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1 Introduction

The PSBLAS library, developed with the aim to facilitate the parallelization of
computationally intensive scientific applications, is designed to address parallel
implementation of iterative solvers for sparse linear systems through the dis-
tributed memory paradigm. It includes routines for multiplying sparse matrices
by dense matrices, solving block diagonal systems with triangular diagonal en-
tries, preprocessing sparse matrices, and contains additional routines for dense
matrix operations. The current implementation of PSBLAS addresses a dis-
tributed memory execution model operating with message passing.

The PSBLAS library version 3 is implemented in the Fortran 2003 [17] pro-
gramming language, with reuse and/or adaptation of existing Fortran 77 and
Fortran 95 software, plus a handful of C routines.

The use of Fortran 2003 offers a number of advantages over Fortran 95,
mostly in the handling of requirements for evolution and adaptation of the
library to new computing architectures and integration of new algorithms. For
a detailed discussion of our design see [11]; other works discussing advanced
programming in Fortran 2003 include [1, 18]; sufficient support for Fortran 2003
is now available from many compilers, including the GNU Fortran compiler from
the Free Software Foundation (as of version 4.6).

Previous approaches have been based on mixing Fortran 95, with its support
for object-based design, with other languages; these have been advocated by a
number of authors, e.g. [16]. Moreover, the Fortran 95 facilities for dynamic
memory management and interface overloading greatly enhance the usability
of the PSBLAS subroutines. In this way, the library can take care of runtime
memory requirements that are quite difficult or even impossible to predict at
implementation or compilation time.

The presentation of the PSBLAS library follows the general structure of the
proposal for serial Sparse BLAS [8, 9], which in its turn is based on the proposal
for BLAS on dense matrices [15, 5, 6].

The applicability of sparse iterative solvers to many different areas causes
some terminology problems because the same concept may be denoted through
different names depending on the application area. The PSBLAS features pre-
sented in this document will be discussed referring to a finite difference dis-
cretization of a Partial Differential Equation (PDE). However, the scope of the
library is wider than that: for example, it can be applied to finite element dis-
cretizations of PDEs, and even to different classes of problems such as nonlinear
optimization, for example in optimal control problems.

The design of a solver for sparse linear systems is driven by many con-
flicting objectives, such as limiting occupation of storage resources, exploiting
regularities in the input data, exploiting hardware characteristics of the par-
allel platform. To achieve an optimal communication to computation ratio on
distributed memory machines it is essential to keep the data locality as high
as possible; this can be done through an appropriate data allocation strategy.
The choice of the preconditioner is another very important factor that affects
efficiency of the implemented application. Optimal data distribution require-
ments for a given preconditioner may conflict with distribution requirements
of the rest of the solver. Finding the optimal trade-off may be very difficult
because it is application dependent. Possible solutions to these problems and
other important inputs to the development of the PSBLAS software package



have come from an established experience in applying the PSBLAS solvers to
computational fluid dynamics applications.

2 General overview

The PSBLAS library is designed to handle the implementation of iterative
solvers for sparse linear systems on distributed memory parallel computers.
The system coefficient matrix A must be square; it may be real or complex,
nonsymmetric, and its sparsity pattern needs not to be symmetric. The serial
computation parts are based on the serial sparse BLAS, so that any extension
made to the data structures of the serial kernels is available to the parallel ver-
sion. The overall design and parallelization strategy have been influenced by
the structure of the ScaLAPACK parallel library. The layered structure of the
PSBLAS library is shown in figure 1; lower layers of the library indicate an
encapsulation relationship with upper layers. The ongoing discussion focuses
on the Fortran 2003 layer immediately below the application layer. The serial
parts of the computation on each process are executed through calls to the serial
sparse BLAS subroutines. In a similar way, the inter-process message exchanges
are encapsulated in an applicaiton layer that has been strongly inspired by the
Basic Linear Algebra Communication Subroutines (BLACS) library [7]. Usually
there is no need to deal directly with MPI; however, in some cases, MPI routines
are used directly to improve efficiency. For further details on our communication

layer see Sec. 7.
Application

Fortran 2003

Interface
Serial Sparse essage Passing
BLAS MPI

Figure 1: PSBLAS library components hierarchy.

The type of linear system matrices that we address typically arise in the
numerical solution of PDEs; in such a context, it is necessary to pay special
attention to the structure of the problem from which the application originates.
The nonzero pattern of a matrix arising from the discretization of a PDE is in-
fluenced by various factors, such as the shape of the domain, the discretization
strategy, and the equation/unknown ordering. The matrix itself can be inter-
preted as the adjacency matrix of the graph associated with the discretization
mesh.

The distribution of the coefficient matrix for the linear system is based on the
“owner computes” rule: the variable associated to each mesh point is assigned



to a process that will own the corresponding row in the coefficient matrix and
will carry out all related computations. This allocation strategy is equivalent to
a partition of the discretization mesh into sub-domains. Our library supports
any distribution that keeps together the coefficients of each matrix row; there
are no other constraints on the variable assignment. This choice is consistent
with simple data distributions such as CYCLIC(N) and BLOCK, as well as com-
pletely arbitrary assignments of equation indices to processes. In particular it
is consistent with the usage of graph partitioning tools commonly available in
the literature, e.g. METIS [14]. Dense vectors conform to sparse matrices, that
is, the entries of a vector follow the same distribution of the matrix rows.

We assume that the sparse matrix is built in parallel, where each process
generates its own portion. We never require that the entire matrix be available
on a single node. However, it is possible to hold the entire matrix in one process
and distribute it explicitly', even though the resulting memory bottleneck would
make this option unattractive in most cases.

2.1 Basic Nomenclature

Our computational model implies that the data allocation on the parallel dis-
tributed memory machine is guided by the structure of the physical model, and
specifically by the discretization mesh of the PDE.

Each point of the discretization mesh will have (at least) one associated
equation/variable, and therefore one index. We say that point ¢ depends on
point j if the equation for a variable associated with ¢ contains a term in 7,
or equivalently if a;; # 0. After the partition of the discretization mesh into
sub-domains assigned to the parallel processes, we classify the points of a given
sub-domain as following.

Internal. An internal point of a given domain depends only on points of the
same domain. If all points of a domain are assigned to one process, then a
computational step (e.g., a matrix-vector product) of the equations asso-
ciated with the internal points requires no data items from other domains
and no communications.

Boundary. A point of a given domain is a boundary point if it depends on
points belonging to other domains.

Halo. A halo point for a given domain is a point belonging to another do-
main such that there is a boundary point which depends on it. Whenever
performing a computational step, such as a matrix-vector product, the
values associated with halo points are requested from other domains. A
boundary point of a given domain is usually a halo point for some other
domain?; therefore the cardinality of the boundary points set denotes the
amount of data sent to other domains.

1In our prototype implementation we provide sample scatter/gather routines.

2This is the normal situation when the pattern of the sparse matrix is symmetric, which is
equivalent to say that the interaction between two variables is reciprocal. If the matrix pattern
is non-symmetric we may have one-way interactions, and these could cause a situation in which
a boundary point is not a halo point for its neighbour.



Overlap. An overlap point is a boundary point assigned to multiple domains.
Any operation that involves an overlap point has to be replicated for each
assignment.

Overlap points do not usually exist in the basic data distributions; however they
are a feature of Domain Decomposition Schwarz preconditioners which are the
subject of related research work [4, 3].

We denote the sets of internal, boundary and halo points for a given subdo-
main by Z, B and ‘H. Each subdomain is assigned to one process; each process
usually owns one subdomain, although the user may choose to assign more than
one subdomain to a process. If each process i owns one subdomain, the number
of rows in the local sparse matrix is |Z;| + |B;|, and the number of local columns
(i.e. those for which there exists at least one non-zero entry in the local rows)
is ‘IZ| + |BZ| + ‘H1|

® Internal Domain 1
) Boundary
® Halo

Figure 2: Point classfication.

This classification of mesh points guides the naming scheme that we adopted
in the library internals and in the data structures. We explicitly note that
“Halo” points are also often called “ghost” points in the literature.

2.2 Library contents
The PSBLAS library consists of various classes of subroutines:

Computational routines comprising:

e Sparse matrix by dense matrix product;

Sparse triangular systems solution for block diagonal matrices;

Vector and matrix norms;

e Dense matrix sums;

Dot products.

Communication routines handling halo and overlap communications;



Data management and auxiliary routines including:

e Parallel environment management

e Communication descriptors allocation;

e Dense and sparse matrix allocation;

e Dense and sparse matrix build and update;

e Sparse matrix and data distribution preprocessing.
Preconditioner routines
Iterative methods a subset of Krylov subspace iterative methods

The following naming scheme has been adopted for all the symbols internally
defined in the PSBLAS software package:

e all symbols (i.e. subroutine names, data types...) are prefixed by psb_
e all data type names are suffixed by _type
e all constants are suffixed by _

e all top-level subroutine names follow the rule psb_xxname where xx can
be either:

— ge: the routine is related to dense data,
— sp: the routine is related to sparse data,

— cd: the routine is related to communication descriptor (see 3).
For example the psb_geins, psb_spins and psb_cdins perform the same
action (see 6) on dense matrices, sparse matrices and communication de-
scriptors respectively. Interface overloading allows the usage of the same

subroutine names for both real and complex data.

In the description of the subroutines, arguments or argument entries are classi-

fied as:

global For input arguments, the value must be the same on all processes partici-
pating in the subroutine call; for output arguments the value is guaranteed
to be the same.

local Each process has its own value(s) independently.

To finish our general description, we define a version string with the constant

psb_version_string_

whose current value is 3.0.0



2.3 Application structure

The main underlying principle of the PSBLAS library is that the library objects
are created and exist with reference to a discretized space to which there corre-
sponds an index space and a matrix sparsity pattern. As an example, consider
a cell-centered finite-volume discretization of the Navier-Stokes equations on a
simulation domain; the index space 1...n is isomorphic to the set of cell cen-
ters, whereas the pattern of the associated linear system matrix is isomorphic
to the adjacency graph imposed on the discretization mesh by the discretization
stencil.

Thus the first order of business is to establish an index space, and this is
done with a call to psb_cdall in which we specify the size of the index space
n and the allocation of the elements of the index space to the various processes
making up the MPI (virtual) parallel machine.

The index space is partitioned among processes, and this creates a mapping
from the “global” numbering 1...n to a numbering “local” to each process; each
process ¢ will own a certain subset 1. .. nrow,, each element of which corresponds
to a certain element of 1...n. The user does not set explicitly this mapping;
when the application needs to indicate to which element of the index space a
certain item is related, such as the row and column index of a matrix coefficient,
it does so in the “global” numbering, and the library will translate into the
appropriate “local” numbering.

For a given index space 1...n there are many possible associated topologies,
i.e. many different discretization stencils; thus the description of the index space
is not completed until the user has defined a sparsity pattern, either explicitly
through psb_cdins or implicitly through psb_spins. The descriptor is finalized
with a call to psb_cdasb and a sparse matrix with a call to psb_spasb. After
psb_cdasb each process ¢ will have defined a set of “halo” (or “ghost”) indices
nrow, +1... Neol, s denoting elements of the index space that are not assigned
to process i; however the variables associated with them are needed to complete
computations associated with the sparse matrix A, and thus they have to be
fetched from (neighbouring) processes. The descriptor of the index space is
built exactly for the purpose of properly sequencing the communication steps
required to achieve this objective.

A simple application structure will walk through the index space allocation,
matrix/vector creation and linear system solution as follows:

1. Initialize parallel environment with psb_init
2. Initialize index space with psb_cdall
3. Allocate sparse matrix and dense vectors with psb_spall and psb_geall

4. Loop over all local rows, generate matrix and vector entries, and insert
them with psb_spins and psb_geins

5. Assemble the various entities:

(a) psb_cdasb
(b) psb_spasb
(c) psb_geasb



6. Choose the preconditioner to be used with psb_precset and build it with
psb_precbld

7. Call the iterative method of choice, e.g. psb_bicgstab

This is the structure of the sample program test/pargen/ppde.£90.
For a simulation in which the same discretization mesh is used over multiple
time steps, the following structure may be more appropriate:

1. Initialize parallel environment with psb_init
2. Initialize index space with psb_cdall

3. Loop over the topology of the discretization mesh and build the descriptor
with psb_cdins

4. Assemble the descriptor with psb_cdasb
5. Allocate the sparse matrices and dense vectors with psb_spall and psb_geall
6. Loop over the time steps:

(a) If after first time step, reinitialize the sparse matrix with psb_sprn;
also zero out the dense vectors;

(b) Loop over the mesh, generate the coefficients and insert/update them
with psb_spins and psb_geins

(c) Assemble with psb_spasb and psb_geasb
(d) Choose and build preconditioner with psb_precset and psb_precbld

(e) Call the iterative method of choice, e.g. psb_bicgstab

The insertion routines will be called as many times as needed; they only need
to be called on the data that is actually allocated to the current process, i.e.
each process generates its own data.

In principle there is no specific order in the calls to psb_spins, nor is there
a requirement to build a matrix row in its entirety before calling the routine;
this allows the application programmer to walk through the discretization mesh
element by element, generating the main part of a given matrix row but also
contributions to the rows corresponding to neighbouring elements.

From a functional point of view it is even possible to execute one call for
each nonzero coefficient; however this would have a substantial computational
overhead. It is therefore advisable to pack a certain amount of data into each call
to the insertion routine, say touching on a few tens of rows; the best performng
value would depend on both the architecture of the computer being used and
on the problem structure. At the opposite extreme, it would be possible to
generate the entire part of a coefficient matrix residing on a process and pass it
in a single call to psb_spins; this, however, would entail a doubling of memory
occupation, and thus would be almost always far from optimal.



2.4 Programming model

The PSBLAS librarary is based on the Single Program Multiple Data (SPMD)
programming model: each process participating in the computation performs
the same actions on a chunk of data. Parallelism is thus data-driven.

Because of this structure, many subroutines coordinate their action across
the various processes, thus providing an implicit synchronization point, and
therefore must be called simultaneously by all processes participating in the
computation. This is certainly true for the data allocation and assembly rou-
tines, for all the computational routines and for some of the tools routines.

However there are many cases where no synchronization, and indeed no
communication among processes, is implied; for instance, all the routines in
sec. 3.5 are only acting on the local data structures, and thus may be called
independently. The most important case is that of the coefficient insertion
routines: since the number of coefficients in the sparse and dense matrices varies
among the processors, and since the user is free to choose an arbitrary order in
builiding the matrix entries, these routines cannot imply a synchronization.

Throughout this user’s guide each subroutine will be clearly indicated as:

Synchronous: must be called simultaneously by all the processes in the rele-
vant communication context;

Asynchronous: may be called in a totally independent manner.



3 Data Structures and Classes

In this chapter we illustrate the data structures used for definition of routines
interfaces. They include data structures for sparse matrices, communication
descriptors and preconditioners.

All the data types and the basic subroutine interfaces related to descriptors
and sparse matrices are defined in the module psb_base_mod; this will have
to be included by every user subroutine that makes use of the library. The
preconditioners are defined in the module psb_prec_mod

Real and complex data types are parametrized with a kind type defined in
the library as follows:

psb_spk_ Kind parameter for short precision real and complex data; corre-
sponds to a REAL declaration and is normally 4 bytes.

psb_dpk_ Kind parameter for long precision real and complex data; corre-
sponds to a DOUBLE PRECISION declaration and is normally 8 bytes.

psb_long_int_k_ Kind parameter for long integers, used by the psb_sizeof
utility.

Together with the classes attributes we also discuss their methods. Most meth-
ods detailed here only act on the local variable, i.e. their action is purely local
and asynchronous unless otherwise stated. The list of methods here is not com-
pletely exhaustive; many methods, especially those that alter the contents of
the various objects, are usually not needed by the end-user, and therefore are
described in the developer’s documentation.

3.1 Descriptor data structure

All the general matrix informations and elements to be exchanged among pro-
cesses are stored within a data structure of the type psb_desc_type. Every
structure of this type is associated with a discretization pattern and enables
data communications and other operations that are necessary for implementing
the various algorithms of interest to us.

The data structure itself psb_desc_type can be treated as an opaque object
handled via the tools routines of Sec. 6 and 3.5; nevertheless we include here a
description for the curious reader.

First we describe the psb_indx_map type. This is a data structure that keeps
track of a certain number of basic issues such as:

e The value of the communication/MPI context;

e The number of indices in the index space, i.e. global number of rows and
columns of a sparse matrix;

e The local set of indices, including;:

— The number of local indices (and local rows);
— The number of halo indices (and therefore local columns);

— The global indices corresponding to the local ones.



There are many different schemes for storing these data; therefore there are a
number of types extending the base one, and the descriptor structure holds a
polymorphic object whose dynamic type can be any of the extended types. The
methods associated with this data type answer the following queries:

e For a given set of local indices, find the corresponding indices in the global
numbering;

e For a given set of global indices, find the corresponding indices in the local
numbering, if any, or return an invalid

e Add a global index to the set of halo indices;
e Find the process owner of each member of a set of global indices.

All methods but the last are purely local; the last method potentially requires
communication among processes, and thus is a synchronous method. The choice
of a specific dynamic type for the index map is made at the time the descriptor
is initially allocated, according to the mode of initialization (see also 6).

The descriptor contents are as follows:

indxmap A polymorphic variable of a type that is any extension of the indx_map
type described above.

halo_index A list of the halo and boundary elements for the current process
to be exchanged with other processes; for each processes with which it is
necessary to communicate:

Process identifier;

Number of points to be received;

Indices of points to be received;

Number of points to be sent;

Bl o

Indices of points to be sent;

The list may contain an arbitrary number of groups; its end is marked by
a-1.
Specified as: an allocatable integer array of rank one.

ext_index A list of element indices to be exchanged to implement the mapping
between a base descriptor and a descriptor with overlap.

ovrlap_index A list of the overlap elements for the current process, organized
in groups like the previous vector:

Process identifier;

Number of points to be received;

Indices of points to be received;

Number of points to be sent;

AN

Indices of points to be sent;

10



The list may contain an arbitrary number of groups; its end is marked by
a-1.
Specified as: an allocatable integer array of rank one.

ovr_mst_idx A list to retrieve the value of each overlap element from the re-
spective master process.
Specified as: an allocatable integer array of rank one.

ovrlap_elem For all overlap points belonging to th ecurrent process:

1. Overlap point index;
2. Number of processes sharing that overlap points;

3. Index of a “master” process:
Specified as: an allocatable integer array of rank two.

bnd_elem A list of all boundary points, i.e. points that have a connection with
other processes.

The Fortran 2003 declaration for psb_desc_type structures is as follows:

type psb_desc_type

class(psb_indx_map), allocatable :: indxmap
integer, allocatable :: halo_index(:)
integer, allocatable :: ext_index(:)
integer, allocatable :: ovrlap_index(:)
integer, allocatable :: ovrlap_elem(:,:)
integer, allocatable :: ovr_mst_idx(:)
integer, allocatable :: bnd_elem(:)

end type psb_desc_type

Figure 3: The PSBLAS defined data type that contains the communication
descriptor.

A communication descriptor associated with a sparse matrix has a state,
which can take the following values:

Build: State entered after the first allocation, and before the first assembly; in
this state it is possible to add communication requirements among different
processes.

Assembled: State entered after the assembly; computations using the associ-
ated sparse matrix, such as matrix-vector products, are only possible in
this state.

3.1.1 Methods
get_local rows — Get number of local rows

nr = desclget_local_rows()

11



Type: Asynchronous.
On Entry
desc the communication descriptor.
Scope: local.
On Return
Function value The number of local rows, i.e. the number of rows owned

by the current process; as explained in 1, it is equal to |Z;| + |B;|. The
returned value is specific to the calling process.

get_local_cols — Get number of local cols

nc = desclget_local_cols()

On Entry

Type: Asynchronous.

desc the communication descriptor.
Scope: local.

On Return

Function value The number of local cols, i.e. the number of indices used by
the current process, including both local and halo indices; as explained

in 1, it is equal to |Z;| 4+ |B;| + |H;|. The returned value is specific to the
calling process.

get_global_rows — Get number of global rows

nr = desclget_global_rows()

On Entry

Type: Asynchronous.

desc the communication descriptor.
Scope: local.

On Return

Function value The number of global rows, i.e. the size of the global index
space.

12



get_global_cols — Get number of global cols

nr = desclget_global_cols()

Type: Asynchronous.
On Entry

desc the communication descriptor.
Scope: local.

On Return

Function value The number of global cols; usually this is equal to the number
of global rows.

get_context—Get communication context

ictxt = desclget_context()

Type: Asynchronous.
On Entry

desc the communication descriptor.
Scope: local.

On Return

Function value The communication context.
psb_cd_get_large_threshold — Get threshold for index mapping switch
ith = psb_cd_get_large_threshold()

Type: Asynchronous.
On Return

Function value The current value for the size threshold.

psb_cd_set_large_threshold — Set threshold for index mapping switch

call psb_cd_set_large_threshold(ith)

Type: Synchronous.

On Entry

13



ith the new threshold for communication descriptors.
Scope: global.
Type: required.
Intent: in.
Specified as: an integer value greater than zero.

Note: the threshold value is only queried by the library at the time a call
to psb_cdall is executed, therefore changing the threshold has no effect on
communication descriptors that have already been initialized. Moreover the
threshold must have the same value on all processes.

3.1.2 Named Constants

psb_none_ Generic no-op;

psb_nohalo_ Do not fetch halo elements;

psb_halo_ Fetch halo elements from neighbouring processes;
psb_sum_ Sum overlapped elements

psb_avg_ Average overlapped elements

psb_comm_halo_ Exchange data based on the halo_index list;
psb_comm _ext_ Exchange data based on the ext_index list;
psb_comm _ovr_ Exchange data based on the ovrlap_index list;

psb_comm_mov_ Exchange data based on the ovr_mst_idx list;

3.2 Sparse Matrix class

The psb_spmat_type class contains all information about the local portion of
the sparse matrix and its storage mode. Its design is based on the STATE design
pattern [13] as detailed in [11]; the type declaration is shown in figure 4 where
T is a placeholder for the data type and precision variants

S Single precision real;

D Double precision real;

C Single precision complex;
Z Double precision complex.

The actual data is contained in the polymorphic component a%a; its specific
layout can be chosen dynamically among the predefined types, or an entirely
new storage layout can be implemented and passed to the library at runtime via
the psb_spasb routine. The following very common formats are precompiled in
PSBLAS and thus are always available:

psb_T _coo_sparse_mat Coordinate storage;

psb_T _csr_sparse_mat Compressed storage by rows;

14



type :: psb_Tspmat_type
class(psb_T_base_sparse_mat), allocatable :: a

end type psb_Tspmat_type

Figure 4: The PSBLAS defined data type that contains a sparse matrix.

psb_T _csc_sparse_mat Compressed storage by columuns;

The inner sparse matrix has an associated state, which can take the following
values:

Build: State entered after the first allocation, and before the first assembly; in
this state it is possible to add nonzero entries.

Assembled: State entered after the assembly; computations using the sparse
matrix, such as matrix-vector products, are only possible in this state;

Update: State entered after a reinitalization; this is used to handle applications
in which the same sparsity pattern is used multiple times with different
coefficients. In this state it is only possible to enter coefficients for already
existing nonzero entries.

The only storage variant supporting the build state is COQO; all other variants
are obtained by conversion to/from it.

3.2.1 Methods
get_nrows — Get number of rows in a sparse matrix

nr = ajget_nrows()

Type: Asynchronous.
On Entry

a the sparse matrix
Scope: local

On Return
Function value The number of rows of sparse matrix a.

get_ncols — Get number of columns in a sparse matrix

nc = ajget_ncols()

Type: Asynchronous.
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On Entry

a the sparse matrix
Scope: local

On Return

Function value The number of columns of sparse matrix a.

get_nnzeros — Get number of nonzero elements in a sparse matrix

nz = ajget_nnzeros()
Type: Asynchronous.
On Entry
a the sparse matrix
Scope: local

On Return
Function value The number of nonzero elements stored in sparse matrix a.
Notes

1. The function value is specific to the storage format of matrix a; some

storage formats employ padding, thus the returned value for the same
matrix may be different for different storage choices.

get_size — Get maximum number of nonzero elements in a sparse
matrix

maxnz = ajget_size()
Type: Asynchronous.
On Entry

a the sparse matrix
Scope: local

On Return

Function value The maximum number of nonzero elements that can be stored
in sparse matrix a using its current memory allocation.
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sizeof — Get memory occupation in bytes of a sparse matrix

memory_size = ajsizeof ()
Type: Asynchronous.
On Entry
a the sparse matrix
Scope: local
On Return

Function value The memory occupation in bytes.

get_fmt — Short description of the dynamic type

write(*,*) ajget_fmt()
Type: Asynchronous.
On Entry

a the sparse matrix
Scope: local

On Return

Function value A short string describing the dynamic type of the matrix.
Predefined values include NULL, C00, CSR and CSC.

is_bld, is_upd, is_asb — Status check

if (a%is_bld()) then
if (a%is_upd()) then
if (a%is_asb()) then
Type: Asynchronous.
On Entry

a the sparse matrix
Scope: local

On Return

Function value A logical value indicating whether the matrix is in the Build,
Update or Assembled state, respectively.
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3.2.2 Named Constants

psb_dupl_ovwrt_ Duplicate coefficients should be overwritten (i.e. ignore du-
plications)

psb_dupl_add_ Duplicate coefficients should be added;

psb_dupl_err_ Duplicate coefficients should trigger an error conditino

psb_upd_dfit_ Default update strategy for matrix coefficients;

psb_upd_srch_ Update strategy based on search into the data structure;

psb_upd_perm_ Update strategy based on additional permutation data (see
tools routine description).

3.3 Dense Vector Data Structure

The psb_vect_type data structure encapsulates the dense vectors in a way sim-
ilar to sparse matrices. The user will not, in general, access the vector compo-
nents directly, but rather via the routines of sec. 6. Among other simple things,
we define here an extraction method that can be used to get a full copy of the
part of the vector stored on the local process.

The type declaration is shown in figure 5 where T is a placeholder for the
data type and precision variants

I Integer;

S Single precision real;

D Double precision real;

C Single precision complex;
Z, Double precision complex.

The actual data is contained in the polymorphic component a’a; its specific
layout can be chosen dynamically among the predefined types, or an entirely
new storage layout can be implemented and passed to the library at runtime
via the psb_spasb routine.

type psb_T_base_vect_type
TYPE(KIND_), allocatable :: v(:)
end type psb_T_base_vect_type

type psb_T_vect_type
class(psb_T_base_vect_type), allocatable :: v
end type psb_T_vect_type

Figure 5: The PSBLAS defined data type that contains a dense vector..
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3.3.1 Methods
get_nrows — Get number of rows in a dense vector

nr = viget_nrows()

Type: Asynchronous.

On Entry

v the dense vector
Scope: local

On Return

Function value The number of rows of sparse matrix a.

get_ncols — Get number of columns in a sparse matrix
sizeof — Get memory occupation in bytes of a dense vector matrix

memory_size = visizeof ()
Type: Asynchronous.
On Entry

v the dense vector
Scope: local

On Return

Function value The memory occupation in bytes.
get_vect — Get a copy of the vector contents
extv = viget_vect()

Type: Asynchronous.

On Entry

v the dense vector
Scope: local

On Return

Function value An allocatable array holding a copy of the dense vector con-
tents.
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3.4 Preconditioner data structure

Our base library offers support for simple well known preconditioners like Di-
agonal Scaling or Block Jacobi with incomplete factorization ILU(0).

A preconditioner is held in the psb_prec_type data structure reported in
figure 6. The psb_prec_type data type may contain a simple preconditioning
matrix with the associated communication descriptor.The values contained in
the iprcparm and rprcparm define tha type of preconditioner along with all the
parameters related to it; thus, iprcparm and rprcparm define how the other
records have to be interpreted. This data structure is the basis of more complex
preconditioning strategies, which are the subject of further research.

3.5 Data structure Methods
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type psb_sprec_type

type (psb_sspmat_type), allocatable ::
1o d(:)

: desc_data

: iprcparm(:)

:: rprcparm(:)

:: perm(:), invperm(:)
:: prec, base_prec

real (psb_spk_), allocatable
type (psb_desc_type)
integer, allocatable
real (psb_spk_), allocatable
integer, allocatable
integer

end type psb_sprec_type

type psb_dprec_type

type (psb_dspmat_type), allocatable ::
1o d(:)

:: desc_data

:: iprcparm(:)

:: rprcparm(:)

: perm(:), invperm(:)
: prec, base_prec

real(psb_dpk_), allocatable
type (psb_desc_type)
integer, allocatable
real(psb_dpk_), allocatable
integer, allocatable
integer

end type psb_dprec_type

type psb_cprec_type

type (psb_cspmat_type), allocatable ::
1o d(:)

: desc_data

: iprcparm(:)

:: rprcparm(:)

:: perm(:), invperm(:)
:: prec, base_prec

complex(psb_spk_), allocatable
type (psb_desc_type)
integer, allocatable
real (psb_spk_), allocatable
integer, allocatable
integer

end type psb_cprec_type

type psb_zprec_type

type (psb_zspmat_type), allocatable ::
1o d(:)

:: desc_data

:: iprcparm(:)

:: rprcparm(:)

:: perm(:), invperm(:)
: prec, base_prec

complex(psb_dpk_), allocatable
type (psb_desc_type)
integer, allocatable
real(psb_dpk_), allocatable
integer, allocatable
integer

end type psb_zprec_type

av(:)

av(:)

av(:)

av(:)

Figure 6: The PSBLAS defined data type that contains a preconditioner.
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4 Computational routines
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psb_geaxpby — General Dense Matrix Sum

This subroutine is an interface to the computational kernel for dense matrix
sum:
y—az+py

call psb_geaxpby(alpha, x, beta, y, desc_a, info)

z, Yy, a, B Subroutine
Short Precision Real psb_geaxpby
Long Precision Real psb_geaxpby

