zero procedure, pass(x) :: asb_m => s_base_asb_m procedure, pass(x) :: asb_e => s_base_asb_e generic, public :: asb => asb_m, asb_e procedure, pass(x) :: free => s_base_free ! ! Sync: centerpiece of handling of external storage. ! Any derived class having extra storage upon sync ! will guarantee that both fortran/host side and ! external side contain the same data. The base ! version is only a placeholder. ! procedure, pass(x) :: sync => s_base_sync procedure, pass(x) :: is_host => s_base_is_host procedure, pass(x) :: is_dev => s_base_is_dev procedure, pass(x) :: is_sync => s_base_is_sync procedure, pass(x) :: set_host => s_base_set_host procedure, pass(x) :: set_dev => s_base_set_dev procedure, pass(x) :: set_sync => s_base_set_sync ! ! These are for handling gather/scatter in new ! comm internals implementation. ! procedure, nopass :: use_buffer => s_base_use_buffer procedure, pass(x) :: new_buffer => s_base_new_buffer procedure, nopass :: device_wait => s_base_device_wait procedure, pass(x) :: maybe_free_buffer => s_base_maybe_free_buffer procedure, pass(x) :: free_buffer => s_base_free_buffer procedure, pass(x) :: new_comid => s_base_new_comid procedure, pass(x) :: free_comid => s_base_free_comid ! ! Basic info procedure, pass(x) :: get_nrows => s_base_get_nrows procedure, pass(x) :: sizeof => s_base_sizeof procedure, nopass :: get_fmt => s_base_get_fmt ! ! Set/get data from/to an external array; also ! overload assignment. ! procedure, pass(x) :: get_vect => s_base_get_vect procedure, pass(x) :: set_scal => s_base_set_scal procedure, pass(x) :: set_vect => s_base_set_vect generic, public :: set => set_vect, set_scal ! ! Gather/scatter. These are needed for MPI interfacing. ! May have to be reworked. ! procedure, pass(x) :: gthab => s_base_gthab procedure, pass(x) :: gthzv => s_base_gthzv procedure, pass(x) :: gthzv_x => s_base_gthzv_x procedure, pass(x) :: gthzbuf => s_base_gthzbuf generic, public :: gth => gthab, gthzv, gthzv_x, gthzbuf procedure, pass(y) :: sctb => s_base_sctb procedure, pass(y) :: sctb_x => s_base_sctb_x procedure, pass(y) :: sctb_buf => s_base_sctb_buf generic, public :: sct => sctb, sctb_x, sctb_buf ! ! Dot product and AXPBY ! procedure, pass(x) :: dot_v => s_base_dot_v procedure, pass(x) :: dot_a => s_base_dot_a generic, public :: dot => dot_v, dot_a procedure, pass(y) :: axpby_v => s_base_axpby_v procedure, pass(y) :: axpby_a => s_base_axpby_a procedure, pass(z) :: axpby_v2 => s_base_axpby_v2 procedure, pass(z) :: axpby_a2 => s_base_axpby_a2 generic, public :: axpby => axpby_v, axpby_a, axpby_v2, axpby_a2 ! ! Vector by vector multiplication. Need all variants ! to handle multiple requirements from preconditioners ! procedure, pass(y) :: mlt_v => s_base_mlt_v procedure, pass(y) :: mlt_a => s_base_mlt_a procedure, pass(z) :: mlt_a_2 => s_base_mlt_a_2 procedure, pass(z) :: mlt_v_2 => s_base_mlt_v_2 procedure, pass(z) :: mlt_va => s_base_mlt_va procedure, pass(z) :: mlt_av => s_base_mlt_av generic, public :: mlt => mlt_v, mlt_a, mlt_a_2, mlt_v_2, mlt_av, & mlt_va ! ! Vector-Vector operations ! procedure, pass(x) :: div_v => s_base_div_v procedure, pass(x) :: div_v_check => s_base_div_v_check procedure, pass(z) :: div_v2 => s_base_div_v2 procedure, pass(z) :: div_v2_check => s_base_div_v2_check procedure, pass(z) :: div_a2 => s_base_div_a2 procedure, pass(z) :: div_a2_check => s_base_div_a2_check generic, public :: div => div_v, div_v2, div_v_check, & div_v2_check, div_a2, div_a2_check procedure, pass(y) :: inv_v => s_base_inv_v procedure, pass(y) :: inv_v_check => s_base_inv_v_check procedure, pass(y) :: inv_a2 => s_base_inv_a2 procedure, pass(y) :: inv_a2_check => s_base_inv_a2_check generic, public :: inv => inv_v, inv_v_check, inv_a2, inv_a2_check ! ! Scaling and norms ! procedure, pass(x) :: scal => s_base_scal procedure, pass(x) :: absval1 => s_base_absval1 procedure, pass(x) :: absval2 => s_base_absval2 generic, public :: absval => absval1, absval2 procedure, pass(x) :: nrm2 => s_base_nrm2 procedure, pass(x) :: amax => s_base_amax procedure, pass(x) :: asum => s_base_asum ! ! Comparison and mask operation ! procedure, pass(z) :: acmp_a2 => s_base_acmp_a2 procedure, pass(z) :: acmp_v2 => s_base_acmp_v2 generic, public :: acmp => acmp_a2,acmp_v2 ! ! Add constant value to all entry of a vector ! procedure, pass(z) :: addconst_a2 => s_base_addconst_a2 procedure, pass(z) :: addconst_v2 => s_base_addconst_v2 generic, public :: addconst => addconst_a2,addconst_v2 procedure, pass(x) :: minreal => s_base_min procedure, pass(m) :: mask_v => s_base_mask_v procedure, pass(m) :: mask_a => s_base_mask_a generic, public :: mask => mask_a, mask_v procedure, pass(x) :: minquotient_v => s_base_minquotient_v procedure, pass(x) :: minquotient_a2 => s_base_minquotient_a2 generic, public :: minquotient => minquotient_v, minquotient_a2 end type psb_s_base_vect_type public :: psb_s_base_vect private :: constructor, size_const interface psb_s_base_vect module procedure constructor, size_const end interface psb_s_base_vect contains ! ! Constructors. ! !> Function constructor: !! \brief Constructor from an array !! \param x(:) input array to be copied !! function constructor(x) result(this) real(psb_spk_) :: x(:) type(psb_s_base_vect_type) :: this integer(psb_ipk_) :: info this%v = x call this%asb(size(x,kind=psb_ipk_),info) end function constructor !> Function constructor: !! \brief Constructor from size !! \param n Size of vector to be built. !! function size_const(n) result(this) integer(psb_ipk_), intent(in) :: n type(psb_s_base_vect_type) :: this integer(psb_ipk_) :: info call this%asb(n,info) end function size_const ! ! Build from a sample ! !> Function bld_x: !! \memberof psb_s_base_vect_type !! \brief Build method from an array !! \param x(:) input array to be copied !! subroutine s_base_bld_x(x,this) use psb_realloc_mod implicit none real(psb_spk_), intent(in) :: this(:) class(psb_s_base_vect_type), intent(inout) :: x integer(psb_ipk_) :: info call psb_realloc(size(this),x%v,info) if (info /= 0) then call psb_errpush(psb_err_alloc_dealloc_,'base_vect_bld') return end if x%v(:) = this(:) end subroutine s_base_bld_x ! ! Create with size, but no initialization ! !> Function bld_mn: !! \memberof psb_s_base_vect_type !! \brief Build method with size (uninitialized data) !! \param n size to be allocated. !! subroutine s_base_bld_mn(x,n) use psb_realloc_mod implicit none integer(psb_mpk_), intent(in) :: n class(psb_s_base_vect_type), intent(inout) :: x integer(psb_ipk_) :: info call psb_realloc(n,x%v,info) call x%asb(n,info) end subroutine s_base_bld_mn !> Function bld_en: !! \memberof psb_s_base_vect_type !! \brief Build method with size (uninitialized data) !! \param n size to be allocated. !! subroutine s_base_bld_en(x,n) use psb_realloc_mod implicit none integer(psb_epk_), intent(in) :: n class(psb_s_base_vect_type), intent(inout) :: x integer(psb_ipk_) :: info call psb_realloc(n,x%v,info) call x%asb(n,info) end subroutine s_base_bld_en !> Function base_all: !! \memberof psb_s_base_vect_type !! \brief Build method with size (uninitialized data) and !! allocation return code. !! \param n size to be allocated. !! \param info return code !! subroutine s_base_all(n, x, info) use psi_serial_mod use psb_realloc_mod implicit none integer(psb_ipk_), intent(in) :: n class(psb_s_base_vect_type), intent(out) :: x integer(psb_ipk_), intent(out) :: info call psb_realloc(n,x%v,info) end subroutine s_base_all !> Function base_mold: !! \memberof psb_s_base_vect_type !! \brief Mold method: return a variable with the same dynamic type !! \param y returned variable !! \param info return code !! subroutine s_base_mold(x, y, info) use psi_serial_mod use psb_realloc_mod implicit none class(psb_s_base_vect_type), intent(in) :: x class(psb_s_base_vect_type), intent(out), allocatable :: y integer(psb_ipk_), intent(out) :: info allocate(psb_s_base_vect_type :: y, stat=info) end subroutine s_base_mold ! ! Insert a bunch of values at specified positions. ! !> Function base_ins: !! \memberof psb_s_base_vect_type !! \brief Insert coefficients. !! !! !! Given a list of N pairs !! (IRL(i),VAL(i)) !! record a new coefficient in X such that !! X(IRL(1:N)) = VAL(1:N). !! !! - the update operation will perform either !! X(IRL(1:n)) = VAL(1:N) !! or !! X(IRL(1:n)) = X(IRL(1:n))+VAL(1:N) !! according to the value of DUPLICATE. !! !! !! \param n number of pairs in input !! \param irl(:) the input row indices !! \param val(:) the input coefficients !! \param dupl how to treat duplicate entries !! \param info return code !! ! subroutine s_base_ins_a(n,irl,val,dupl,x,info) use psi_serial_mod implicit none class(psb_s_base_vect_type), intent(inout) :: x integer(psb_ipk_), intent(in) :: n, dupl integer(psb_ipk_), intent(in) :: irl(:) real(psb_spk_), intent(in) :: val(:) integer(psb_ipk_), intent(out) :: info integer(psb_ipk_) :: i, isz info = 0 if (psb_errstatus_fatal()) return if (.not.allocated(x%v)) then info = psb_err_invalid_vect_state_ else if (n > min(size(irl),size(val))) then info = psb_err_invalid_input_ else isz = size(x%v) select case(dupl) case(psb_dupl_ovwrt_) do i = 1, n !loop over all val's rows ! row actual block row if ((1 <= irl(i)).and.(irl(i) <= isz)) then ! this row belongs to me ! copy i-th row of block val in x x%v(irl(i)) = val(i) end if enddo case(psb_dupl_add_) do i = 1, n !loop over all val's rows if ((1 <= irl(i)).and.(irl(i) <= isz)) then ! this row belongs to me ! copy i-th row of block val in x x%v(irl(i)) = x%v(irl(i)) + val(i) end if enddo case default info = 321 ! !$ call psb_errpush(info,name) ! !$ goto 9999 end select end if call x%set_host() if (info /= 0) then call psb_errpush(info,'base_vect_ins') return end if end subroutine s_base_ins_a subroutine s_base_ins_v(n,irl,val,dupl,x,info) use psi_serial_mod implicit none class(psb_s_base_vect_type), intent(inout) :: x integer(psb_ipk_), intent(in) :: n, dupl class(psb_i_base_vect_type), intent(inout) :: irl class(psb_s_base_vect_type), intent(inout) :: val integer(psb_ipk_), intent(out) :: info integer(psb_ipk_) :: i, isz info = 0 if (psb_errstatus_fatal()) return if (irl%is_dev()) call irl%sync() if (val%is_dev()) call val%sync() if (x%is_dev()) call x%sync() call x%ins(n,irl%v,val%v,dupl,info) if (info /= 0) then call psb_errpush(info,'base_vect_ins') return end if end subroutine s_base_ins_v ! !> Function base_zero !! \memberof psb_s_base_vect_type !! \brief Zero out contents !! ! subroutine s_base_zero(x) use psi_serial_mod implicit none class(psb_s_base_vect_type), intent(inout) :: x if (allocated(x%v)) x%v=szero call x%set_host() end subroutine s_base_zero ! ! Assembly. ! For derived classes: after this the vector ! storage is supposed to be in sync. ! !> Function base_asb: !! \memberof psb_s_base_vect_type !! \brief Assemble vector: reallocate as necessary. !! !! \param n final size !! \param info return code !! ! subroutine s_base_asb_m(n, x, info) use psi_serial_mod use psb_realloc_mod implicit none integer(psb_mpk_), intent(in) :: n class(psb_s_base_vect_type), intent(inout) :: x integer(psb_ipk_), intent(out) :: info info = 0 if (x%get_nrows() < n) & & call psb_realloc(n,x%v,info) if (info /= 0) & & call psb_errpush(psb_err_alloc_dealloc_,'vect_asb') call x%sync() end subroutine s_base_asb_m ! ! Assembly. ! For derived classes: after this the vector ! storage is supposed to be in sync. ! !> Function base_asb: !! \memberof psb_s_base_vect_type !! \brief Assemble vector: reallocate as necessary. !! !! \param n final size !! \param info return code !! ! subroutine s_base_asb_e(n, x, info) use psi_serial_mod use psb_realloc_mod implicit none integer(psb_epk_), intent(in) :: n class(psb_s_base_vect_type), intent(inout) :: x integer(psb_ipk_), intent(out) :: info info = 0 if (x%get_nrows() < n) & & call psb_realloc(n,x%v,info) if (info /= 0) & & call psb_errpush(psb_err_alloc_dealloc_,'vect_asb') call x%sync() end subroutine s_base_asb_e ! !> Function base_free: !! \memberof psb_s_base_vect_type !! \brief Free vector !! !! \param info return code !! ! subroutine s_base_free(x, info) use psi_serial_mod use psb_realloc_mod implicit none class(psb_s_base_vect_type), intent(inout) :: x integer(psb_ipk_), intent(out) :: info info = 0 if (allocated(x%v)) deallocate(x%v, stat=info) if (info == 0) call x%free_buffer(info) if (info == 0) call x%free_comid(info) if (info /= 0) call & & psb_errpush(psb_err_alloc_dealloc_,'vect_free') end subroutine s_base_free ! !> Function base_free_buffer: !! \memberof psb_s_base_vect_type !! \brief Free aux buffer !! !! \param info return code !! ! subroutine s_base_free_buffer(x,info) use psb_realloc_mod implicit none class(psb_s_base_vect_type), intent(inout) :: x integer(psb_ipk_), intent(out) :: info if (allocated(x%combuf)) & & deallocate(x%combuf,stat=info) end subroutine s_base_free_buffer ! !> Function base_maybe_free_buffer: !! \memberof psb_s_base_vect_type !! \brief Conditionally Free aux buffer. !! In some derived classes, e.g. GPU, !! does not really frees to avoid runtime !! costs !! !! \param info return code !! ! subroutine s_base_maybe_free_buffer(x,info) use psb_realloc_mod implicit none class(psb_s_base_vect_type), intent(inout) :: x integer(psb_ipk_), intent(out) :: info info = 0 if (psb_get_maybe_free_buffer())& & call x%free_buffer(info) end subroutine s_base_maybe_free_buffer ! !> Function base_free_comid: !! \memberof psb_s_base_vect_type !! \brief Free aux MPI communication id buffer !! !! \param info return code !! ! subroutine s_base_free_comid(x,info) use psb_realloc_mod implicit none class(psb_s_base_vect_type), intent(inout) :: x integer(psb_ipk_), intent(out) :: info if (allocated(x%comid)) & & deallocate(x%comid,stat=info) end subroutine s_base_free_comid ! ! The base version of SYNC & friends does nothing, it's just ! a placeholder. ! ! !> Function base_sync: !! \memberof psb_s_base_vect_type !! \brief Sync: base version is a no-op. !! ! subroutine s_base_sync(x) implicit none class(psb_s_base_vect_type), intent(inout) :: x end subroutine s_base_sync ! !> Function base_set_host: !! \memberof psb_s_base_vect_type !! \brief Set_host: base version is a no-op. !! ! subroutine s_base_set_host(x) implicit none class(psb_s_base_vect_type), intent(inout) :: x end subroutine s_base_set_host ! !> Function base_set_dev: !! \memberof psb_s_base_vect_type !! \brief Set_dev: base version is a no-op. !! ! subroutine s_base_set_dev(x) implicit none class(psb_s_base_vect_type), intent(inout) :: x end subroutine s_base_set_dev ! !> Function base_set_sync: !! \memberof psb_s_base_vect_type !! \brief Set_sync: base version is a no-op. !! ! subroutine s_base_set_sync(x) implicit none class(psb_s_base_vect_type), intent(inout) :: x end subroutine s_base_set_sync ! !> Function base_is_dev: !! \memberof psb_s_base_vect_type !! \brief Is vector on external device . !! ! function s_base_is_dev(x) result(res) implicit none class(psb_s_base_vect_type), intent(in) :: x logical :: res res = .false. end function s_base_is_dev ! !> Function base_is_host !! \memberof psb_s_base_vect_type !! \brief Is vector on standard memory . !! ! function s_base_is_host(x) result(res) implicit none class(psb_s_base_vect_type), intent(in) :: x logical :: res res = .true. end function s_base_is_host ! !> Function base_is_sync !! \memberof psb_s_base_vect_type !! \brief Is vector on sync . !! ! function s_base_is_sync(x) result(res) implicit none class(psb_s_base_vect_type), intent(in) :: x logical :: res res = .true. end function s_base_is_sync ! ! Size info. ! ! !> Function base_get_nrows !! \memberof psb_s_base_vect_type !! \brief Number of entries !! ! function s_base_get_nrows(x) result(res) implicit none class(psb_s_base_vect_type), intent(in) :: x integer(psb_ipk_) :: res res = 0 if (allocated(x%v)) res = size(x%v) end function s_base_get_nrows ! !> Function base_get_sizeof !! \memberof psb_s_base_vect_type !! \brief Size in bytes !! ! function s_base_sizeof(x) result(res) implicit none class(psb_s_base_vect_type), intent(in) :: x integer(psb_epk_) :: res ! Force 8-byte integers. res = (1_psb_epk_ * psb_sizeof_sp) * x%get_nrows() end function s_base_sizeof ! !> Function base_get_fmt !! \memberof psb_s_base_vect_type !! \brief Format !! ! function s_base_get_fmt() result(res) implicit none character(len=5) :: res res = 'BASE' end function s_base_get_fmt ! ! ! !> Function base_get_vect !! \memberof psb_s_base_vect_type !! \brief Extract a copy of the contents !! ! function s_base_get_vect(x,n) result(res) class(psb_s_base_vect_type), intent(inout) :: x real(psb_spk_), allocatable :: res(:) integer(psb_ipk_) :: info integer(psb_ipk_), optional :: n ! Local variables integer(psb_ipk_) :: isz if (.not.allocated(x%v)) return if (.not.x%is_host()) call x%sync() isz = x%get_nrows() if (present(n)) isz = max(0,min(isz,n)) allocate(res(isz),stat=info) if (info /= 0) then call psb_errpush(psb_err_alloc_dealloc_,'base_get_vect') return end if res(1:isz) = x%v(1:isz) end function s_base_get_vect ! ! Reset all values ! ! !> Function base_set_scal !! \memberof psb_s_base_vect_type !! \brief Set all entries !! \param val The value to set !! subroutine s_base_set_scal(x,val,first,last) implicit none class(psb_s_base_vect_type), intent(inout) :: x real(psb_spk_), intent(in) :: val integer(psb_ipk_), optional :: first, last integer(psb_ipk_) :: info, first_, last_ first_=1 last_=size(x%v) if (present(first)) first_ = max(1,first) if (present(last)) last_ = min(last,last_) if (x%is_dev()) call x%sync() x%v(first_:last_) = val call x%set_host() end subroutine s_base_set_scal ! !> Function base_set_vect !! \memberof psb_s_base_vect_type !! \brief Set all entries !! \param val(:) The vector to be copied in !! subroutine s_base_set_vect(x,val,first,last) implicit none class(psb_s_base_vect_type), intent(inout) :: x real(psb_spk_), intent(in) :: val(:) integer(psb_ipk_), optional :: first, last integer(psb_ipk_) :: info, first_, last_, nr first_ = 1 if (present(first)) first_ = max(1,first) last_ = min(psb_size(x%v),first_+size(val)-1) if (present(last)) last_ = min(last,last_) if (allocated(x%v)) then if (x%is_dev()) call x%sync() x%v(first_:last_) = val(1:last_-first_+1) else x%v = val end if call x%set_host() end subroutine s_base_set_vect ! ! Overwrite with absolute value ! ! !> Function base_absval1 !! \memberof psb_s_base_vect_type !! \brief Set all entries to their respective absolute values. !! subroutine s_base_absval1(x) implicit none class(psb_s_base_vect_type), intent(inout) :: x if (allocated(x%v)) then if (x%is_dev()) call x%sync() x%v = abs(x%v) call x%set_host() end if end subroutine s_base_absval1 subroutine s_base_absval2(x,y) implicit none class(psb_s_base_vect_type), intent(inout) :: x class(psb_s_base_vect_type), intent(inout) :: y integer(psb_ipk_) :: info if (.not.x%is_host()) call x%sync() if (allocated(x%v)) then call y%axpby(ione*min(x%get_nrows(),y%get_nrows()),sone,x,szero,info) call y%absval() end if end subroutine s_base_absval2 ! ! Dot products ! ! !> Function base_dot_v !! \memberof psb_s_base_vect_type !! \brief Dot product by another base_vector !! \param n Number of entries to be considered !! \param y The other (base_vect) to be multiplied by !! function s_base_dot_v(n,x,y) result(res) implicit none class(psb_s_base_vect_type), intent(inout) :: x, y integer(psb_ipk_), intent(in) :: n real(psb_spk_) :: res real(psb_spk_), external :: sdot res = szero ! ! Note: this is the base implementation. ! When we get here, we are sure that X is of ! TYPE psb_s_base_vect. ! If Y is not, throw the burden on it, implicitly ! calling dot_a ! select type(yy => y) type is (psb_s_base_vect_type) res = sdot(n,x%v,1,y%v,1) class default res = y%dot(n,x%v) end select end function s_base_dot_v ! ! Base workhorse is good old BLAS1 ! ! !> Function base_dot_a !! \memberof psb_s_base_vect_type !! \brief Dot product by a normal array !! \param n Number of entries to be considered !! \param y(:) The array to be multiplied by !! function s_base_dot_a(n,x,y) result(res) implicit none class(psb_s_base_vect_type), intent(inout) :: x real(psb_spk_), intent(in) :: y(:) integer(psb_ipk_), intent(in) :: n real(psb_spk_) :: res real(psb_spk_), external :: sdot res = sdot(n,y,1,x%v,1) end function s_base_dot_a ! ! AXPBY is invoked via Y, hence the structure below. ! ! ! !> Function base_axpby_v !! \memberof psb_s_base_vect_type !! \brief AXPBY by a (base_vect) y=alpha*x+beta*y !! \param m Number of entries to be considered !! \param alpha scalar alpha !! \param x The class(base_vect) to be added !! \param beta scalar alpha !! \param info return code !! subroutine s_base_axpby_v(m,alpha, x, beta, y, info) use psi_serial_mod implicit none integer(psb_ipk_), intent(in) :: m class(psb_s_base_vect_type), intent(inout) :: x class(psb_s_base_vect_type), intent(inout) :: y real(psb_spk_), intent (in) :: alpha, beta integer(psb_ipk_), intent(out) :: info if (x%is_dev()) call x%sync() call y%axpby(m,alpha,x%v,beta,info) end subroutine s_base_axpby_v ! ! AXPBY is invoked via Z, hence the structure below. ! ! ! !> Function base_axpby_v2 !! \memberof psb_s_base_vect_type !! \brief AXPBY by a (base_vect) z=alpha*x+beta*y !! \param m Number of entries to be considered !! \param alpha scalar alpha !! \param x The class(base_vect) to be added !! \param beta scalar alpha !! \param y The class(base_vect) to be added !! \param z The class(base_vect) to be returned !! \param info return code !! subroutine s_base_axpby_v2(m,alpha, x, beta, y, z, info) use psi_serial_mod implicit none integer(psb_ipk_), intent(in) :: m class(psb_s_base_vect_type), intent(inout) :: x class(psb_s_base_vect_type), intent(inout) :: y class(psb_s_base_vect_type), intent(inout) :: z real(psb_spk_), intent (in) :: alpha, beta integer(psb_ipk_), intent(out) :: info if (x%is_dev()) call x%sync() call z%axpby(m,alpha,x%v,beta,y%v,info) end subroutine s_base_axpby_v2 ! ! AXPBY is invoked via Y, hence the structure below. ! ! !> Function base_axpby_a !! \memberof psb_s_base_vect_type !! \brief AXPBY by a normal array y=alpha*x+beta*y !! \param m Number of entries to be considered !! \param alpha scalar alpha !! \param x(:) The array to be added !! \param beta scalar alpha !! \param info return code !! subroutine s_base_axpby_a(m,alpha, x, beta, y, info) use psi_serial_mod implicit none integer(psb_ipk_), intent(in) :: m real(psb_spk_), intent(in) :: x(:) class(psb_s_base_vect_type), intent(inout) :: y real(psb_spk_), intent (in) :: alpha, beta integer(psb_ipk_), intent(out) :: info if (y%is_dev()) call y%sync() call psb_geaxpby(m,alpha,x,beta,y%v,info) call y%set_host() end subroutine s_base_axpby_a ! ! AXPBY is invoked via Z, hence the structure below. ! ! !> Function base_axpby_a2 !! \memberof psb_s_base_vect_type !! \brief AXPBY by a normal array y=alpha*x+beta*y !! \param m Number of entries to be considered !! \param alpha scalar alpha !! \param x(:) The array to be added !! \param beta scalar beta !! \param y(:) The array to be added !! \param info return code !! subroutine s_base_axpby_a2(m,alpha, x, beta, y, z, info) use psi_serial_mod implicit none integer(psb_ipk_), intent(in) :: m real(psb_spk_), intent(in) :: x(:) real(psb_spk_), intent(in) :: y(:) class(psb_s_base_vect_type), intent(inout) :: z real(psb_spk_), intent (in) :: alpha, beta integer(psb_ipk_), intent(out) :: info if (z%is_dev()) call z%sync() call psb_geaxpby(m,alpha,x,beta,y,z%v,info) call z%set_host() end subroutine s_base_axpby_a2 ! ! Multiple variants of two operations: ! Simple multiplication Y(:) = X(:)*Y(:) ! blas-like: Z(:) = alpha*X(:)*Y(:)+beta*Z(:) ! ! Variants expanded according to the dynamic type ! of the involved entities ! ! !> Function base_mlt_a !! \memberof psb_s_base_vect_type !! \brief Vector entry-by-entry multiply by a base_vect array y=x*y !! \param x The class(base_vect) to be multiplied by !! \param info return code !! subroutine s_base_mlt_v(x, y, info) use psi_serial_mod implicit none class(psb_s_base_vect_type), intent(inout) :: x class(psb_s_base_vect_type), intent(inout) :: y integer(psb_ipk_), intent(out) :: info integer(psb_ipk_) :: i, n info = 0 if (x%is_dev()) call x%sync() call y%mlt(x%v,info) end subroutine s_base_mlt_v ! !> Function base_mlt_a !! \memberof psb_s_base_vect_type !! \brief Vector entry-by-entry multiply by a normal array y=x*y !! \param x(:) The array to be multiplied by !! \param info return code !! subroutine s_base_mlt_a(x, y, info) use psi_serial_mod implicit none real(psb_spk_), intent(in) :: x(:) class(psb_s_base_vect_type), intent(inout) :: y integer(psb_ipk_), intent(out) :: info integer(psb_ipk_) :: i, n info = 0 if (y%is_dev()) call y%sync() n = min(size(y%v), size(x)) do i=1, n y%v(i) = y%v(i)*x(i) end do call y%set_host() end subroutine s_base_mlt_a ! !> Function base_mlt_a_2 !! \memberof psb_s_base_vect_type !! \brief AXPBY-like Vector entry-by-entry multiply by normal arrays !! z=beta*z+alpha*x*y !! \param alpha !! \param beta !! \param x(:) The array to be multiplied b !! \param y(:) The array to be multiplied by !! \param info return code !! subroutine s_base_mlt_a_2(alpha,x,y,beta,z,info) use psi_serial_mod implicit none real(psb_spk_), intent(in) :: alpha,beta real(psb_spk_), intent(in) :: y(:) real(psb_spk_), intent(in) :: x(:) class(psb_s_base_vect_type), intent(inout) :: z integer(psb_ipk_), intent(out) :: info integer(psb_ipk_) :: i, n info = 0 if (z%is_dev()) call z%sync() n = min(size(z%v), size(x), size(y)) if (alpha == szero) then if (beta == sone) then return else do i=1, n z%v(i) = beta*z%v(i) end do end if else if (alpha == sone) then if (beta == szero) then do i=1, n z%v(i) = y(i)*x(i) end do else if (beta == sone) then do i=1, n z%v(i) = z%v(i) + y(i)*x(i) end do else do i=1, n z%v(i) = beta*z%v(i) + y(i)*x(i) end do end if else if (alpha == -sone) then if (beta == szero) then do i=1, n z%v(i) = -y(i)*x(i) end do else if (beta == sone) then do i=1, n z%v(i) = z%v(i) - y(i)*x(i) end do else do i=1, n z%v(i) = beta*z%v(i) - y(i)*x(i) end do end if else if (beta == szero) then do i=1, n z%v(i) = alpha*y(i)*x(i) end do else if (beta == sone) then do i=1, n z%v(i) = z%v(i) + alpha*y(i)*x(i) end do else do i=1, n z%v(i) = beta*z%v(i) + alpha*y(i)*x(i) end do end if end if end if call z%set_host() end subroutine s_base_mlt_a_2 ! !> Function base_mlt_v_2 !! \memberof psb_s_base_vect_type !! \brief AXPBY-like Vector entry-by-entry multiply by class(base_vect) !! z=beta*z+alpha*x*y !! \param alpha !! \param beta !! \param x The class(base_vect) to be multiplied b !! \param y The class(base_vect) to be multiplied by !! \param info return code !! subroutine s_base_mlt_v_2(alpha,x,y,beta,z,info,conjgx,conjgy) use psi_serial_mod use psb_string_mod implicit none real(psb_spk_), intent(in) :: alpha,beta class(psb_s_base_vect_type), intent(inout) :: x class(psb_s_base_vect_type), intent(inout) :: y class(psb_s_base_vect_type), intent(inout) :: z integer(psb_ipk_), intent(out) :: info character(len=1), intent(in), optional :: conjgx, conjgy integer(psb_ipk_) :: i, n logical :: conjgx_, conjgy_ info = 0 if (y%is_dev()) call y%sync() if (x%is_dev()) call x%sync() if (.not.psb_s_is_complex_) then call z%mlt(alpha,x%v,y%v,beta,info) else conjgx_=.false. if (present(conjgx)) conjgx_ = (psb_toupper(conjgx)=='C') conjgy_=.false. if (present(conjgy)) conjgy_ = (psb_toupper(conjgy)=='C') if (conjgx_) x%v=(x%v) if (conjgy_) y%v=(y%v) call z%mlt(alpha,x%v,y%v,beta,info) if (conjgx_) x%v=(x%v) if (conjgy_) y%v=(y%v) end if end subroutine s_base_mlt_v_2 subroutine s_base_mlt_av(alpha,x,y,beta,z,info) use psi_serial_mod implicit none real(psb_spk_), intent(in) :: alpha,beta real(psb_spk_), intent(in) :: x(:) class(psb_s_base_vect_type), intent(inout) :: y class(psb_s_base_vect_type), intent(inout) :: z integer(psb_ipk_), intent(out) :: info integer(psb_ipk_) :: i, n info = 0 if (y%is_dev()) call y%sync() call z%mlt(alpha,x,y%v,beta,info) end subroutine s_base_mlt_av subroutine s_base_mlt_va(alpha,x,y,beta,z,info) use psi_serial_mod implicit none real(psb_spk_), intent(in) :: alpha,beta real(psb_spk_), intent(in) :: y(:) class(psb_s_base_vect_type), intent(inout) :: x class(psb_s_base_vect_type), intent(inout) :: z integer(psb_ipk_), intent(out) :: info integer(psb_ipk_) :: i, n info = 0 if (x%is_dev()) call x%sync() call z%mlt(alpha,y,x,beta,info) end subroutine s_base_mlt_va ! !> Function base_div_v !! \memberof psb_s_base_vect_type !! \brief Vector entry-by-entry divide by a vector x=x/y !! \param y The array to be divided by !! \param info return code !! subroutine s_base_div_v(x, y, info) use psi_serial_mod implicit none class(psb_s_base_vect_type), intent(inout) :: x class(psb_s_base_vect_type), intent(inout) :: y integer(psb_ipk_), intent(out) :: info integer(psb_ipk_) :: i, n info = 0 if (x%is_dev()) call x%sync() call x%div(x%v,y%v,info) end subroutine s_base_div_v ! !> Function base_div_v2 !! \memberof psb_s_base_vect_type !! \brief Vector entry-by-entry divide by a vector z=x/y !! \param y The array to be divided by !! \param info return code !! subroutine s_base_div_v2(x, y, z, info) use psi_serial_mod implicit none class(psb_s_base_vect_type), intent(inout) :: x class(psb_s_base_vect_type), intent(inout) :: y class(psb_s_base_vect_type), intent(inout) :: z integer(psb_ipk_), intent(out) :: info integer(psb_ipk_) :: i, n info = 0 if (z%is_dev()) call z%sync() call z%div(x%v,y%v,info) end subroutine s_base_div_v2 ! !> Function base_div_v_check !! \memberof psb_s_base_vect_type !! \brief Vector entry-by-entry divide by a vector x=x/y !! \param y The array to be divided by !! \param info return code !! subroutine s_base_div_v_check(x, y, info, flag) use psi_serial_mod implicit none class(psb_s_base_vect_type), intent(inout) :: x class(psb_s_base_vect_type), intent(inout) :: y integer(psb_ipk_), intent(out) :: info integer(psb_ipk_) :: i, n logical, intent(in) :: flag info = 0 if (x%is_dev()) call x%sync() call x%div(x%v,y%v,info,flag) end subroutine s_base_div_v_check ! !> Function base_div_v2_check !! \memberof psb_s_base_vect_type !! \brief Vector entry-by-entry divide by a vector z=x/y !! \param y The array to be divided by !! \param info return code !! subroutine s_base_div_v2_check(x, y, z, info, flag) use psi_serial_mod implicit none class(psb_s_base_vect_type), intent(inout) :: x class(psb_s_base_vect_type), intent(inout) :: y class(psb_s_base_vect_type), intent(inout) :: z integer(psb_ipk_), intent(out) :: info integer(psb_ipk_) :: i, n logical, intent(in) :: flag info = 0 if (z%is_dev()) call z%sync() call z%div(x%v,y%v,info,flag) end subroutine s_base_div_v2_check ! !> Function base_div_a2 !! \memberof psb_s_base_vect_type !! \brief Entry-by-entry divide between normal array z=x/y !! \param y(:) The array to be divided by !! \param info return code !! subroutine s_base_div_a2(x, y, z, info) use psi_serial_mod implicit none class(psb_s_base_vect_type), intent(inout) :: z real(psb_spk_), intent(in) :: x(:) real(psb_spk_), intent(in) :: y(:) integer(psb_ipk_), intent(out) :: info integer(psb_ipk_) :: i, n info = 0 if (z%is_dev()) call z%sync() n = min(size(y), size(x)) do i=1, n z%v(i) = x(i)/y(i) end do end subroutine s_base_div_a2 ! !> Function base_div_a2_check !! \memberof psb_s_base_vect_type !! \brief Entry-by-entry divide between normal array x=x/y and check if y(i) !! is different from zero !! \param y(:) The array to be dived by !! \param info return code !! subroutine s_base_div_a2_check(x, y, z, info, flag) use psi_serial_mod implicit none class(psb_s_base_vect_type), intent(inout) :: z real(psb_spk_), intent(in) :: x(:) real(psb_spk_), intent(in) :: y(:) integer(psb_ipk_), intent(out) :: info logical, intent(in) :: flag integer(psb_ipk_) :: i, n if (flag .eqv. .false.) then call s_base_div_a2(x, y, z, info) else info = 0 if (z%is_dev()) call z%sync() n = min(size(y), size(x)) do i=1, n if (y(i) /= 0) then z%v(i) = x(i)/y(i) else info = 1 exit end if end do end if end subroutine s_base_div_a2_check ! !> Function base_inv_v !! \memberof psb_s_base_vect_type !! \brief Compute the entry-by-entry inverse of x and put it in y !! \param x The vector to be inverted !! \param y The vector containing the inverted vector !! \param info return code subroutine s_base_inv_v(x, y, info) use psi_serial_mod implicit none class(psb_s_base_vect_type), intent(inout) :: x class(psb_s_base_vect_type), intent(inout) :: y integer(psb_ipk_), intent(out) :: info integer(psb_ipk_) :: i, n info = 0 if (y%is_dev()) call y%sync() call y%inv(x%v,info) end subroutine s_base_inv_v ! !> Function base_inv_v_check !! \memberof psb_s_base_vect_type !! \brief Compute the entry-by-entry inverse of x and put it in y, with 0 check !! \param x The vector to be inverted !! \param y The vector containing the inverted vector !! \param info return code !! \param flag if true does the check, otherwise call base_inv_v subroutine s_base_inv_v_check(x, y, info, flag) use psi_serial_mod implicit none class(psb_s_base_vect_type), intent(inout) :: x class(psb_s_base_vect_type), intent(inout) :: y integer(psb_ipk_), intent(out) :: info integer(psb_ipk_) :: i, n logical, intent(in) :: flag info = 0 if (y%is_dev()) call y%sync() call y%inv(x%v,info,flag) end subroutine s_base_inv_v_check ! !> Function base_inv_a2 !! \memberof psb_s_base_vect_type !! \brief Compute the entry-by-entry inverse of x and put it in y, !! \param x(:) The array to be inverted !! \param y The vector containing the inverted vector !! \param info return code ! subroutine s_base_inv_a2(x, y, info) use psi_serial_mod implicit none class(psb_s_base_vect_type), intent(inout) :: y real(psb_spk_), intent(in) :: x(:) integer(psb_ipk_), intent(out) :: info integer(psb_ipk_) :: i, n info = 0 if (y%is_dev()) call y%sync() n = size(x) do i=1, n y%v(i) = 1_psb_spk_/x(i) end do end subroutine s_base_inv_a2 ! !> Function base_inv_a2_check !! \memberof psb_s_base_vect_type !! \brief Compute the entry-by-entry inverse of x and put it in y, with 0 check !! \param x(:) The array to be inverted !! \param y The vector containing the inverted vector !! \param info return code !! \param flag if true does the check, otherwise call base_inv_v ! subroutine s_base_inv_a2_check(x, y, info, flag) use psi_serial_mod implicit none class(psb_s_base_vect_type), intent(inout) :: y real(psb_spk_), intent(inout) :: x(:) integer(psb_ipk_), intent(out) :: info logical, intent(in) :: flag integer(psb_ipk_) :: i, n if (flag .eqv. .false.) then call s_base_inv_a2(x, y, info) else info = 0 if (y%is_dev()) call y%sync() n = size(x) do i=1, n if (x(i) /= 0) then y%v(i) = 1_psb_spk_/x(i) else info = 1 exit end if end do end if end subroutine s_base_inv_a2_check ! !> Function base_inv_a2_check !! \memberof psb_s_base_vect_type !! \brief Compare entry-by-entry the vector x with the scalar c !! \param x The array to be compared !! \param z The vector containing in position i 1 if |x(i)| > c, 0 otherwise !! \param c The comparison term !! \param info return code ! subroutine s_base_acmp_a2(x,c,z,info) use psi_serial_mod implicit none real(psb_spk_), intent(in) :: c real(psb_spk_), intent(inout) :: x(:) class(psb_s_base_vect_type), intent(inout) :: z integer(psb_ipk_), intent(out) :: info integer(psb_ipk_) :: i, n if (z%is_dev()) call z%sync() n = size(x) do i = 1, n, 1 if ( abs(x(i)).ge.c ) then z%v(i) = 1_psb_spk_ else z%v(i) = 0_psb_spk_ end if end do info = 0 end subroutine s_base_acmp_a2 ! !> Function base_cmp_v2 !! \memberof psb_s_base_vect_type !! \brief Compare entry-by-entry the vector x with the scalar c !! \param x The vector to be compared !! \param z The vector containing in position i 1 if |x(i)| > c, 0 otherwise !! \param c The comparison term !! \param info return code ! subroutine s_base_acmp_v2(x,c,z,info) use psi_serial_mod implicit none class(psb_s_base_vect_type), intent(inout) :: x real(psb_spk_), intent(in) :: c class(psb_s_base_vect_type), intent(inout) :: z integer(psb_ipk_), intent(out) :: info info = 0 if (x%is_dev()) call x%sync() call z%acmp(x%v,c,info) end subroutine s_base_acmp_v2 ! ! Simple scaling ! !> Function base_scal !! \memberof psb_s_base_vect_type !! \brief Scale all entries x = alpha*x !! \param alpha The multiplier !! subroutine s_base_scal(alpha, x) use psi_serial_mod implicit none class(psb_s_base_vect_type), intent(inout) :: x real(psb_spk_), intent (in) :: alpha if (allocated(x%v)) then x%v = alpha*x%v call x%set_host() end if end subroutine s_base_scal ! ! Norms 1, 2 and infinity ! !> Function base_nrm2 !! \memberof psb_s_base_vect_type !! \brief 2-norm |x(1:n)|_2 !! \param n how many entries to consider function s_base_nrm2(n,x) result(res) implicit none class(psb_s_base_vect_type), intent(inout) :: x integer(psb_ipk_), intent(in) :: n real(psb_spk_) :: res real(psb_spk_), external :: snrm2 if (x%is_dev()) call x%sync() res = snrm2(n,x%v,1) end function s_base_nrm2 ! !> Function base_amax !! \memberof psb_s_base_vect_type !! \brief infinity-norm |x(1:n)|_\infty !! \param n how many entries to consider function s_base_amax(n,x) result(res) implicit none class(psb_s_base_vect_type), intent(inout) :: x integer(psb_ipk_), intent(in) :: n real(psb_spk_) :: res if (x%is_dev()) call x%sync() res = maxval(abs(x%v(1:n))) end function s_base_amax ! !> Function base_min !! \memberof psb_s_base_vect_type !! \brief min x(1:n) !! \param n how many entries to consider function s_base_min(n,x) result(res) implicit none class(psb_s_base_vect_type), intent(inout) :: x integer(psb_ipk_), intent(in) :: n real(psb_spk_) :: res if (x%is_dev()) call x%sync() res = minval(x%v(1:n)) end function s_base_min ! !> Function base_minquotient_v !! \memberof psb_s_base_vect_type !! \brief Minimum entry of the vector entry-by-entry divide x/y !! \param x The numerator vector !! \param y The denumerator vector !! \param info return code !! function s_base_minquotient_v(x, y, info) result(z) use psi_serial_mod implicit none class(psb_s_base_vect_type), intent(inout) :: x class(psb_s_base_vect_type), intent(inout) :: y real(psb_spk_) :: z integer(psb_ipk_), intent(out) :: info info = 0 if (x%is_dev()) call x%sync() if (y%is_dev()) call y%sync() z = x%minquotient(y%v,info) end function s_base_minquotient_v ! !> Function base_minquotient_a2 !! \memberof psb_s_base_vect_type !! \brief Minimum entry of the array entry-by-entry divide x/y !! \param x The numerator array !! \param y The denumerator array !! \param info return code !! function s_base_minquotient_a2(x, y, info) result(z) use psi_serial_mod implicit none class(psb_s_base_vect_type), intent(inout) :: x real(psb_spk_), intent(in) :: y(:) real(psb_spk_) :: z integer(psb_ipk_), intent(out) :: info integer(psb_ipk_) :: i, n real(psb_spk_) :: temp info = 0 z = huge(z) n = min(size(y), size(x%v)) do i=1, n if ( y(i) /= szero ) then temp = x%v(i)/y(i) if (temp <= z) z = temp end if end do end function s_base_minquotient_a2 ! !> Function base_asum !! \memberof psb_s_base_vect_type !! \brief 1-norm |x(1:n)|_1 !! \param n how many entries to consider function s_base_asum(n,x) result(res) implicit none class(psb_s_base_vect_type), intent(inout) :: x integer(psb_ipk_), intent(in) :: n real(psb_spk_) :: res if (x%is_dev()) call x%sync() res = sum(abs(x%v(1:n))) end function s_base_asum ! ! Gather: Y = beta * Y + alpha * X(IDX(:)) ! ! !> Function base_gthab !! \memberof psb_s_base_vect_type !! \brief gather into an array !! Y = beta * Y + alpha * X(IDX(:)) !! \param n how many entries to consider !! \param idx(:) indices !! \param alpha !! \param beta subroutine s_base_gthab(n,idx,alpha,x,beta,y) use psi_serial_mod implicit none integer(psb_ipk_) :: n, idx(:) real(psb_spk_) :: alpha, beta, y(:) class(psb_s_base_vect_type) :: x if (x%is_dev()) call x%sync() call psi_gth(n,idx,alpha,x%v,beta,y) end subroutine s_base_gthab ! ! shortcut alpha=1 beta=0 ! !> Function base_gthzv !! \memberof psb_s_base_vect_type !! \brief gather into an array special alpha=1 beta=0 !! Y = X(IDX(:)) !! \param n how many entries to consider !! \param idx(:) indices subroutine s_base_gthzv_x(i,n,idx,x,y) use psi_serial_mod implicit none integer(psb_ipk_) :: i,n class(psb_i_base_vect_type) :: idx real(psb_spk_) :: y(:) class(psb_s_base_vect_type) :: x if (idx%is_dev()) call idx%sync() call x%gth(n,idx%v(i:),y) end subroutine s_base_gthzv_x ! ! New comm internals impl. ! subroutine s_base_gthzbuf(i,n,idx,x) use psi_serial_mod implicit none integer(psb_ipk_) :: i,n class(psb_i_base_vect_type) :: idx class(psb_s_base_vect_type) :: x if (.not.allocated(x%combuf)) then call psb_errpush(psb_err_alloc_dealloc_,'gthzbuf') return end if if (idx%is_dev()) call idx%sync() if (x%is_dev()) call x%sync() call x%gth(n,idx%v(i:),x%combuf(i:)) end subroutine s_base_gthzbuf ! !> Function base_device_wait: !! \memberof psb_s_base_vect_type !! \brief device_wait: base version is a no-op. !! ! subroutine s_base_device_wait() implicit none end subroutine s_base_device_wait function s_base_use_buffer() result(res) logical :: res res = .true. end function s_base_use_buffer subroutine s_base_new_buffer(n,x,info) use psb_realloc_mod implicit none class(psb_s_base_vect_type), intent(inout) :: x integer(psb_ipk_), intent(in) :: n integer(psb_ipk_), intent(out) :: info call psb_realloc(n,x%combuf,info) end subroutine s_base_new_buffer subroutine s_base_new_comid(n,x,info) use psb_realloc_mod implicit none class(psb_s_base_vect_type), intent(inout) :: x integer(psb_ipk_), intent(in) :: n integer(psb_ipk_), intent(out) :: info call psb_realloc(n,2_psb_ipk_,x%comid,info) end subroutine s_base_new_comid ! ! shortcut alpha=1 beta=0 ! !> Function base_gthzv !! \memberof psb_s_base_vect_type !! \brief gather into an array special alpha=1 beta=0 !! Y = X(IDX(:)) !! \param n how many entries to consider !! \param idx(:) indices subroutine s_base_gthzv(n,idx,x,y) use psi_serial_mod implicit none integer(psb_ipk_) :: n, idx(:) real(psb_spk_) :: y(:) class(psb_s_base_vect_type) :: x if (x%is_dev()) call x%sync() call psi_gth(n,idx,x%v,y) end subroutine s_base_gthzv ! ! Scatter: ! Y(IDX(:)) = beta*Y(IDX(:)) + X(:) ! ! !> Function base_sctb !! \memberof psb_s_base_vect_type !! \brief scatter into a class(base_vect) !! Y(IDX(:)) = beta * Y(IDX(:)) + X(:) !! \param n how many entries to consider !! \param idx(:) indices !! \param beta !! \param x(:) subroutine s_base_sctb(n,idx,x,beta,y) use psi_serial_mod implicit none integer(psb_ipk_) :: n, idx(:) real(psb_spk_) :: beta, x(:) class(psb_s_base_vect_type) :: y if (y%is_dev()) call y%sync() call psi_sct(n,idx,x,beta,y%v) call y%set_host() end subroutine s_base_sctb subroutine s_base_sctb_x(i,n,idx,x,beta,y) use psi_serial_mod implicit none integer(psb_ipk_) :: i, n class(psb_i_base_vect_type) :: idx real(psb_spk_) :: beta, x(:) class(psb_s_base_vect_type) :: y if (idx%is_dev()) call idx%sync() call y%sct(n,idx%v(i:),x,beta) call y%set_host() end subroutine s_base_sctb_x subroutine s_base_sctb_buf(i,n,idx,beta,y) use psi_serial_mod implicit none integer(psb_ipk_) :: i, n class(psb_i_base_vect_type) :: idx real(psb_spk_) :: beta class(psb_s_base_vect_type) :: y if (.not.allocated(y%combuf)) then call psb_errpush(psb_err_alloc_dealloc_,'sctb_buf') return end if if (y%is_dev()) call y%sync() if (idx%is_dev()) call idx%sync() call y%sct(n,idx%v(i:),y%combuf(i:),beta) call y%set_host() end subroutine s_base_sctb_buf ! !> Function base_mask_a !! \memberof psb_s_base_vect_type !! \brief Peform constraint tests looking at the value of c !! \param x The array to be compared !! \param c The array containing the information on the type of test to be !! performed, if c(i) = 2 ">0", if c(i) = 1 ">=0", if c(i) = 0 no test, if !! c(i) =-1 "<=0", if c(i) = -2 "< 0" !! \param m The vector containing the result of the comparison 1.0 for a !! failed test, and 0.0 for a passed one. !! \param t logical resulting from an and operation on all the tests !! \param info return code ! subroutine s_base_mask_a(c,x,m,t,info) use psi_serial_mod implicit none real(psb_spk_), intent(inout) :: c(:) real(psb_spk_), intent(inout) :: x(:) class(psb_s_base_vect_type), intent(inout) :: m integer(psb_ipk_), intent(out) :: info logical, intent(out) :: t integer(psb_ipk_) :: i, n if (m%is_dev()) call m%sync() t = .true. n = size(x) do i = 1, n, 1 if (c(i).eq.2_psb_spk_) then if ( x(i) > szero ) then m%v(i) = 0_psb_spk_ else m%v(i) = 1_psb_spk_ t = .false. end if elseif (c(i).eq.1_psb_spk_) then if ( x(i) >= szero ) then m%v(i) = 0_psb_spk_ else m%v(i) = 1_psb_spk_ t = .false. end if elseif (c(i).eq.-1_psb_spk_) then if ( x(i) <= szero ) then m%v(i) = 0_psb_spk_ else m%v(i) = 1_psb_spk_ t = .false. end if elseif (c(i).eq.-2_psb_spk_) then if ( x(i) < szero ) then m%v(i) = 0_psb_spk_ else m%v(i) = 1_psb_spk_ t = .false. end if else m%v(i) = 0_psb_spk_ end if end do info = 0 end subroutine s_base_mask_a ! !> Function base_mask_v !! \memberof psb_s_base_vect_type !! \brief Peform constraint tests looking at the value of c !! \param x The vector to be compared !! \param c The vector containing the information on the type of test to be !! performed, if c(i) = 2 ">0", if c(i) = 1 ">=0", if c(i) = 0 no test, if !! c(i) =-1 "<=0", if c(i) = -2 "< 0" !! \param m The vector containing the result of the comparison 1.0 for a !! failed test, and 0.0 for a passed one. !! \param t logical resulting from an and operation on all the tests !! \param info return code ! subroutine s_base_mask_v(c,x,m,t,info) use psi_serial_mod implicit none class(psb_s_base_vect_type), intent(inout) :: c class(psb_s_base_vect_type), intent(inout) :: x class(psb_s_base_vect_type), intent(inout) :: m integer(psb_ipk_), intent(out) :: info logical, intent(out) :: t info = 0 if (x%is_dev()) call x%sync() if (c%is_dev()) call c%sync() call m%mask(x%v,c%v,t,info) end subroutine s_base_mask_v ! !> Function _base_addconst_a2 !! \memberof psb_s_base_vect_type !! \brief Add the constant b to every entry of the array x !! \param x The input array !! \param z The vector containing the x(i) + b !! \param b The added term !! \param info return code ! subroutine s_base_addconst_a2(x,b,z,info) use psi_serial_mod implicit none real(psb_spk_), intent(in) :: b real(psb_spk_), intent(inout) :: x(:) class(psb_s_base_vect_type), intent(inout) :: z integer(psb_ipk_), intent(out) :: info integer(psb_ipk_) :: i, n if (z%is_dev()) call z%sync() n = size(x) do i = 1, n, 1 z%v(i) = x(i) + b end do info = 0 end subroutine s_base_addconst_a2 ! !> Function _base_addconst_v2 !! \memberof psb_s_base_vect_type !! \briefAdd the constant b to every entry of the vector x !! \param x The input vector !! \param z The vector containing the x(i) + b !! \param b The added term !! \param info return code ! subroutine s_base_addconst_v2(x,b,z,info) use psi_serial_mod implicit none class(psb_s_base_vect_type), intent(inout) :: x real(psb_spk_), intent(in) :: b class(psb_s_base_vect_type), intent(inout) :: z integer(psb_ipk_), intent(out) :: info info = 0 if (x%is_dev()) call x%sync() call z%addconst(x%v,b,info) end subroutine s_base_addconst_v2 end module psb_s_base_vect_mod module psb_s_base_multivect_mod use psb_const_mod use psb_error_mod use psb_realloc_mod use psb_s_base_vect_mod !> \namespace psb_base_mod \class psb_s_base_vect_type !! The psb_s_base_vect_type !! defines a middle level integer(psb_ipk_) encapsulated dense vector. !! The encapsulation is needed, in place of a simple array, to allow !! for complicated situations, such as GPU programming, where the memory !! area we are interested in is not easily accessible from the host/Fortran !! side. It is also meant to be encapsulated in an outer type, to allow !! runtime switching as per the STATE design pattern, similar to the !! sparse matrix types. !! private public :: psb_s_base_multivect, psb_s_base_multivect_type type psb_s_base_multivect_type !> Values. real(psb_spk_), allocatable :: v(:,:) real(psb_spk_), allocatable :: combuf(:) integer(psb_mpk_), allocatable :: comid(:,:) contains ! ! Constructors/allocators ! procedure, pass(x) :: bld_x => s_base_mlv_bld_x procedure, pass(x) :: bld_n => s_base_mlv_bld_n generic, public :: bld => bld_x, bld_n procedure, pass(x) :: all => s_base_mlv_all procedure, pass(x) :: mold => s_base_mlv_mold ! ! Insert/set. Assembly and free. ! Assembly does almost nothing here, but is important ! in derived classes. ! procedure, pass(x) :: ins => s_base_mlv_ins procedure, pass(x) :: zero => s_base_mlv_zero procedure, pass(x) :: asb => s_base_mlv_asb procedure, pass(x) :: free => s_base_mlv_free ! ! Sync: centerpiece of handling of external storage. ! Any derived class having extra storage upon sync ! will guarantee that both fortran/host side and ! external side contain the same data. The base ! version is only a placeholder. ! procedure, pass(x) :: sync => s_base_mlv_sync procedure, pass(x) :: is_host => s_base_mlv_is_host procedure, pass(x) :: is_dev => s_base_mlv_is_dev procedure, pass(x) :: is_sync => s_base_mlv_is_sync procedure, pass(x) :: set_host => s_base_mlv_set_host procedure, pass(x) :: set_dev => s_base_mlv_set_dev procedure, pass(x) :: set_sync => s_base_mlv_set_sync ! ! Basic info procedure, pass(x) :: get_nrows => s_base_mlv_get_nrows procedure, pass(x) :: get_ncols => s_base_mlv_get_ncols procedure, pass(x) :: sizeof => s_base_mlv_sizeof procedure, nopass :: get_fmt => s_base_mlv_get_fmt ! ! Set/get data from/to an external array; also ! overload assignment. ! procedure, pass(x) :: get_vect => s_base_mlv_get_vect procedure, pass(x) :: set_scal => s_base_mlv_set_scal procedure, pass(x) :: set_vect => s_base_mlv_set_vect generic, public :: set => set_vect, set_scal ! ! Dot product and AXPBY ! procedure, pass(x) :: dot_v => s_base_mlv_dot_v procedure, pass(x) :: dot_a => s_base_mlv_dot_a generic, public :: dot => dot_v, dot_a procedure, pass(y) :: axpby_v => s_base_mlv_axpby_v procedure, pass(y) :: axpby_a => s_base_mlv_axpby_a generic, public :: axpby => axpby_v, axpby_a ! ! MultiVector by vector/multivector multiplication. Need all variants ! to handle multiple requirements from preconditioners ! procedure, pass(y) :: mlt_mv => s_base_mlv_mlt_mv procedure, pass(y) :: mlt_mv_v => s_base_mlv_mlt_mv_v procedure, pass(y) :: mlt_ar1 => s_base_mlv_mlt_ar1 procedure, pass(y) :: mlt_ar2 => s_base_mlv_mlt_ar2 procedure, pass(z) :: mlt_a_2 => s_base_mlv_mlt_a_2 procedure, pass(z) :: mlt_v_2 => s_base_mlv_mlt_v_2 !!$ procedure, pass(z) :: mlt_va => s_base_mlv_mlt_va !!$ procedure, pass(z) :: mlt_av => s_base_mlv_mlt_av generic, public :: mlt => mlt_mv, mlt_mv_v, mlt_ar1, mlt_ar2, & & mlt_a_2, mlt_v_2 !, mlt_av, mlt_va ! ! Scaling and norms ! procedure, pass(x) :: scal => s_base_mlv_scal procedure, pass(x) :: nrm2 => s_base_mlv_nrm2 procedure, pass(x) :: amax => s_base_mlv_amax procedure, pass(x) :: asum => s_base_mlv_asum procedure, pass(x) :: absval1 => s_base_mlv_absval1 procedure, pass(x) :: absval2 => s_base_mlv_absval2 generic, public :: absval => absval1, absval2 ! ! These are for handling gather/scatter in new ! comm internals implementation. ! procedure, nopass :: use_buffer => s_base_mlv_use_buffer procedure, pass(x) :: new_buffer => s_base_mlv_new_buffer procedure, nopass :: device_wait => s_base_mlv_device_wait procedure, pass(x) :: maybe_free_buffer => s_base_mlv_maybe_free_buffer procedure, pass(x) :: free_buffer => s_base_mlv_free_buffer procedure, pass(x) :: new_comid => s_base_mlv_new_comid procedure, pass(x) :: free_comid => s_base_mlv_free_comid ! ! Gather/scatter. These are needed for MPI interfacing. ! May have to be reworked. ! procedure, pass(x) :: gthab => s_base_mlv_gthab procedure, pass(x) :: gthzv => s_base_mlv_gthzv procedure, pass(x) :: gthzm => s_base_mlv_gthzm procedure, pass(x) :: gthzv_x => s_base_mlv_gthzv_x procedure, pass(x) :: gthzbuf => s_base_mlv_gthzbuf generic, public :: gth => gthab, gthzv, gthzm, gthzv_x, gthzbuf procedure, pass(y) :: sctb => s_base_mlv_sctb procedure, pass(y) :: sctbr2 => s_base_mlv_sctbr2 procedure, pass(y) :: sctb_x => s_base_mlv_sctb_x procedure, pass(y) :: sctb_buf => s_base_mlv_sctb_buf generic, public :: sct => sctb, sctbr2, sctb_x, sctb_buf end type psb_s_base_multivect_type interface psb_s_base_multivect module procedure constructor, size_const end interface psb_s_base_multivect contains ! ! Constructors. ! !> Function constructor: !! \brief Constructor from an array !! \param x(:) input array to be copied !! function constructor(x) result(this) real(psb_spk_) :: x(:,:) type(psb_s_base_multivect_type) :: this integer(psb_ipk_) :: info this%v = x call this%asb(size(x,dim=1,kind=psb_ipk_),size(x,dim=2,kind=psb_ipk_),info) end function constructor !> Function constructor: !! \brief Constructor from size !! \param n Size of vector to be built. !! function size_const(m,n) result(this) integer(psb_ipk_), intent(in) :: m,n type(psb_s_base_multivect_type) :: this integer(psb_ipk_) :: info call this%asb(m,n,info) end function size_const ! ! Build from a sample ! !> Function bld_x: !! \memberof psb_s_base_multivect_type !! \brief Build method from an array !! \param x(:) input array to be copied !! subroutine s_base_mlv_bld_x(x,this) use psb_realloc_mod real(psb_spk_), intent(in) :: this(:,:) class(psb_s_base_multivect_type), intent(inout) :: x integer(psb_ipk_) :: info call psb_realloc(size(this,1),size(this,2),x%v,info) if (info /= 0) then call psb_errpush(psb_err_alloc_dealloc_,'base_mlv_vect_bld') return end if x%v(:,:) = this(:,:) end subroutine s_base_mlv_bld_x ! ! Create with size, but no initialization ! !> Function bld_n: !! \memberof psb_s_base_multivect_type !! \brief Build method with size (uninitialized data) !! \param n size to be allocated. !! subroutine s_base_mlv_bld_n(x,m,n) use psb_realloc_mod integer(psb_ipk_), intent(in) :: m,n class(psb_s_base_multivect_type), intent(inout) :: x integer(psb_ipk_) :: info call psb_realloc(m,n,x%v,info) call x%asb(m,n,info) end subroutine s_base_mlv_bld_n !> Function base_mlv_all: !! \memberof psb_s_base_multivect_type !! \brief Build method with size (uninitialized data) and !! allocation return code. !! \param n size to be allocated. !! \param info return code !! subroutine s_base_mlv_all(m,n, x, info) use psi_serial_mod use psb_realloc_mod implicit none integer(psb_ipk_), intent(in) :: m,n class(psb_s_base_multivect_type), intent(out) :: x integer(psb_ipk_), intent(out) :: info call psb_realloc(m,n,x%v,info) end subroutine s_base_mlv_all !> Function base_mlv_mold: !! \memberof psb_s_base_multivect_type !! \brief Mold method: return a variable with the same dynamic type !! \param y returned variable !! \param info return code !! subroutine s_base_mlv_mold(x, y, info) use psi_serial_mod use psb_realloc_mod implicit none class(psb_s_base_multivect_type), intent(in) :: x class(psb_s_base_multivect_type), intent(out), allocatable :: y integer(psb_ipk_), intent(out) :: info allocate(psb_s_base_multivect_type :: y, stat=info) end subroutine s_base_mlv_mold ! ! Insert a bunch of values at specified positions. ! !> Function base_mlv_ins: !! \memberof psb_s_base_multivect_type !! \brief Insert coefficients. !! !! !! Given a list of N pairs !! (IRL(i),VAL(i)) !! record a new coefficient in X such that !! X(IRL(1:N)) = VAL(1:N). !! !! - the update operation will perform either !! X(IRL(1:n)) = VAL(1:N) !! or !! X(IRL(1:n)) = X(IRL(1:n))+VAL(1:N) !! according to the value of DUPLICATE. !! !! !! \param n number of pairs in input !! \param irl(:) the input row indices !! \param val(:) the input coefficients !! \param dupl how to treat duplicate entries !! \param info return code !! ! subroutine s_base_mlv_ins(n,irl,val,dupl,x,info) use psi_serial_mod implicit none class(psb_s_base_multivect_type), intent(inout) :: x integer(psb_ipk_), intent(in) :: n, dupl integer(psb_ipk_), intent(in) :: irl(:) real(psb_spk_), intent(in) :: val(:,:) integer(psb_ipk_), intent(out) :: info integer(psb_ipk_) :: i, isz info = 0 if (psb_errstatus_fatal()) return if (.not.allocated(x%v)) then info = psb_err_invalid_vect_state_ else if (n > min(size(irl),size(val))) then info = psb_err_invalid_input_ else isz = size(x%v,1) select case(dupl) case(psb_dupl_ovwrt_) do i = 1, n !loop over all val's rows ! row actual block row if ((1 <= irl(i)).and.(irl(i) <= isz)) then ! this row belongs to me ! copy i-th row of block val in x x%v(irl(i),:) = val(i,:) end if enddo case(psb_dupl_add_) do i = 1, n !loop over all val's rows if ((1 <= irl(i)).and.(irl(i) <= isz)) then ! this row belongs to me ! copy i-th row of block val in x x%v(irl(i),:) = x%v(irl(i),:) + val(i,:) end if enddo case default info = 321 ! !$ call psb_errpush(info,name) ! !$ goto 9999 end select end if if (info /= 0) then call psb_errpush(info,'base_mlv_vect_ins') return end if end subroutine s_base_mlv_ins ! !> Function base_mlv_zero !! \memberof psb_s_base_multivect_type !! \brief Zero out contents !! ! subroutine s_base_mlv_zero(x) use psi_serial_mod implicit none class(psb_s_base_multivect_type), intent(inout) :: x if (allocated(x%v)) x%v=szero end subroutine s_base_mlv_zero ! ! Assembly. ! For derived classes: after this the vector ! storage is supposed to be in sync. ! !> Function base_mlv_asb: !! \memberof psb_s_base_multivect_type !! \brief Assemble vector: reallocate as necessary. !! !! \param n final size !! \param info return code !! ! subroutine s_base_mlv_asb(m,n, x, info) use psi_serial_mod use psb_realloc_mod implicit none integer(psb_ipk_), intent(in) :: m,n class(psb_s_base_multivect_type), intent(inout) :: x integer(psb_ipk_), intent(out) :: info if ((x%get_nrows() < m).or.(x%get_ncols() Function base_mlv_free: !! \memberof psb_s_base_multivect_type !! \brief Free vector !! !! \param info return code !! ! subroutine s_base_mlv_free(x, info) use psi_serial_mod use psb_realloc_mod implicit none class(psb_s_base_multivect_type), intent(inout) :: x integer(psb_ipk_), intent(out) :: info info = 0 if (allocated(x%v)) deallocate(x%v, stat=info) if (info /= 0) call & & psb_errpush(psb_err_alloc_dealloc_,'vect_free') end subroutine s_base_mlv_free ! ! The base version of SYNC & friends does nothing, it's just ! a placeholder. ! ! !> Function base_mlv_sync: !! \memberof psb_s_base_multivect_type !! \brief Sync: base version is a no-op. !! ! subroutine s_base_mlv_sync(x) implicit none class(psb_s_base_multivect_type), intent(inout) :: x end subroutine s_base_mlv_sync ! !> Function base_mlv_set_host: !! \memberof psb_s_base_multivect_type !! \brief Set_host: base version is a no-op. !! ! subroutine s_base_mlv_set_host(x) implicit none class(psb_s_base_multivect_type), intent(inout) :: x end subroutine s_base_mlv_set_host ! !> Function base_mlv_set_dev: !! \memberof psb_s_base_multivect_type !! \brief Set_dev: base version is a no-op. !! ! subroutine s_base_mlv_set_dev(x) implicit none class(psb_s_base_multivect_type), intent(inout) :: x end subroutine s_base_mlv_set_dev ! !> Function base_mlv_set_sync: !! \memberof psb_s_base_multivect_type !! \brief Set_sync: base version is a no-op. !! ! subroutine s_base_mlv_set_sync(x) implicit none class(psb_s_base_multivect_type), intent(inout) :: x end subroutine s_base_mlv_set_sync ! !> Function base_mlv_is_dev: !! \memberof psb_s_base_multivect_type !! \brief Is vector on external device . !! ! function s_base_mlv_is_dev(x) result(res) implicit none class(psb_s_base_multivect_type), intent(in) :: x logical :: res res = .false. end function s_base_mlv_is_dev ! !> Function base_mlv_is_host !! \memberof psb_s_base_multivect_type !! \brief Is vector on standard memory . !! ! function s_base_mlv_is_host(x) result(res) implicit none class(psb_s_base_multivect_type), intent(in) :: x logical :: res res = .true. end function s_base_mlv_is_host ! !> Function base_mlv_is_sync !! \memberof psb_s_base_multivect_type !! \brief Is vector on sync . !! ! function s_base_mlv_is_sync(x) result(res) implicit none class(psb_s_base_multivect_type), intent(in) :: x logical :: res res = .true. end function s_base_mlv_is_sync ! ! Size info. ! ! !> Function base_mlv_get_nrows !! \memberof psb_s_base_multivect_type !! \brief Number of entries !! ! function s_base_mlv_get_nrows(x) result(res) implicit none class(psb_s_base_multivect_type), intent(in) :: x integer(psb_ipk_) :: res res = 0 if (allocated(x%v)) res = size(x%v,1) end function s_base_mlv_get_nrows function s_base_mlv_get_ncols(x) result(res) implicit none class(psb_s_base_multivect_type), intent(in) :: x integer(psb_ipk_) :: res res = 0 if (allocated(x%v)) res = size(x%v,2) end function s_base_mlv_get_ncols ! !> Function base_mlv_get_sizeof !! \memberof psb_s_base_multivect_type !! \brief Size in bytesa !! ! function s_base_mlv_sizeof(x) result(res) implicit none class(psb_s_base_multivect_type), intent(in) :: x integer(psb_epk_) :: res ! Force 8-byte integers. res = (1_psb_epk_ * psb_sizeof_ip) * x%get_nrows() * x%get_ncols() end function s_base_mlv_sizeof ! !> Function base_mlv_get_fmt !! \memberof psb_s_base_multivect_type !! \brief Format !! ! function s_base_mlv_get_fmt() result(res) implicit none character(len=5) :: res res = 'BASE' end function s_base_mlv_get_fmt ! ! ! !> Function base_mlv_get_vect !! \memberof psb_s_base_multivect_type !! \brief Extract a copy of the contents !! ! function s_base_mlv_get_vect(x) result(res) implicit none class(psb_s_base_multivect_type), intent(inout) :: x real(psb_spk_), allocatable :: res(:,:) integer(psb_ipk_) :: info,m,n m = x%get_nrows() n = x%get_ncols() if (.not.allocated(x%v)) return call x%sync() allocate(res(m,n),stat=info) if (info /= 0) then call psb_errpush(psb_err_alloc_dealloc_,'base_mlv_get_vect') return end if res(1:m,1:n) = x%v(1:m,1:n) end function s_base_mlv_get_vect ! ! Reset all values ! ! !> Function base_mlv_set_scal !! \memberof psb_s_base_multivect_type !! \brief Set all entries !! \param val The value to set !! subroutine s_base_mlv_set_scal(x,val) implicit none class(psb_s_base_multivect_type), intent(inout) :: x real(psb_spk_), intent(in) :: val integer(psb_ipk_) :: info x%v = val end subroutine s_base_mlv_set_scal ! !> Function base_mlv_set_vect !! \memberof psb_s_base_multivect_type !! \brief Set all entries !! \param val(:) The vector to be copied in !! subroutine s_base_mlv_set_vect(x,val) implicit none class(psb_s_base_multivect_type), intent(inout) :: x real(psb_spk_), intent(in) :: val(:,:) integer(psb_ipk_) :: nr, nc integer(psb_ipk_) :: info if (allocated(x%v)) then nr = min(size(x%v,1),size(val,1)) nc = min(size(x%v,2),size(val,2)) x%v(1:nr,1:nc) = val(1:nr,1:nc) else x%v = val end if end subroutine s_base_mlv_set_vect ! ! Dot products ! ! !> Function base_mlv_dot_v !! \memberof psb_s_base_multivect_type !! \brief Dot product by another base_mlv_vector !! \param n Number of entries to be considered !! \param y The other (base_mlv_vect) to be multiplied by !! function s_base_mlv_dot_v(n,x,y) result(res) implicit none class(psb_s_base_multivect_type), intent(inout) :: x, y integer(psb_ipk_), intent(in) :: n real(psb_spk_), allocatable :: res(:) real(psb_spk_), external :: sdot integer(psb_ipk_) :: j,nc if (x%is_dev()) call x%sync() res = szero ! ! Note: this is the base implementation. ! When we get here, we are sure that X is of ! TYPE psb_s_base_mlv_vect (or its class does not care). ! If Y is not, throw the burden on it, implicitly ! calling dot_a ! select type(yy => y) type is (psb_s_base_multivect_type) if (y%is_dev()) call y%sync() nc = min(psb_size(x%v,2_psb_ipk_),psb_size(y%v,2_psb_ipk_)) allocate(res(nc)) do j=1,nc res(j) = sdot(n,x%v(:,j),1,y%v(:,j),1) end do class default res = y%dot(n,x%v) end select end function s_base_mlv_dot_v ! ! Base workhorse is good old BLAS1 ! ! !> Function base_mlv_dot_a !! \memberof psb_s_base_multivect_type !! \brief Dot product by a normal array !! \param n Number of entries to be considered !! \param y(:) The array to be multiplied by !! function s_base_mlv_dot_a(n,x,y) result(res) implicit none class(psb_s_base_multivect_type), intent(inout) :: x real(psb_spk_), intent(in) :: y(:,:) integer(psb_ipk_), intent(in) :: n real(psb_spk_), allocatable :: res(:) real(psb_spk_), external :: sdot integer(psb_ipk_) :: j,nc if (x%is_dev()) call x%sync() nc = min(psb_size(x%v,2_psb_ipk_),size(y,2_psb_ipk_)) allocate(res(nc)) do j=1,nc res(j) = sdot(n,x%v(:,j),1,y(:,j),1) end do end function s_base_mlv_dot_a ! ! AXPBY is invoked via Y, hence the structure below. ! ! ! !> Function base_mlv_axpby_v !! \memberof psb_s_base_multivect_type !! \brief AXPBY by a (base_mlv_vect) y=alpha*x+beta*y !! \param m Number of entries to be considered !! \param alpha scalar alpha !! \param x The class(base_mlv_vect) to be added !! \param beta scalar alpha !! \param info return code !! subroutine s_base_mlv_axpby_v(m,alpha, x, beta, y, info, n) use psi_serial_mod implicit none integer(psb_ipk_), intent(in) :: m class(psb_s_base_multivect_type), intent(inout) :: x class(psb_s_base_multivect_type), intent(inout) :: y real(psb_spk_), intent (in) :: alpha, beta integer(psb_ipk_), intent(out) :: info integer(psb_ipk_), intent(in), optional :: n integer(psb_ipk_) :: nc if (present(n)) then nc = n else nc = min(psb_size(x%v,2_psb_ipk_),psb_size(y%v,2_psb_ipk_)) end if select type(xx => x) type is (psb_s_base_multivect_type) call psb_geaxpby(m,nc,alpha,x%v,beta,y%v,info) class default call y%axpby(m,alpha,x%v,beta,info,n=n) end select end subroutine s_base_mlv_axpby_v ! ! AXPBY is invoked via Y, hence the structure below. ! ! !> Function base_mlv_axpby_a !! \memberof psb_s_base_multivect_type !! \brief AXPBY by a normal array y=alpha*x+beta*y !! \param m Number of entries to be considered !! \param alpha scalar alpha !! \param x(:) The array to be added !! \param beta scalar alpha !! \param info return code !! subroutine s_base_mlv_axpby_a(m,alpha, x, beta, y, info,n) use psi_serial_mod implicit none integer(psb_ipk_), intent(in) :: m real(psb_spk_), intent(in) :: x(:,:) class(psb_s_base_multivect_type), intent(inout) :: y real(psb_spk_), intent (in) :: alpha, beta integer(psb_ipk_), intent(out) :: info integer(psb_ipk_), intent(in), optional :: n integer(psb_ipk_) :: nc if (present(n)) then nc = n else nc = min(size(x,2),psb_size(y%v,2_psb_ipk_)) end if call psb_geaxpby(m,nc,alpha,x,beta,y%v,info) end subroutine s_base_mlv_axpby_a ! ! Multiple variants of two operations: ! Simple multiplication Y(:.:) = X(:,:)*Y(:,:) ! blas-like: Z(:) = alpha*X(:)*Y(:)+beta*Z(:) ! ! Variants expanded according to the dynamic type ! of the involved entities ! ! !> Function base_mlv_mlt_mv !! \memberof psb_s_base_multivect_type !! \brief Multivector entry-by-entry multiply by a base_mlv_multivect y=x*y !! \param x The class(base_mlv_vect) to be multiplied by !! \param info return code !! subroutine s_base_mlv_mlt_mv(x, y, info) use psi_serial_mod implicit none class(psb_s_base_multivect_type), intent(inout) :: x class(psb_s_base_multivect_type), intent(inout) :: y integer(psb_ipk_), intent(out) :: info info = 0 if (x%is_dev()) call x%sync() call y%mlt(x%v,info) end subroutine s_base_mlv_mlt_mv subroutine s_base_mlv_mlt_mv_v(x, y, info) use psi_serial_mod implicit none class(psb_s_base_vect_type), intent(inout) :: x class(psb_s_base_multivect_type), intent(inout) :: y integer(psb_ipk_), intent(out) :: info info = 0 if (x%is_dev()) call x%sync() call y%mlt(x%v,info) end subroutine s_base_mlv_mlt_mv_v ! !> Function base_mlv_mlt_ar1 !! \memberof psb_s_base_multivect_type !! \brief MultiVector entry-by-entry multiply by a rank 1 array y=x*y !! \param x(:) The array to be multiplied by !! \param info return code !! subroutine s_base_mlv_mlt_ar1(x, y, info) use psi_serial_mod implicit none real(psb_spk_), intent(in) :: x(:) class(psb_s_base_multivect_type), intent(inout) :: y integer(psb_ipk_), intent(out) :: info integer(psb_ipk_) :: i, n info = 0 n = min(psb_size(y%v,1_psb_ipk_), size(x)) do i=1, n y%v(i,:) = y%v(i,:)*x(i) end do end subroutine s_base_mlv_mlt_ar1 ! !> Function base_mlv_mlt_ar2 !! \memberof psb_s_base_multivect_type !! \brief MultiVector entry-by-entry multiply by a rank 2 array y=x*y !! \param x(:,:) The array to be multiplied by !! \param info return code !! subroutine s_base_mlv_mlt_ar2(x, y, info) use psi_serial_mod implicit none real(psb_spk_), intent(in) :: x(:,:) class(psb_s_base_multivect_type), intent(inout) :: y integer(psb_ipk_), intent(out) :: info integer(psb_ipk_) :: i, nr,nc info = 0 nr = min(psb_size(y%v,1_psb_ipk_), size(x,1)) nc = min(psb_size(y%v,2_psb_ipk_), size(x,2)) y%v(1:nr,1:nc) = y%v(1:nr,1:nc)*x(1:nr,1:nc) end subroutine s_base_mlv_mlt_ar2 ! !> Function base_mlv_mlt_a_2 !! \memberof psb_s_base_multivect_type !! \brief AXPBY-like Vector entry-by-entry multiply by normal arrays !! z=beta*z+alpha*x*y !! \param alpha !! \param beta !! \param x(:) The array to be multiplied b !! \param y(:) The array to be multiplied by !! \param info return code !! subroutine s_base_mlv_mlt_a_2(alpha,x,y,beta,z,info) use psi_serial_mod implicit none real(psb_spk_), intent(in) :: alpha,beta real(psb_spk_), intent(in) :: y(:,:) real(psb_spk_), intent(in) :: x(:,:) class(psb_s_base_multivect_type), intent(inout) :: z integer(psb_ipk_), intent(out) :: info integer(psb_ipk_) :: i, nr, nc info = 0 nr = min(psb_size(z%v,1_psb_ipk_), size(x,1), size(y,1)) nc = min(psb_size(z%v,2_psb_ipk_), size(x,2), size(y,2)) if (alpha == szero) then if (beta == sone) then return else z%v(1:nr,1:nc) = beta*z%v(1:nr,1:nc) end if else if (alpha == sone) then if (beta == szero) then z%v(1:nr,1:nc) = y(1:nr,1:nc)*x(1:nr,1:nc) else if (beta == sone) then z%v(1:nr,1:nc) = z%v(1:nr,1:nc) + y(1:nr,1:nc)*x(1:nr,1:nc) else z%v(1:nr,1:nc) = beta*z%v(1:nr,1:nc) + y(1:nr,1:nc)*x(1:nr,1:nc) end if else if (alpha == -sone) then if (beta == szero) then z%v(1:nr,1:nc) = -y(1:nr,1:nc)*x(1:nr,1:nc) else if (beta == sone) then z%v(1:nr,1:nc) = z%v(1:nr,1:nc) - y(1:nr,1:nc)*x(1:nr,1:nc) else z%v(1:nr,1:nc) = beta*z%v(1:nr,1:nc) - y(1:nr,1:nc)*x(1:nr,1:nc) end if else if (beta == szero) then z%v(1:nr,1:nc) = alpha*y(1:nr,1:nc)*x(1:nr,1:nc) else if (beta == sone) then z%v(1:nr,1:nc) = z%v(1:nr,1:nc) + alpha*y(1:nr,1:nc)*x(1:nr,1:nc) else z%v(1:nr,1:nc) = beta*z%v(1:nr,1:nc) + alpha*y(1:nr,1:nc)*x(1:nr,1:nc) end if end if end if end subroutine s_base_mlv_mlt_a_2 ! !> Function base_mlv_mlt_v_2 !! \memberof psb_s_base_multivect_type !! \brief AXPBY-like Vector entry-by-entry multiply by class(base_mlv_vect) !! z=beta*z+alpha*x*y !! \param alpha !! \param beta !! \param x The class(base_mlv_vect) to be multiplied b !! \param y The class(base_mlv_vect) to be multiplied by !! \param info return code !! subroutine s_base_mlv_mlt_v_2(alpha,x,y,beta,z,info,conjgx,conjgy) use psi_serial_mod use psb_string_mod implicit none real(psb_spk_), intent(in) :: alpha,beta class(psb_s_base_multivect_type), intent(inout) :: x class(psb_s_base_multivect_type), intent(inout) :: y class(psb_s_base_multivect_type), intent(inout) :: z integer(psb_ipk_), intent(out) :: info character(len=1), intent(in), optional :: conjgx, conjgy integer(psb_ipk_) :: i, n logical :: conjgx_, conjgy_ info = 0 if (x%is_dev()) call x%sync() if (y%is_dev()) call y%sync() if (z%is_dev()) call z%sync() if (.not.psb_s_is_complex_) then call z%mlt(alpha,x%v,y%v,beta,info) else conjgx_=.false. if (present(conjgx)) conjgx_ = (psb_toupper(conjgx)=='C') conjgy_=.false. if (present(conjgy)) conjgy_ = (psb_toupper(conjgy)=='C') if (conjgx_) x%v=(x%v) if (conjgy_) y%v=(y%v) call z%mlt(alpha,x%v,y%v,beta,info) if (conjgx_) x%v=(x%v) if (conjgy_) y%v=(y%v) end if end subroutine s_base_mlv_mlt_v_2 !!$ !!$ subroutine s_base_mlv_mlt_av(alpha,x,y,beta,z,info) !!$ use psi_serial_mod !!$ implicit none !!$ real(psb_spk_), intent(in) :: alpha,beta !!$ real(psb_spk_), intent(in) :: x(:) !!$ class(psb_s_base_multivect_type), intent(inout) :: y !!$ class(psb_s_base_multivect_type), intent(inout) :: z !!$ integer(psb_ipk_), intent(out) :: info !!$ integer(psb_ipk_) :: i, n !!$ !!$ info = 0 !!$ !!$ call z%mlt(alpha,x,y%v,beta,info) !!$ !!$ end subroutine s_base_mlv_mlt_av !!$ !!$ subroutine s_base_mlv_mlt_va(alpha,x,y,beta,z,info) !!$ use psi_serial_mod !!$ implicit none !!$ real(psb_spk_), intent(in) :: alpha,beta !!$ real(psb_spk_), intent(in) :: y(:) !!$ class(psb_s_base_multivect_type), intent(inout) :: x !!$ class(psb_s_base_multivect_type), intent(inout) :: z !!$ integer(psb_ipk_), intent(out) :: info !!$ integer(psb_ipk_) :: i, n !!$ !!$ info = 0 !!$ !!$ call z%mlt(alpha,y,x,beta,info) !!$ !!$ end subroutine s_base_mlv_mlt_va !!$ !!$ ! ! Simple scaling ! !> Function base_mlv_scal !! \memberof psb_s_base_multivect_type !! \brief Scale all entries x = alpha*x !! \param alpha The multiplier !! subroutine s_base_mlv_scal(alpha, x) use psi_serial_mod implicit none class(psb_s_base_multivect_type), intent(inout) :: x real(psb_spk_), intent (in) :: alpha if (x%is_dev()) call x%sync() if (allocated(x%v)) x%v = alpha*x%v end subroutine s_base_mlv_scal ! ! Norms 1, 2 and infinity ! !> Function base_mlv_nrm2 !! \memberof psb_s_base_multivect_type !! \brief 2-norm |x(1:n)|_2 !! \param n how many entries to consider function s_base_mlv_nrm2(n,x) result(res) implicit none class(psb_s_base_multivect_type), intent(inout) :: x integer(psb_ipk_), intent(in) :: n real(psb_spk_), allocatable :: res(:) real(psb_spk_), external :: snrm2 integer(psb_ipk_) :: j, nc if (x%is_dev()) call x%sync() nc = psb_size(x%v,2_psb_ipk_) allocate(res(nc)) do j=1,nc res(j) = snrm2(n,x%v(:,j),1) end do end function s_base_mlv_nrm2 ! !> Function base_mlv_amax !! \memberof psb_s_base_multivect_type !! \brief infinity-norm |x(1:n)|_\infty !! \param n how many entries to consider function s_base_mlv_amax(n,x) result(res) implicit none class(psb_s_base_multivect_type), intent(inout) :: x integer(psb_ipk_), intent(in) :: n real(psb_spk_), allocatable :: res(:) integer(psb_ipk_) :: j, nc if (x%is_dev()) call x%sync() nc = psb_size(x%v,2_psb_ipk_) allocate(res(nc)) do j=1,nc res(j) = maxval(abs(x%v(1:n,j))) end do end function s_base_mlv_amax ! !> Function base_mlv_asum !! \memberof psb_s_base_multivect_type !! \brief 1-norm |x(1:n)|_1 !! \param n how many entries to consider function s_base_mlv_asum(n,x) result(res) implicit none class(psb_s_base_multivect_type), intent(inout) :: x integer(psb_ipk_), intent(in) :: n real(psb_spk_), allocatable :: res(:) integer(psb_ipk_) :: j, nc if (x%is_dev()) call x%sync() nc = psb_size(x%v,2_psb_ipk_) allocate(res(nc)) do j=1,nc res(j) = sum(abs(x%v(1:n,j))) end do end function s_base_mlv_asum ! ! Overwrite with absolute value ! ! !> Function base_absval1 !! \memberof psb_s_base_vect_type !! \brief Set all entries to their respective absolute values. !! subroutine s_base_mlv_absval1(x) implicit none class(psb_s_base_multivect_type), intent(inout) :: x if (allocated(x%v)) then if (x%is_dev()) call x%sync() x%v = abs(x%v) call x%set_host() end if end subroutine s_base_mlv_absval1 subroutine s_base_mlv_absval2(x,y) implicit none class(psb_s_base_multivect_type), intent(inout) :: x class(psb_s_base_multivect_type), intent(inout) :: y integer(psb_ipk_) :: info if (x%is_dev()) call x%sync() if (allocated(x%v)) then call y%axpby(min(x%get_nrows(),y%get_nrows()),sone,x,szero,info) call y%absval() end if end subroutine s_base_mlv_absval2 function s_base_mlv_use_buffer() result(res) implicit none logical :: res res = .true. end function s_base_mlv_use_buffer subroutine s_base_mlv_new_buffer(n,x,info) use psb_realloc_mod implicit none class(psb_s_base_multivect_type), intent(inout) :: x integer(psb_ipk_), intent(in) :: n integer(psb_ipk_), intent(out) :: info integer(psb_ipk_) :: nc nc = x%get_ncols() call psb_realloc(n*nc,x%combuf,info) end subroutine s_base_mlv_new_buffer subroutine s_base_mlv_new_comid(n,x,info) use psb_realloc_mod implicit none class(psb_s_base_multivect_type), intent(inout) :: x integer(psb_ipk_), intent(in) :: n integer(psb_ipk_), intent(out) :: info call psb_realloc(n,2_psb_ipk_,x%comid,info) end subroutine s_base_mlv_new_comid subroutine s_base_mlv_maybe_free_buffer(x,info) use psb_realloc_mod implicit none class(psb_s_base_multivect_type), intent(inout) :: x integer(psb_ipk_), intent(out) :: info info = 0 if (psb_get_maybe_free_buffer())& & call x%free_buffer(info) end subroutine s_base_mlv_maybe_free_buffer subroutine s_base_mlv_free_buffer(x,info) use psb_realloc_mod implicit none class(psb_s_base_multivect_type), intent(inout) :: x integer(psb_ipk_), intent(out) :: info if (allocated(x%combuf)) & & deallocate(x%combuf,stat=info) end subroutine s_base_mlv_free_buffer subroutine s_base_mlv_free_comid(x,info) use psb_realloc_mod implicit none class(psb_s_base_multivect_type), intent(inout) :: x integer(psb_ipk_), intent(out) :: info if (allocated(x%comid)) & & deallocate(x%comid,stat=info) end subroutine s_base_mlv_free_comid ! ! Gather: Y = beta * Y + alpha * X(IDX(:)) ! ! !> Function base_mlv_gthab !! \memberof psb_s_base_multivect_type !! \brief gather into an array !! Y = beta * Y + alpha * X(IDX(:)) !! \param n how many entries to consider !! \param idx(:) indices !! \param alpha !! \param beta subroutine s_base_mlv_gthab(n,idx,alpha,x,beta,y) use psi_serial_mod implicit none integer(psb_ipk_) :: n, idx(:) real(psb_spk_) :: alpha, beta, y(:) class(psb_s_base_multivect_type) :: x integer(psb_ipk_) :: nc if (x%is_dev()) call x%sync() if (.not.allocated(x%v)) then return end if nc = psb_size(x%v,2_psb_ipk_) call psi_gth(n,nc,idx,alpha,x%v,beta,y) end subroutine s_base_mlv_gthab ! ! shortcut alpha=1 beta=0 ! !> Function base_mlv_gthzv !! \memberof psb_s_base_multivect_type !! \brief gather into an array special alpha=1 beta=0 !! Y = X(IDX(:)) !! \param n how many entries to consider !! \param idx(:) indices subroutine s_base_mlv_gthzv_x(i,n,idx,x,y) use psi_serial_mod implicit none integer(psb_ipk_) :: i,n class(psb_i_base_vect_type) :: idx real(psb_spk_) :: y(:) class(psb_s_base_multivect_type) :: x if (x%is_dev()) call x%sync() call x%gth(n,idx%v(i:),y) end subroutine s_base_mlv_gthzv_x ! ! shortcut alpha=1 beta=0 ! !> Function base_mlv_gthzv !! \memberof psb_s_base_multivect_type !! \brief gather into an array special alpha=1 beta=0 !! Y = X(IDX(:)) !! \param n how many entries to consider !! \param idx(:) indices subroutine s_base_mlv_gthzv(n,idx,x,y) use psi_serial_mod implicit none integer(psb_ipk_) :: n, idx(:) real(psb_spk_) :: y(:) class(psb_s_base_multivect_type) :: x integer(psb_ipk_) :: nc if (x%is_dev()) call x%sync() if (.not.allocated(x%v)) then return end if nc = psb_size(x%v,2_psb_ipk_) call psi_gth(n,nc,idx,x%v,y) end subroutine s_base_mlv_gthzv ! ! shortcut alpha=1 beta=0 ! !> Function base_mlv_gthzv !! \memberof psb_s_base_multivect_type !! \brief gather into an array special alpha=1 beta=0 !! Y = X(IDX(:)) !! \param n how many entries to consider !! \param idx(:) indices subroutine s_base_mlv_gthzm(n,idx,x,y) use psi_serial_mod implicit none integer(psb_ipk_) :: n, idx(:) real(psb_spk_) :: y(:,:) class(psb_s_base_multivect_type) :: x integer(psb_ipk_) :: nc if (x%is_dev()) call x%sync() if (.not.allocated(x%v)) then return end if nc = psb_size(x%v,2_psb_ipk_) call psi_gth(n,nc,idx,x%v,y) end subroutine s_base_mlv_gthzm ! ! New comm internals impl. ! subroutine s_base_mlv_gthzbuf(i,ixb,n,idx,x) use psi_serial_mod implicit none integer(psb_ipk_) :: i, ixb, n class(psb_i_base_vect_type) :: idx class(psb_s_base_multivect_type) :: x integer(psb_ipk_) :: nc if (.not.allocated(x%combuf)) then call psb_errpush(psb_err_alloc_dealloc_,'gthzbuf') return end if if (idx%is_dev()) call idx%sync() if (x%is_dev()) call x%sync() nc = x%get_ncols() call x%gth(n,idx%v(i:),x%combuf(ixb:)) end subroutine s_base_mlv_gthzbuf ! ! Scatter: ! Y(IDX(:),:) = beta*Y(IDX(:),:) + X(:) ! ! !> Function base_mlv_sctb !! \memberof psb_s_base_multivect_type !! \brief scatter into a class(base_mlv_vect) !! Y(IDX(:)) = beta * Y(IDX(:)) + X(:) !! \param n how many entries to consider !! \param idx(:) indices !! \param beta !! \param x(:) subroutine s_base_mlv_sctb(n,idx,x,beta,y) use psi_serial_mod implicit none integer(psb_ipk_) :: n, idx(:) real(psb_spk_) :: beta, x(:) class(psb_s_base_multivect_type) :: y integer(psb_ipk_) :: nc if (y%is_dev()) call y%sync() nc = psb_size(y%v,2_psb_ipk_) call psi_sct(n,nc,idx,x,beta,y%v) call y%set_host() end subroutine s_base_mlv_sctb subroutine s_base_mlv_sctbr2(n,idx,x,beta,y) use psi_serial_mod implicit none integer(psb_ipk_) :: n, idx(:) real(psb_spk_) :: beta, x(:,:) class(psb_s_base_multivect_type) :: y integer(psb_ipk_) :: nc if (y%is_dev()) call y%sync() nc = y%get_ncols() call psi_sct(n,nc,idx,x,beta,y%v) call y%set_host() end subroutine s_base_mlv_sctbr2 subroutine s_base_mlv_sctb_x(i,n,idx,x,beta,y) use psi_serial_mod implicit none integer(psb_ipk_) :: i, n class(psb_i_base_vect_type) :: idx real( psb_spk_) :: beta, x(:) class(psb_s_base_multivect_type) :: y call y%sct(n,idx%v(i:),x,beta) end subroutine s_base_mlv_sctb_x subroutine s_base_mlv_sctb_buf(i,iyb,n,idx,beta,y) use psi_serial_mod implicit none integer(psb_ipk_) :: i, iyb, n class(psb_i_base_vect_type) :: idx real(psb_spk_) :: beta class(psb_s_base_multivect_type) :: y integer(psb_ipk_) :: nc if (.not.allocated(y%combuf)) then call psb_errpush(psb_err_alloc_dealloc_,'sctb_buf') return end if if (y%is_dev()) call y%sync() if (idx%is_dev()) call idx%sync() nc = y%get_ncols() call y%sct(n,idx%v(i:),y%combuf(iyb:),beta) call y%set_host() end subroutine s_base_mlv_sctb_buf ! !> Function base_device_wait: !! \memberof psb_s_base_vect_type !! \brief device_wait: base version is a no-op. !! ! subroutine s_base_mlv_device_wait() implicit none end subroutine s_base_mlv_device_wait end module psb_s_base_multivect_mod