\section{Iterative Methods} \label{sec:methods} In this chapter we provide routines for preconditioners and iterative methods. The interfaces for Krylov subspace methods are available in the module \verb|psb_krylov_mod|. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % Krylov Methods driver routine % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \clearpage\subsection*{psb\_krylov \label{krylov} --- Krylov Methods Driver Routine} \addcontentsline{toc}{subsection}{psb\_krylov} This subroutine is a driver that provides a general interface for all the Krylov-Subspace family methods implemented in PSBLAS version 2. The stopping criterion is the normwise backward error, in the infinity norm, i.e. the iteration is stopped when \[ err = \frac{\|r_i\|}{(\|A\|\|x_i\|+\|b\|)} < eps \] or the 2-norm residual reduction \[ err = \frac{\|r_i\|}{\|b\|_2} < eps \] according to the value passed through the istop argument (see later). In the above formulae, $x_i$ is the tentative solution and $r_i=b-Ax_i$ the corresponding residual at the $i$-th iteration. \begin{lstlisting} call psb_krylov(method,a,prec,b,x,eps,desc_a,info,& & itmax,iter,err,itrace,irst,istop,cond) \end{lstlisting} \begin{description} \item[Type:] Synchronous. \item[\bf On Entry] \item[method] a string that defines the iterative method to be used. Supported values are: \begin{description} \item[CG:] the Conjugate Gradient method; \item[CGS:] the Conjugate Gradient Stabilized method; \item[BICG:] the Bi-Conjugate Gradient method; \item[BICGSTAB:] the Bi-Conjugate Gradient Stabilized method; \item[BICGSTABL:] the Bi-Conjugate Gradient Stabilized method with restarting; \item[RGMRES:] the Generalized Minimal Residual method with restarting. \end{description} \item[a] the local portion of global sparse matrix $A$. \\ Scope: {\bf local} \\ Type: {\bf required}\\ Intent: {\bf in}.\\ Specified as: a structured data of type \spdata. \item[prec] The data structure containing the preconditioner.\\ Scope: {\bf local} \\ Type: {\bf required}\\ Intent: {\bf in}.\\ Specified as: a structured data of type \precdata. \item[b] The RHS vector. \\ Scope: {\bf local} \\ Type: {\bf required}\\ Intent: {\bf in}.\\ Specified as: a rank one array or an object of type \vdata. \item[x] The initial guess. \\ Scope: {\bf local} \\ Type: {\bf required}\\ Intent: {\bf inout}.\\ Specified as: a rank one array or an object of type \vdata. \item[eps] The stopping tolerance. \\ Scope: {\bf global} \\ Type: {\bf required}\\ Intent: {\bf in}.\\ Specified as: a real number. \item[desc\_a] contains data structures for communications.\\ Scope: {\bf local} \\ Type: {\bf required}\\ Intent: {\bf in}.\\ Specified as: a structured data of type \descdata. \item[itmax] The maximum number of iterations to perform.\\ Scope: {\bf global} \\ Type: {\bf optional}\\ Intent: {\bf in}.\\ Default: $itmax = 1000$.\\ Specified as: an integer variable $itmax \ge 1$. \item[itrace] If $>0$ print out an informational message about convergence every $itrace$ iterations.\\ Scope: {\bf global} \\ Type: {\bf optional}\\ Intent: {\bf in}.\\ \item[irst] An integer specifying the restart parameter.\\ Scope: {\bf global} \\ Type: {\bf optional}.\\ Intent: {\bf in}.\\ Values: $irst>0$. This is employed for the BiCGSTABL or RGMRES methods, otherwise it is ignored. \item[istop] An integer specifying the stopping criterion.\\ Scope: {\bf global} \\ Type: {\bf optional}.\\ Intent: {\bf in}.\\ Values: 1: use the normwise backward error, 2: use the scaled 2-norm of the residual. Default: 2. \item[\bf On Return] \item[x] The computed solution. \\ Scope: {\bf local} \\ Type: {\bf required}\\ Intent: {\bf inout}.\\ Specified as: a rank one array or an object of type \vdata. \item[iter] The number of iterations performed.\\ Scope: {\bf global} \\ Type: {\bf optional}\\ Intent: {\bf out}.\\ Returned as: an integer variable. \item[err] The convergence estimate on exit.\\ Scope: {\bf global} \\ Type: {\bf optional}\\ Intent: {\bf out}.\\ Returned as: a real number. \item[cond] An estimate of the condition number of matrix $A$; only available with the $CG$ method on real data.\\ Scope: {\bf global} \\ Type: {\bf optional}\\ Intent: {\bf out}.\\ Returned as: a real number. A correct result will be greater than or equal to one; if specified for non-real data, or an error occurred, zero is returned. \item[info] Error code.\\ Scope: {\bf local} \\ Type: {\bf required} \\ Intent: {\bf out}.\\ An integer value; 0 means no error has been detected. \end{description} %%% Local Variables: %%% mode: latex %%% TeX-master: "userguide" %%% End: