
PSBLAS 3.9.0 User’s guide

A reference guide for the Parallel Sparse BLAS library

by Salvatore Filippone
and Alfredo Buttari

Aug 1st, 2024

2

Contents

1 Introduction 1

2 General overview 2
2.1 Basic Nomenclature . 3
2.2 Library contents . 4
2.3 Application structure . 6

2.3.1 User-defined index mappings 8
2.4 Programming model . 8

3 Data Structures and Classes 9
3.1 Descriptor data structure . 9

3.1.1 Descriptor Methods . 12
3.1.2 get local rows — Get number of local rows 12
3.1.3 get local cols — Get number of local cols 12
3.1.4 get global rows — Get number of global rows 12
3.1.5 get global cols — Get number of global cols 13
3.1.6 get global indices — Get vector of global indices 13
3.1.7 get context — Get communication context 13
3.1.8 Clone — clone current object 14
3.1.9 CNV — convert internal storage format 14
3.1.10 psb cd get large threshold — Get threshold for index

mapping switch . 14
3.1.11 psb cd set large threshold — Set threshold for index map-

ping switch . 14
3.1.12 get p adjcncy — Get process adjacency list 15
3.1.13 set p adjcncy — Set process adjacency list 15
3.1.14 fnd owner — Find the owner process of a set of indices . 15
3.1.15 Named Constants . 16

3.2 Sparse Matrix class . 16
3.2.1 Sparse Matrix Methods 17
3.2.2 get nrows — Get number of rows in a sparse matrix . . . 17
3.2.3 get ncols — Get number of columns in a sparse matrix . 18
3.2.4 get nnzeros — Get number of nonzero elements in a

sparse matrix . 18
3.2.5 get size — Get maximum number of nonzero elements in

a sparse matrix . 18
3.2.6 sizeof — Get memory occupation in bytes of a sparse matrix 19
3.2.7 get fmt — Short description of the dynamic type 19
3.2.8 is bld, is upd, is asb — Status check 19
3.2.9 is lower, is upper, is triangle, is unit — Format check . . 20
3.2.10 cscnv — Convert to a different storage format 20
3.2.11 csclip — Reduce to a submatrix 21
3.2.12 clean zeros — Eliminate zero coefficients 21
3.2.13 get diag — Get main diagonal 22
3.2.14 clip diag — Cut out main diagonal 22
3.2.15 tril — Return the lower triangle 22
3.2.16 triu — Return the upper triangle 23
3.2.17 psb set mat default — Set default storage format 24

i

3.2.18 clone — Clone current object 24
3.2.19 Named Constants . 24

3.3 Dense Vector Data Structure . 24
3.3.1 Vector Methods . 25
3.3.2 get nrows — Get number of rows in a dense vector . . . 25
3.3.3 sizeof — Get memory occupation in bytes of a dense vector 25
3.3.4 set — Set contents of the vector 26
3.3.5 get vect — Get a copy of the vector contents 27
3.3.6 clone — Clone current object 27

3.4 Preconditioner data structure . 27
3.5 Heap data structure . 28

4 Computational routines 29
4.1 psb geaxpby — General Dense Matrix Sum 30
4.2 psb gedot — Dot Product . 32
4.3 psb gedots — Generalized Dot Product 34
4.4 psb normi — Infinity-Norm of Vector 36
4.5 psb geamaxs — Generalized Infinity Norm 38
4.6 psb norm1 — 1-Norm of Vector 39
4.7 psb geasums — Generalized 1-Norm of Vector 41
4.8 psb norm2 — 2-Norm of Vector 43
4.9 psb genrm2s — Generalized 2-Norm of Vector 45
4.10 psb norm1 — 1-Norm of Sparse Matrix 46
4.11 psb normi — Infinity Norm of Sparse Matrix 47
4.12 psb spmm — Sparse Matrix by Dense Matrix Product 48
4.13 psb spsm — Triangular System Solve 50
4.14 psb gemlt — Entrywise Product 53
4.15 psb gediv — Entrywise Division 55
4.16 psb geinv — Entrywise Inversion 57

5 Communication routines 58
5.1 psb halo — Halo Data Communication 59
5.2 psb ovrl — Overlap Update . 62
5.3 psb gather — Gather Global Dense Matrix 66
5.4 psb scatter — Scatter Global Dense Matrix 68

6 Data management routines 70
6.1 psb cdall — Allocates a communication descriptor 70
6.2 psb cdins — Communication descriptor insert routine 74
6.3 psb cdasb — Communication descriptor assembly routine . . . 76
6.4 psb cdcpy — Copies a communication descriptor 77
6.5 psb cdfree — Frees a communication descriptor 78
6.6 psb cdbldext — Build an extended communication descriptor . 79
6.7 psb spall — Allocates a sparse matrix 81
6.8 psb spins — Insert a set of coefficients into a sparse matrix . . . 83
6.9 psb spasb — Sparse matrix assembly routine 86
6.10 psb spfree — Frees a sparse matrix 88
6.11 psb sprn — Reinit sparse matrix structure for psblas routines. . 89
6.12 psb geall — Allocates a dense matrix 90
6.13 psb geins — Dense matrix insertion routine 92

ii

6.14 psb geasb — Assembly a dense matrix 94
6.15 psb gefree — Frees a dense matrix 95
6.16 psb gelp — Applies a left permutation to a dense matrix 96
6.17 psb glob to loc — Global to local indices convertion 97
6.18 psb loc to glob — Local to global indices conversion 99
6.19 psb is owned — . 100
6.20 psb owned index — . 101
6.21 psb is local — . 102
6.22 psb local index — . 103
6.23 psb get boundary — Extract list of boundary elements 104
6.24 psb get overlap — Extract list of overlap elements 105
6.25 psb sp getrow — Extract row(s) from a sparse matrix 106
6.26 psb sizeof — Memory occupation 108
6.27 Sorting utilities — . 109

7 Parallel environment routines 111
7.1 psb init — Initializes PSBLAS parallel environment 112
7.2 psb info — Return information about PSBLAS parallel environment113
7.3 psb exit — Exit from PSBLAS parallel environment 114
7.4 psb get mpi comm — Get the MPI communicator 115
7.5 psb get mpi rank — Get the MPI rank 116
7.6 psb wtime — Wall clock timing 117
7.7 psb barrier — Sinchronization point parallel environment . . . 118
7.8 psb abort — Abort a computation 119
7.9 psb bcast — Broadcast data . 120
7.10 psb sum — Global sum . 122
7.11 psb max — Global maximum . 124
7.12 psb min — Global minimum . 126
7.13 psb amx — Global maximum absolute value 128
7.14 psb amn — Global minimum absolute value 130
7.15 psb nrm2 — Global 2-norm reduction 132
7.16 psb snd — Send data . 134
7.17 psb rcv — Receive data . 135

8 Error handling 136
8.1 psb errpush — Pushes an error code onto the error stack 138
8.2 psb error — Prints the error stack content and aborts execution 139
8.3 psb set errverbosity — Sets the verbosity of error messages . . . 140
8.4 psb set erraction — Set the type of action to be taken upon error

condition . 141

9 Utilities 142
9.1 hb read — Read a sparse matrix from a file in the Harwell–Boeing

format . 143
9.2 hb write — Write a sparse matrix to a file in the Harwell–Boeing

format . 144
9.3 mm mat read — Read a sparse matrix from a file in the Matrix-

Market format . 145
9.4 mm array read — Read a dense array from a file in the Matrix-

Market format . 146

iii

9.5 mm mat write — Write a sparse matrix to a file in the MatrixMar-
ket format . 147

9.6 mm array write — Write a dense array from a file in the Matrix-
Market format . 148

10 Preconditioner routines 150
10.1 init — Initialize a preconditioner 151
10.2 Set — set preconditioner parameters 152
10.3 build — Builds a preconditioner 154
10.4 apply — Preconditioner application routine 156
10.5 descr — Prints a description of current preconditioner 157
10.6 clone — clone current preconditioner 158
10.7 free — Free a preconditioner . 159

11 Iterative Methods 160
11.1 psb krylov — Krylov Methods Driver Routine 161
11.2 psb richardson — Richardson Iteration Driver Routine 164

12 Extensions 167
12.1 Using the extensions . 167
12.2 Extensions’ Data Structures . 168
12.3 CPU-class extensions . 168
12.4 CUDA-class extensions . 175

13 CUDA Environment Routines 176
psb cuda init . 176
psb cuda exit . 176
psb cuda DeviceSync . 177
psb cuda getDeviceCount . 177
psb cuda getDevice . 177
psb cuda setDevice . 177
psb cuda DeviceHasUVA . 177
psb cuda WarpSize . 177
psb cuda MultiProcessors . 177
psb cuda MaxThreadsPerMP . 177
psb cuda MaxRegisterPerBlock . 178
psb cuda MemoryClockRate . 178
psb cuda MemoryBusWidth . 178
psb cuda MemoryPeakBandwidth . 178

iv

1 Introduction

The PSBLAS library, developed with the aim to facilitate the parallelization of
computationally intensive scientific applications, is designed to address parallel
implementation of iterative solvers for sparse linear systems through the dis-
tributed memory paradigm. It includes routines for multiplying sparse matrices
by dense matrices, solving block diagonal systems with triangular diagonal
entries, preprocessing sparse matrices, and contains additional routines for
dense matrix operations. The current implementation of PSBLAS addresses a
distributed memory execution model operating with message passing.

The PSBLAS library version 3 is implemented in the Fortran 2003 [17] pro-
gramming language, with reuse and/or adaptation of existing Fortran 77 and
Fortran 95 software, plus a handful of C routines.

The use of Fortran 2003 offers a number of advantages over Fortran 95,
mostly in the handling of requirements for evolution and adaptation of the
library to new computing architectures and integration of new algorithms. For
a detailed discussion of our design see [11]; other works discussing advanced
programming in Fortran 2003 include [21, 19]; sufficient support for Fortran 2003
is now available from many compilers, including the GNU Fortran compiler
from the Free Software Foundation (as of version 4.8).

Previous approaches have been based on mixing Fortran 95, with its support
for object-based design, with other languages; these have been advocated by
a number of authors, e.g. [16]. Moreover, the Fortran 95 facilities for dynamic
memory management and interface overloading greatly enhance the usability
of the PSBLAS subroutines. In this way, the library can take care of runtime
memory requirements that are quite difficult or even impossible to predict at
implementation or compilation time.

The presentation of the PSBLAS library follows the general structure of the
proposal for serial Sparse BLAS [8, 9], which in its turn is based on the proposal
for BLAS on dense matrices [15, 5, 6].

The applicability of sparse iterative solvers to many different areas causes
some terminology problems because the same concept may be denoted through
different names depending on the application area. The PSBLAS features pre-
sented in this document will be discussed referring to a finite difference dis-
cretization of a Partial Differential Equation (PDE). However, the scope of the
library is wider than that: for example, it can be applied to finite element dis-
cretizations of PDEs, and even to different classes of problems such as nonlinear
optimization, for example in optimal control problems.

The design of a solver for sparse linear systems is driven by many con-
flicting objectives, such as limiting occupation of storage resources, exploiting
regularities in the input data, exploiting hardware characteristics of the paral-
lel platform. To achieve an optimal communication to computation ratio on
distributed memory machines it is essential to keep the data locality as high
as possible; this can be done through an appropriate data allocation strategy.
The choice of the preconditioner is another very important factor that affects
efficiency of the implemented application. Optimal data distribution require-
ments for a given preconditioner may conflict with distribution requirements
of the rest of the solver. Finding the optimal trade-off may be very difficult
because it is application dependent. Possible solutions to these problems and
other important inputs to the development of the PSBLAS software package

1

have come from an established experience in applying the PSBLAS solvers to
computational fluid dynamics applications.

2 General overview

The PSBLAS library is designed to handle the implementation of iterative
solvers for sparse linear systems on distributed memory parallel computers.
The system coefficient matrix A must be square; it may be real or complex,
nonsymmetric, and its sparsity pattern needs not to be symmetric. The serial
computation parts are based on the serial sparse BLAS, so that any extension
made to the data structures of the serial kernels is available to the parallel
version. The overall design and parallelization strategy have been influenced
by the structure of the ScaLAPACK parallel library. The layered structure of
the PSBLAS library is shown in figure 1; lower layers of the library indicate an
encapsulation relationship with upper layers. The ongoing discussion focuses
on the Fortran 2003 layer immediately below the application layer. The serial
parts of the computation on each process are executed through calls to the serial
sparse BLAS subroutines. In a similar way, the inter-process message exchanges
are encapsulated in an applicaiton layer that has been strongly inspired by the
Basic Linear Algebra Communication Subroutines (BLACS) library [7]. Usually
there is no need to deal directly with MPI; however, in some cases, MPI routines
are used directly to improve efficiency. For further details on our communication
layer see Sec. 7.

Serial Sparse

BLAS

Application

PSBLAS

Interface

Inner

Interface

Message Passing

MPI

Fortran 2003

Figure 1: PSBLAS library components hierarchy.

The type of linear system matrices that we address typically arise in the
numerical solution of PDEs; in such a context, it is necessary to pay special atten-
tion to the structure of the problem from which the application originates. The
nonzero pattern of a matrix arising from the discretization of a PDE is influenced
by various factors, such as the shape of the domain, the discretization strategy,
and the equation/unknown ordering. The matrix itself can be interpreted as
the adjacency matrix of the graph associated with the discretization mesh.

The distribution of the coefficient matrix for the linear system is based
on the “owner computes” rule: the variable associated to each mesh point is

2

assigned to a process that will own the corresponding row in the coefficient
matrix and will carry out all related computations. This allocation strategy is
equivalent to a partition of the discretization mesh into sub-domains. Our library
supports any distribution that keeps together the coefficients of each matrix
row; there are no other constraints on the variable assignment. This choice
is consistent with simple data distributions such as CYCLIC(N) and BLOCK, as
well as completely arbitrary assignments of equation indices to processes. In
particular it is consistent with the usage of graph partitioning tools commonly
available in the literature, e.g. METIS [14]. Dense vectors conform to sparse
matrices, that is, the entries of a vector follow the same distribution of the matrix
rows.

We assume that the sparse matrix is built in parallel, where each process
generates its own portion. We never require that the entire matrix be available
on a single node. However, it is possible to hold the entire matrix in one process
and distribute it explicitly1, even though the resulting memory bottleneck would
make this option unattractive in most cases.

2.1 Basic Nomenclature

Our computational model implies that the data allocation on the parallel dis-
tributed memory machine is guided by the structure of the physical model, and
specifically by the discretization mesh of the PDE.

Each point of the discretization mesh will have (at least) one associated
equation/variable, and therefore one index. We say that point i depends on
point j if the equation for a variable associated with i contains a term in j, or
equivalently if aij ̸= 0. After the partition of the discretization mesh into sub-
domains assigned to the parallel processes, we classify the points of a given
sub-domain as following.

Internal. An internal point of a given domain depends only on points of the
same domain. If all points of a domain are assigned to one process,
then a computational step (e.g., a matrix-vector product) of the equations
associated with the internal points requires no data items from other
domains and no communications.

Boundary. A point of a given domain is a boundary point if it depends on points
belonging to other domains.

Halo. A halo point for a given domain is a point belonging to another do-
main such that there is a boundary point which depends on it. Whenever
performing a computational step, such as a matrix-vector product, the
values associated with halo points are requested from other domains. A
boundary point of a given domain is usually a halo point for some other
domain2; therefore the cardinality of the boundary points set denotes the
amount of data sent to other domains.

1In our prototype implementation we provide sample scatter/gather routines.
2This is the normal situation when the pattern of the sparse matrix is symmetric, which is

equivalent to say that the interaction between two variables is reciprocal. If the matrix pattern is
non-symmetric we may have one-way interactions, and these could cause a situation in which a
boundary point is not a halo point for its neighbour.

3

Overlap. An overlap point is a boundary point assigned to multiple domains.
Any operation that involves an overlap point has to be replicated for each
assignment.

Overlap points do not usually exist in the basic data distributions; however they
are a feature of Domain Decomposition Schwarz preconditioners which are the
subject of related research work [4, 3].

We denote the sets of internal, boundary and halo points for a given subdo-
main by I , B andH. Each subdomain is assigned to one process; each process
usually owns one subdomain, although the user may choose to assign more
than one subdomain to a process. If each process i owns one subdomain, the
number of rows in the local sparse matrix is |Ii|+ |Bi|, and the number of local
columns (i.e. those for which there exists at least one non-zero entry in the local
rows) is |Ii|+ |Bi|+ |Hi|.

Internal

Boundary

Halo

Domain 2

Domain 1

Figure 2: Point classfication.

This classification of mesh points guides the naming scheme that we adopted
in the library internals and in the data structures. We explicitly note that “Halo”
points are also often called “ghost” points in the literature.

2.2 Library contents

The PSBLAS library consists of various classes of subroutines:

Computational routines comprising:

• Sparse matrix by dense matrix product;

• Sparse triangular systems solution for block diagonal matrices;

• Vector and matrix norms;

• Dense matrix sums;

• Dot products.

Communication routines handling halo and overlap communications;

4

Data management and auxiliary routines including:

• Parallel environment management

• Communication descriptors allocation;

• Dense and sparse matrix allocation;

• Dense and sparse matrix build and update;

• Sparse matrix and data distribution preprocessing.

Preconditioner routines

Iterative methods a subset of Krylov subspace iterative methods

The following naming scheme has been adopted for all the symbols internally
defined in the PSBLAS software package:

• all symbols (i.e. subroutine names, data types...) are prefixed by psb_

• all data type names are suffixed by _type

• all constants are suffixed by _

• all top-level subroutine names follow the rule psb_xxname where xx can
be either:

– ge: the routine is related to dense data,

– sp: the routine is related to sparse data,

– cd: the routine is related to communication descriptor (see 3).

For example the psb_geins, psb_spins and psb_cdins perform the same
action (see 6) on dense matrices, sparse matrices and communication
descriptors respectively. Interface overloading allows the usage of the
same subroutine names for both real and complex data.

In the description of the subroutines, arguments or argument entries are classi-
fied as:

global For input arguments, the value must be the same on all processes partici-
pating in the subroutine call; for output arguments the value is guaranteed
to be the same.

local Each process has its own value(s) independently.

To finish our general description, we define a version string with the constant

psb_version_string_

whose current value is 3.9.0

5

2.3 Application structure

The main underlying principle of the PSBLAS library is that the library objects
are created and exist with reference to a discretized space to which there corre-
sponds an index space and a matrix sparsity pattern. As an example, consider a
cell-centered finite-volume discretization of the Navier-Stokes equations on a
simulation domain; the index space 1 . . . n is isomorphic to the set of cell centers,
whereas the pattern of the associated linear system matrix is isomorphic to
the adjacency graph imposed on the discretization mesh by the discretization
stencil.

Thus the first order of business is to establish an index space, and this is
done with a call to psb_cdall in which we specify the size of the index space n
and the allocation of the elements of the index space to the various processes
making up the MPI (virtual) parallel machine.

The index space is partitioned among processes, and this creates a mapping
from the “global” numbering 1 . . . n to a numbering “local” to each process;
each process i will own a certain subset 1 . . . nrowi , each element of which
corresponds to a certain element of 1 . . . n. The user does not set explicitly this
mapping; when the application needs to indicate to which element of the index
space a certain item is related, such as the row and column index of a matrix
coefficient, it does so in the “global” numbering, and the library will translate
into the appropriate “local” numbering.

For a given index space 1 . . . n there are many possible associated topologies,
i.e. many different discretization stencils; thus the description of the index space
is not completed until the user has defined a sparsity pattern, either explicitly
through psb_cdins or implicitly through psb_spins. The descriptor is finalized
with a call to psb_cdasb and a sparse matrix with a call to psb_spasb. After
psb_cdasb each process i will have defined a set of “halo” (or “ghost”) indices
nrowi + 1 . . . ncoli

, denoting elements of the index space that are not assigned to
process i; however the variables associated with them are needed to complete
computations associated with the sparse matrix A, and thus they have to be
fetched from (neighbouring) processes. The descriptor of the index space is
built exactly for the purpose of properly sequencing the communication steps
required to achieve this objective.

A simple application structure will walk through the index space allocation,
matrix/vector creation and linear system solution as follows:

1. Initialize parallel environment with psb_init;

2. Initialize index space with psb_cdall;

3. Allocate sparse matrix and dense vectors with psb_spall and psb_geall;

4. Loop over all local rows, generate matrix and vector entries, and insert
them with psb_spins and psb_geins

5. Assemble the various entities:

(a) psb_cdasb,

(b) psb_spasb,

(c) psb_geasb;

6

6. Choose the preconditioner to be used with prec%init and prec%set, and
build it with prec%build3;

7. Call one of the iterative drivers with the method of choice, e.g. psb_krylov
with bicgstab.

This is the structure of the sample programs in the directory test/pargen/.
For a simulation in which the same discretization mesh is used over multiple

time steps, the following structure may be more appropriate:

1. Initialize parallel environment with psb_init

2. Initialize index space with psb_cdall

3. Loop over the topology of the discretization mesh and build the descriptor
with psb_cdins;

4. Assemble the descriptor with psb_cdasb;

5. Allocate the sparse matrices and dense vectors with; psb_spall and
psb_geall;

6. Loop over the time steps:

(a) If after first time step, reinitialize the sparse matrix with psb_sprn;
also zero out the dense vectors;

(b) Loop over the mesh, generate the coefficients and insert/update
them with psb_spins and psb_geins;

(c) Assemble with psb_spasb and psb_geasb;
(d)
(e) Choose the preconditioner to be used with prec%init and prec%set,

and build it with prec%build;
(f) Call one of the iterative drivers with the method of choice, e.g.

psb_krylov with bicgstab.

The insertion routines will be called as many times as needed; they only need to
be called on the data that is actually allocated to the current process, i.e. each
process generates its own data.

In principle there is no specific order in the calls to psb_spins, nor is there a
requirement to build a matrix row in its entirety before calling the routine; this
allows the application programmer to walk through the discretization mesh
element by element, generating the main part of a given matrix row but also
contributions to the rows corresponding to neighbouring elements.

From a functional point of view it is even possible to execute one call for
each nonzero coefficient; however this would have a substantial computational
overhead. It is therefore advisable to pack a certain amount of data into each call
to the insertion routine, say touching on a few tens of rows; the best performng
value would depend on both the architecture of the computer being used and
on the problem structure. At the opposite extreme, it would be possible to
generate the entire part of a coefficient matrix residing on a process and pass it
in a single call to psb_spins; this, however, would entail a doubling of memory
occupation, and thus would be almost always far from optimal.

3The subroutine style psb precinit and psb precbld are still supported for backward compati-
bility

7

2.3.1 User-defined index mappings

PSBLAS supports user-defined global to local index mappings, subject to the
constraints outlined in sec. 2.3:

1. The set of indices owned locally must be mapped to the set 1 . . . nrowi ;

2. The set of halo points must be mapped to the set nrowi + 1 . . . ncoli
;

but otherwise the mapping is arbitrary. The user application is responsible to
ensure consistency of this mapping; some errors may be caught by the library,
but this is not guaranteed. The application structure to support this usage is as
follows:

1. Initialize index space with psb_cdall(ictx,desc,info,vl=vl,lidx=lidx)

passing the vectors vl(:) containing the set of global indices owned by the
current process and lidx(:) containing the corresponding local indices;

2. Add the halo points ja(:) and their associated local indices lidx(:) with
a(some) call(s) to psb_cdins(nz,ja,desc,info,lidx=lidx);

3. Assemble the descriptor with psb_cdasb;

4. Build the sparse matrices and vectors, optionally making use in psb_spins

and psb_geins of the local argument specifying that the indices in ia,
ja and irw, respectively, are already local indices.

2.4 Programming model

The PSBLAS librarary is based on the Single Program Multiple Data (SPMD)
programming model: each process participating in the computation performs
the same actions on a chunk of data. Parallelism is thus data-driven.

Because of this structure, many subroutines coordinate their action across
the various processes, thus providing an implicit synchronization point, and
therefore must be called simultaneously by all processes participating in the
computation. This is certainly true for the data allocation and assembly routines,
for all the computational routines and for some of the tools routines.

However there are many cases where no synchronization, and indeed no
communication among processes, is implied; for instance, all the routines in
sec. 3 are only acting on the local data structures, and thus may be called
independently. The most important case is that of the coefficient insertion
routines: since the number of coefficients in the sparse and dense matrices varies
among the processors, and since the user is free to choose an arbitrary order in
builiding the matrix entries, these routines cannot imply a synchronization.

Throughout this user’s guide each subroutine will be clearly indicated as:

Synchronous: must be called simultaneously by all the processes in the relevant
communication context;

Asynchronous: may be called in a totally independent manner.

8

3 Data Structures and Classes

In this chapter we illustrate the data structures used for definition of routines
interfaces. They include data structures for sparse matrices, communication
descriptors and preconditioners.

All the data types and the basic subroutine interfaces related to descriptors
and sparse matrices are defined in the module psb_base_mod; this will have
to be included by every user subroutine that makes use of the library. The
preconditioners are defined in the module psb_prec_mod

Integer, real and complex data types are parametrized with a kind type
defined in the library as follows:

psb spk Kind parameter for short precision real and complex data; corre-
sponds to a REAL declaration and is normally 4 bytes;

psb dpk Kind parameter for long precision real and complex data; corre-
sponds to a DOUBLE PRECISION declaration and is normally 8 bytes;

psb mpk Kind parameter for 4-bytes integer data, as is always used by MPI;

psb epk Kind parameter for 8-bytes integer data, as is always used by the
sizeof methods;

psb ipk Kind parameter for “local” integer indices and data; with default
build options this is a 4 bytes integer;

psb lpk Kind parameter for “global” integer indices and data; with default
build options this is an 8 bytes integer;

The integer kinds for local and global indices can be chosen at configure time
to hold 4 or 8 bytes, with the global indices at least as large as the local ones.
Together with the classes attributes we also discuss their methods. Most meth-
ods detailed here only act on the local variable, i.e. their action is purely local
and asynchronous unless otherwise stated. The list of methods here is not
completely exhaustive; many methods, especially those that alter the contents
of the various objects, are usually not needed by the end-user, and therefore are
described in the developer’s documentation.

3.1 Descriptor data structure

All the general matrix informations and elements to be exchanged among
processes are stored within a data structure of the type psb desc type. Every
structure of this type is associated with a discretization pattern and enables data
communications and other operations that are necessary for implementing the
various algorithms of interest to us.

The data structure itself psb_desc_type can be treated as an opaque object
handled via the tools routines of Sec. 6 or the query routines detailed below;
nevertheless we include here a description for the curious reader.

First we describe the psb_indx_map type. This is a data structure that keeps
track of a certain number of basic issues such as:

• The value of the communication context;

9

• The number of indices in the index space, i.e. global number of rows and
columns of a sparse matrix;

• The local set of indices, including:

– The number of local indices (and local rows);

– The number of halo indices (and therefore local columns);

– The global indices corresponding to the local ones.

There are many different schemes for storing these data; therefore there are a
number of types extending the base one, and the descriptor structure holds a
polymorphic object whose dynamic type can be any of the extended types. The
methods associated with this data type answer the following queries:

• For a given set of local indices, find the corresponding indices in the global
numbering;

• For a given set of global indices, find the corresponding indices in the
local numbering, if any, or return an invalid

• Add a global index to the set of halo indices;

• Find the process owner of each member of a set of global indices.

All methods but the last are purely local; the last method potentially requires
communication among processes, and thus is a synchronous method. The choice
of a specific dynamic type for the index map is made at the time the descriptor
is initially allocated, according to the mode of initialization (see also 6).

The descriptor contents are as follows:

indxmap A polymorphic variable of a type that is any extension of the indx map
type described above.

halo index A list of the halo and boundary elements for the current process
to be exchanged with other processes; for each processes with which it is
necessary to communicate:

1. Process identifier;

2. Number of points to be received;

3. Indices of points to be received;

4. Number of points to be sent;

5. Indices of points to be sent;

Specified as: a vector of integer type, see 3.3.

ext index A list of element indices to be exchanged to implement the mapping
between a base descriptor and a descriptor with overlap.
Specified as: a vector of integer type, see 3.3.

ovrlap index A list of the overlap elements for the current process, organized
in groups like the previous vector:

10

1. Process identifier;

2. Number of points to be received;

3. Indices of points to be received;

4. Number of points to be sent;

5. Indices of points to be sent;

Specified as: a vector of integer type, see 3.3.

ovr mst idx A list to retrieve the value of each overlap element from the respec-
tive master process.
Specified as: a vector of integer type, see 3.3.

ovrlap elem For all overlap points belonging to th ecurrent process:

1. Overlap point index;

2. Number of processes sharing that overlap points;

3. Index of a “master” process:

Specified as: an allocatable integer array of rank two.

bnd elem A list of all boundary points, i.e. points that have a connection with
other processes.

The Fortran 2003 declaration for psb_desc_type structures is as follows: A

type psb_desc_type

class(psb_indx_map), allocatable :: indxmap

type(psb_i_vect_type) :: v_halo_index

type(psb_i_vect_type) :: v_ext_index

type(psb_i_vect_type) :: v_ovrlap_index

type(psb_i_vect_type) :: v_ovr_mst_idx

integer, allocatable :: ovrlap_elem(:,:)

integer, allocatable :: bnd_elem(:)

end type psb_desc_type

Listing 1: The PSBLAS defined data type that contains the communication
descriptor.

communication descriptor associated with a sparse matrix has a state, which
can take the following values:

Build: State entered after the first allocation, and before the first assembly;
in this state it is possible to add communication requirements among
different processes.

Assembled: State entered after the assembly; computations using the associ-
ated sparse matrix, such as matrix-vector products, are only possible in
this state.

11

3.1.1 Descriptor Methods

3.1.2 get local rows — Get number of local rows

nr = desc%get_local_rows()

Type: Asynchronous.

On Entry

desc the communication descriptor.
Scope: local.

On Return

Function value The number of local rows, i.e. the number of rows owned by
the current process; as explained in 1, it is equal to |Ii|+ |Bi|. The returned
value is specific to the calling process.

3.1.3 get local cols — Get number of local cols

nc = desc%get_local_cols()

Type: Asynchronous.

On Entry

desc the communication descriptor.
Scope: local.

On Return

Function value The number of local cols, i.e. the number of indices used by the
current process, including both local and halo indices; as explained in 1, it
is equal to |Ii|+ |Bi|+ |Hi|. The returned value is specific to the calling
process.

3.1.4 get global rows — Get number of global rows

nr = desc%get_global_rows()

Type: Asynchronous.

On Entry

desc the communication descriptor.
Scope: local.

On Return

Function value The number of global rows, i.e. the size of the global index
space.

12

3.1.5 get global cols — Get number of global cols

nr = desc%get_global_cols()

Type: Asynchronous.

On Entry

desc the communication descriptor.
Scope: local.

On Return

Function value The number of global cols; usually this is equal to the number
of global rows.

3.1.6 get global indices — Get vector of global indices

myidx = desc%get_global_indices([owned])

Type: Asynchronous.

On Entry

desc the communication descriptor.
Scope: local.
Type: required.

owned Choose if you only want owned indices (owned=.true.) or also halo
indices (owned=.false.). Scope: local.
Type: optional; default: .true..

On Return

Function value The global indices, returned as an allocatable integer array of
kind psb_lpk_ and rank 1.

3.1.7 get context — Get communication context

ctxt = desc%get_context()

Type: Asynchronous.

On Entry

desc the communication descriptor.
Scope: local.

On Return

Function value The communication context.

13

3.1.8 Clone — clone current object

call desc%clone(descout,info)

Type: Asynchronous.

On Entry

desc the communication descriptor.
Scope: local.