Short Precision Complex psb_geaxpby
Long Precision Complex psb_geaxpby

Table 1: Data types

Type: Synchronous.
On Entry

alpha the scalar a.
Scope: global
Type: required
Intent: in.
Specified as: a number of the data type indicated in Table 1.

x the local portion of global dense matrix x.
Scope: local
Type: required
Intent: in.
Specified as: a rank one or two array containing numbers of type specified
in Table 1. The rank of x must be the same of y.

beta the scalar 3.
Scope: global
Type: required
Intent: in.
Specified as: a number of the data type indicated in Table 1.

y the local portion of the global dense matrix y.
Scope: local
Type: required
Intent: inout.
Specified as: a rank one or two array containing numbers of the type
indicated in Table 1. The rank of y¥ must be the same of z.

desc_a contains data structures for communications.
Scope: local
Type: required
Intent: in.
Specified as: a structured data of type psb_desc_type.
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On Return

y the local portion of result submatrix y.
Scope: local
Type: required
Intent: inout.
Specified as: a rank one or two array containing numbers of the type
indicated in Table 1.

info Error code.
Scope: local
Type: required
Intent: out.
An integer value; 0 means no error has been detected.
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psb_gedot — Dot Product

This function computes dot product between two vectors = and y.
If z and y are real vectors it computes dot-product as:

dot — zTy
Else if x and y are complex vectors then it computes dot-product as:
dot — x'y

psb_gedot(x, y, desc_a, info)

dot, x,y Function
Short Precision Real psb_gedot
Long Precision Real psb_gedot

Short Precision Complex psb_gedot
Long Precision Complex  psb_gedot

Table 2: Data types

Type: Synchronous.
On Entry

x the local portion of global dense matrix x.
Scope: local
Type: required
Intent: in.
Specified as: an array of rank one or two containing numbers of type
specified in Table 2. The rank of  must be the same of y.

y the local portion of global dense matrix y.
Scope: local
Type: required
Intent: in.
Specified as: an array of rank one or two containing numbers of type
specified in Table 2. The rank of y must be the same of x.

desc_a contains data structures for communications.
Scope: local
Type: required
Intent: in.
Specified as: a structured data of type psb_desc_type.

On Return

Function value is the dot product of subvectors x and y.
Scope: global
Specified as: a number of the data type indicated in Table 2.
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info Error code.
Scope: local
Type: required
Intent: out.

An integer value; 0 means no error has been detected.
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psb_gedots — Generalized Dot Product

This subroutine computes a series of dot products among the columns of two
dense matrices x and y:

res(i) «— x(:,1)Ty(:, 1)
If the matrices are complex, then the usual convention applies, i.e. the conjugate
transpose of z is used. If x and y are of rank one, then res is a scalar, else it is
a rank one array.

call psb_gedots(res, x, y, desc_a, info)

res, x, y Subroutine
Short Precision Real psb_gedots
Long Precision Real psb_gedots

Short Precision Complex psb_gedots
Long Precision Complex  psb_gedots

Table 3: Data types

Type: Synchronous.
On Entry

x the local portion of global dense matrix x.
Scope: local
Type: required
Intent: in.
Specified as: an array of rank one or two containing numbers of type
specified in Table 3. The rank of  must be the same of y.

y the local portion of global dense matrix y.
Scope: local
Type: required
Intent: in.
Specified as: an array of rank one or two containing numbers of type
specified in Table 3. The rank of y must be the same of x.

desc_a contains data structures for communications.
Scope: local
Type: required
Intent: in.
Specified as: a structured data of type psb_desc_type.

On Return

res is the dot product of subvectors x and y.
Scope: global
Intent: out.
Specified as: a number or a rank-one array of the data type indicated in
Table 2.
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info Error code.
Scope: local
Type: required
Intent: out.

An integer value; 0 means no error has been detected.
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psb_geamax — Infinity-Norm of Vector

This function computes the infinity-norm of a vector x.
If « is a real vector it computes infinity norm as:

amax — max | ;]|
K2
else if x is a complex vector then it computes infinity-norm as:
amaz — max (|re(z;)| + [im(x;)])
K2

psb_geamax(x, desc_a, info)

amax x Function
Short Precision Real Short Precision Real psb_geamax
Long Precision Real Long Precision Real psb_geamax

Short Precision Real =~ Short Precision Complex psb_geamax
Long Precision Real  Long Precision Complex  psb_geamax

Table 4: Data types

Type: Synchronous.
On Entry

x the local portion of global dense matrix x.
Scope: local
Type: required
Intent: in.
Specified as: a rank one or two array containing numbers of type specified
in Table 4.

desc_a contains data structures for communications.
Scope: local
Type: required
Intent: in.
Specified as: a structured data of type psb_desc_type.

On Return

Function value is the infinity norm of subvector z.
Scope: global
Specified as: a long precision real number.

info Error code.
Scope: local
Type: required
Intent: out.
An integer value; 0 means no error has been detected.
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psb_geamaxs — Generalized Infinity Norm

This subroutine computes a series of infinity norms on the columns of a dense
matrix x:
res(i) <« max |x(k, )]
k

call psb_geamaxs(res, x, desc_a, info)

res T Subroutine
Short Precision Real ~Short Precision Real psb_geamaxs
Long Precision Real  Long Precision Real psb_geamaxs

Short Precision Real Short Precision Complex psb_geamaxs
Long Precision Real  Long Precision Complex  psb_geamaxs

Table 5: Data types

Type: Synchronous.
On Entry

x the local portion of global dense matrix x.
Scope: local
Type: required
Intent: in.
Specified as: a rank one or two array containing numbers of type specified
in Table 5.

desc_a contains data structures for communications.
Scope: local
Type: required
Intent: in.
Specified as: a structured data of type psb_desc_type.

On Return

res is the infinity norm of the columns of x.
Scope: global
Intent: out.
Specified as: a number or a rank-one array of long precision real numbers.

info Error code.
Scope: local
Type: required
Intent: out.
An integer value; 0 means no error has been detected.
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psb_geasum — 1-Norm of Vector

This function computes the 1-norm of a vector x.
If = is a real vector it computes 1-norm as:

asum — ||z;||
else if x is a vector then it computes 1-norm as:
asum — |re(z)|x + [lim(z)[x

psb_geasum(x, desc_a, info)

asum T Function
Short Precision Real Short Precision Real psb_geasum
Long Precision Real Long Precision Real psb_geasum

Short Precision Real = Short Precision Complex psb_geasum
Long Precision Real  Long Precision Complex  psb_geasum

Table 6: Data types

Type: Synchronous.
On Entry

x the local portion of global dense matrix .
Scope: local
Type: required
Intent: in.
Specified as: a rank one or two array containing numbers of type specified
in Table 6.

desc_a contains data structures for communications.
Scope: local
Type: required
Intent: in.
Specified as: a structured data of type psb_desc_type.

On Return

Function value is the 1-norm of vector x.
Scope: global
Specified as: a long precision real number.

info Error code.
Scope: local
Type: required
Intent: out.
An integer value; 0 means no error has been detected.
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psb_geasums — Generalized 1-Norm of Vector

This subroutine computes a series of 1-norms on the columns of a dense matrix
x:
res(i) <« max |x(k, )]
k

This function computes the 1-norm of a vector x.
If x is a real vector it computes 1-norm as:

res(i) — [|lzl|
else if z is a complex vector then it computes 1-norm as:
res(i) — [lre(z)[l1 + [lim(z) (2

call psb_geasums(res, x, desc_a, info)

res x Subroutine
Short Precision Real Short Precision Real psb_geasums
Long Precision Real Long Precision Real psb_geasums

Short Precision Real Short Precision Complex psb_geasums
Long Precision Real = Long Precision Complex  psb_geasums

Table 7: Data types

Type: Synchronous.
On Entry

x the local portion of global dense matrix x.
Scope: local
Type: required
Intent: in.
Specified as: a rank one or two array containing numbers of type specified
in Table 7.

desc_a contains data structures for communications.
Scope: local
Type: required
Intent: in.
Specified as: a structured data of type psb_desc_type.

On Return

res contains the 1-norm of (the columns of) .
Scope: global
Intent: out.
Short as: a long precision real number. Specified as: a long precision real
number.
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info Error code.
Scope: local
Type: required
Intent: out.

An integer value; 0 means no error has been detected.
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psb_genrm2 — 2-Norm of Vector

This function computes the 2-norm of a vector x.
If = is a double precision real vector it computes 2-norm as:

nrm2 «— VaTx

else if = is double precision complex vector then it computes 2-norm as:

nrm2 «— VaHy

nrma2 T Function
Short Precision Real Short Precision Real psb_genrm?2
Long Precision Real Long Precision Real psb_genrm?2

Short Precision Real = Short Precision Complex psb_genrm2
Long Precision Real  Long Precision Complex  psb_genrm?2

Table 8: Data types

psb_genrm2(x, desc_a, info)

Type: Synchronous.
On Entry

x the local portion of global dense matrix x.
Scope: local
Type: required
Intent: in.
Specified as: a rank one or two array containing numbers of type specified
in Table 8.

desc_a contains data structures for communications.
Scope: local
Type: required
Intent: in.
Specified as: a structured data of type psb_desc_type.

On Return

Function Value is the 2-norm of subvector .
Scope: global
Type: required
Specified as: a long precision real number.

info Error code.
Scope: local
Type: required
Intent: out.
An integer value; 0 means no error has been detected.
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psb_genrm2s — Generalized 2-Norm of Vector

This subroutine computes a series of 2-norms on the columns of a dense matrix
€
res(i) < [lz(:, 9|2

call psb_genrm2s(res, x, desc_a, info)

res x Subroutine
Short Precision Real =~ Short Precision Real psb_genrm?2s
Long Precision Real = Long Precision Real psb_genrm?2s

Short Precision Real = Short Precision Complex psb_genrm?2s
Long Precision Real — Long Precision Complex  psb_genrm2s

Table 9: Data types

Type: Synchronous.
On Entry

x the local portion of global dense matrix x.
Scope: local
Type: required
Intent: in.
Specified as: a rank one or two array containing numbers of type specified
in Table 9.

desc_a contains data structures for communications.
Scope: local
Type: required
Intent: in.
Specified as: a structured data of type psb_desc_type.

On Return

res contains the 1-norm of (the columns of) x.
Scope: global
Intent: out.
Specified as: a long precision real number.

info Error code.
Scope: local
Type: required
Intent: out.
An integer value; 0 means no error has been detected.
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psb_spnrmi — Infinity Norm of Sparse Matrix

This function computes the infinity-norm of a matrix A:

nrmi — || A||oo
where:

A represents the global matrix A

A Function
Short Precision Real psb_spnrmi
Long Precision Real psb_spnrmi

Short Precision Complex psb_spnrmi
Long Precision Complex  psb_spnrmi

Table 10: Data types

psb_spnrmi (A, desc_a, info)

Type: Synchronous.
On Entry

a the local portion of the global sparse matrix A.
Scope: local
Type: required
Intent: in.
Specified as: a structured data of type psb_spmat_type.

desc_a contains data structures for communications.
Scope: local
Type: required
Intent: in.
Specified as: a structured data of type psb_desc_type.

On Return

Function value is the infinity-norm of sparse submatrix A.
Scope: global
Specified as: a long precision real number.

info Error code.
Scope: local
Type: required
Intent: out.
An integer value; 0 means no error has been detected.
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psb_spmm — Sparse Matrix by Dense Matrix Product

This subroutine computes the Sparse Matrix by Dense Matrix Product:

y «— aP.AP.x + By (1)
y — aP, AT P.x + By (2)
y— aP, AT P.x + By (3)

where:
z is the global dense submatrix x. .
y is the global dense submatrix ¥. .
A is the global sparse submatrix A

P,, P. are the permutation matrices.

A x,y, a8 Subroutine
Short Precision Real psb_spmm
Long Precision Real psb_spmm

Short Precision Complex psb_spmm
Long Precision Complex  psb_spmm

Table 11: Data types

call psb_spmm(alpha, a, x, beta, y, desc_a, info)
call psb_spmm(alpha, a, x, beta, y,desc_a, info, &
& trans, work)

Type: Synchronous.
On Entry

alpha the scalar a.
Scope: global
Type: required
Intent: in.
Specified as: a number of the data type indicated in Table 11.

a the local portion of the sparse matrix A.
Scope: local
Type: required
Intent: in.
Specified as: a structured data of type psb_spmat_type.

x the local portion of global dense matrix x.
Scope: local
Type: required
Intent: in.
Specified as: a rank one or two array containing numbers of type specified
in Table 11. The rank of x must be the same of .
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beta the scalar (.
Scope: global
Type: required
Intent: in.
Specified as: a number of the data type indicated in Table 11.

y the local portion of global dense matrix y.
Scope: local
Type: required
Intent: inout.
Specified as: a rank one or two array containing numbers of type specified
in Table 11. The rank of y must be the same of x.

desc_a contains data structures for communications.
Scope: local
Type: required
Intent: in.
Specified as: a structured data of type psb_desc_type.

trans indicate what kind of operation to perform.

trans = N the operation is specified by equation 1
trans = T the operation is specified by equation 2

trans = C the operation is specified by equation 3

Scope: global

Type: optional

Intent: in.

Default: trans = N

Specified as: a character variable.

work work array.
Scope: local
Type: optional
Intent: inout.
Specified as: a rank one array of the same type of x and y with the
TARGET attribute.

On Return

y the local portion of result submatrix y.
Scope: local
Type: required
Intent: inout.
Specified as: an array of rank one or two containing numbers of type
specified in Table 11.

info Error code.
Scope: local
Type: required
Intent: out.
An integer value; 0 means no error has been detected.
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psb_spsm — Triangular System Solve

This subroutine computes the Triangular System Solve:

aP, T 'P.x + By
aDP, T 'P.x + By
aP, T 'P.Dx + By
aP.T-TP.x + By
aDP, T TP.x + By
aP, T-TP.Dz + By
aP, T 2P+ By
aDP, T 2Pz + By
aP, T HP.Dz + By

TR Rl R R e R
rT1rTr1r1 1

where:
x is the global dense submatrix x. .
y is the global dense submatrix y. .
T is the global sparse block triangular submatrix T
D is the scaling diagonal matrix.

P,, P, are the permutation matrices.

call psb_spsm(alpha, t, x, beta, y, desc_a, info)
call psb_spsm(alpha, t, x, beta, y, desc_a, info,&
& trans, unit, choice, diag, work)

T, z,y, D, a, Subroutine
Short Precision Real psb_spsm
Long Precision Real psb_spsm

Short Precision Complex psb_spsm
Long Precision Complex  psb_spsm

Table 12: Data types

Type: Synchronous.
On Entry

alpha the scalar a.
Scope: global
Type: required
Intent: in.
Specified as: a number of the data type indicated in Table 12.
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t the global portion of the sparse matrix 7.
Scope: local
Type: required
Intent: in.
Specified as: a structured data type specified in § 3.

x the local portion of global dense matrix x.
Scope: local
Type: required
Intent: in.
Specified as: a rank one or two array containing numbers of type specified
in Table 12. The rank of x must be the same of y.

beta the scalar (.
Scope: global
Type: required
Intent: in.
Specified as: a number of the data type indicated in Table 12.

y the local portion of global dense matrix y.
Scope: local
Type: required
Intent: inout.
Specified as: a rank one or two array containing numbers of type specified
in Table 12. The rank of y must be the same of x.

desc_a contains data structures for communications.
Scope: local
Type: required
Intent: in.
Specified as: a structured data of type psb_desc_type.

trans specify with unitd the operation to perform.

trans = N’ the operation is with no transposed matrix

trans = T’ the operation is with transposed matrix.

trans = ’C’ the operation is with conjugate transposed matrix.
Scope: global

Type: optional

Intent: in.

Default: trans = N
Specified as: a character variable.

unitd specify with trans the operation to perform.

unitd = U’ the operation is with no scaling
unitd = ’L’ the operation is with left scaling

unitd = 'R’ the operation is with right scaling.
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Scope: global

Type: optional

Intent: in.

Default: unitd = U

Specified as: a character variable.

choice specifies the update of overlap elements to be performed on exit:

diag

psb_none_
psb_sum_
psb_avg_

psb_square_root_

Scope: global

Type: optional

Intent: in.

Default: psb_avg_

Specified as: an integer variable.

the diagonal scaling matrix.

Scope: local

Type: optional

Intent: in.

Default: diag(1) = 1(noscaling)

Specified as: a rank one array containing numbers of the type indicated
in Table 12.

work a work array.

Scope: local

Type: optional

Intent: inout.

Specified as: a rank one array of the same type of z with the TARGET
attribute.

On Return

y the local portion of global dense matrix y.

info

Scope: local

Type: required

Intent: inout.

Specified as: an array of rank one or two containing numbers of type
specified in Table 12.

Error code.

Scope: local

Type: required

Intent: out.

An integer value; 0 means no error has been detected.
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5 Communication routines

The routines in this chapter implement various global communication operators
on vectors associated with a discretization mesh. For auxiliary communication
routines not tied to a discretization space see 6.
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psb_halo — Halo Data Communication

These subroutines gathers the values of the halo elements, and (optionally) scale
the result:

T — ar
where:
z is a global dense submatrix.
a, T Subroutine
Integer psb_halo
Short Precision Real psb_halo
Long Precision Real psb_halo

Short Precision Complex psb_halo
Long Precision Complex  psb_halo

Table 13: Data types

call psb_halo(x, desc_a, info)
call psb_halo(x, desc_a, info, alpha, work, data)

Type: Synchronous.
On Entry

x global dense matrix x.
Scope: local
Type: required
Intent: inout.
Specified as: a rank one or two array with the TARGET attribute con-
taining numbers of type specified in Table 13.

desc_a contains data structures for communications.
Scope: local
Type: required
Intent: in.
Specified as: a structured data of type psb_desc_type.

alpha the scalar a.
Scope: global
Type: optional
Intent: in.
Default: alpha =1
Specified as: a number of the data type indicated in Table 13.

work the work array.
Scope: local
Type: optional
Intent: inout.
Specified as: a rank one array of the same type of x with the POINTER