On Return

descout A copy of the input object.

info Return code.

3.1.9 CNV — convert internal storage format

call desc%cnv(mold)

Type: Asynchronous.

On Entry

desc the communication descriptor.
Scope: local.

mold the desired integer storage format.
Scope: local.
Specified as: a object of type derived from (integer) psb T base vect type.

The mold arguments may be employed to interface with special devices, such as
GPUs and other accelerators.

3.1.10 psb cd get large threshold — Get threshold for index mapping switch

ith = psb_cd_get_large_threshold()

Type: Asynchronous.

On Return

Function value The current value for the size threshold.

3.1.11 psb cd set large threshold — Set threshold for index mapping switch

call psb_cd_set_large_threshold(ith)

Type: Synchronous.

On Entry

14

ith the new threshold for communication descriptors.
Scope: global.
Type: required.
Intent: in.
Specified as: an integer value greater than zero.

Note: the threshold value is only queried by the library at the time a call
to psb_cdall is executed, therefore changing the threshold has no effect on
communication descriptors that have already been initialized. Moreover the
threshold must have the same value on all processes.

3.1.12 get p adjcncy — Get process adjacency list

list = desc%get_p_adjcncy()

Type: Asynchronous.

On Return

Function value The current list of adjacent processes, i.e. processes with which
the current one has to exchange halo data.

3.1.13 set p adjcncy — Set process adjacency list

call desc%set_p_adjcncy(list)

Type: Asynchronous.

On Entry

list the list of adjacent processes.
Scope: local.
Type: required.
Intent: in.
Specified as: a one-dimensional array of integers of kind psb_ipk_.

Note: this method can be called after a call to psb_cdall and before a call
to psb_cdasb. The user is specifying here some knowledge about which pro-
cesses are topological neighbours of the current process. The availability of this
information may speed up the execution of the assembly call psb_cdasb.

3.1.14 fnd owner — Find the owner process of a set of indices

call desc%fnd_owner(idx,iprc,info)

Type: Synchronous.

On Entry

idx the list of global indices for which we need the owning processes.
Scope: local.
Type: required.
Intent: in.
Specified as: a one-dimensional array of integers of kind psb_lpk_.

15

On Return

iprc the list of processes owning the indices in idx.
Scope: local.
Type: required.
Intent: in.
Specified as: an allocatable one-dimensional array of integers of kind
psb_ipk_.

Note: this method may or may not actually require communications, depending
on the exact internal data storage; given that the choice of storage may be altered
by runtime parameters, it is necessary for safety that this method is called by all
processes.

3.1.15 Named Constants

psb none Generic no-op;

psb root Default root process for broadcast and scatter operations;

psb nohalo Do not fetch halo elements;

psb halo Fetch halo elements from neighbouring processes;

psb sum Sum overlapped elements

psb avg Average overlapped elements

psb comm halo Exchange data based on the halo_index list;

psb comm ext Exchange data based on the ext_index list;

psb comm ovr Exchange data based on the ovrlap_index list;

psb comm mov Exchange data based on the ovr_mst_idx list;

3.2 Sparse Matrix class

The psb Tspmat type class contains all information about the local portion of
the sparse matrix and its storage mode. Its design is based on the STATE design
pattern [13] as detailed in [11]; the type declaration is shown in figure 2 where T
is a placeholder for the data type and precision variants

S Single precision real;

D Double precision real;

C Single precision complex;

Z Double precision complex;

LS,LD,LC,LZ Same numeric type as above, but with psb_lpk_ integer indices.

16

type :: psb_Tspmat_type

class(psb_T_base_sparse_mat), allocatable :: a

end type psb_Tspmat_type

Listing 2: The PSBLAS defined data type that contains a sparse matrix.

The actual data is contained in the polymorphic component a%a of type psb T base sparse mat;
its specific layout can be chosen dynamically among the predefined types, or
an entirely new storage layout can be implemented and passed to the library
at runtime via the psb_spasb routine. The following very common formats are
precompiled in PSBLAS and thus are always available:

psb T coo sparse mat Coordinate storage;

psb T csr sparse mat Compressed storage by rows;

psb T csc sparse mat Compressed storage by columns;

The inner sparse matrix has an associated state, which can take the following
values:

Build: State entered after the first allocation, and before the first assembly; in
this state it is possible to add nonzero entries.

Assembled: State entered after the assembly; computations using the sparse
matrix, such as matrix-vector products, are only possible in this state;

Update: State entered after a reinitalization; this is used to handle applications
in which the same sparsity pattern is used multiple times with different
coefficients. In this state it is only possible to enter coefficients for already
existing nonzero entries.

The only storage variant supporting the build state is COO; all other variants
are obtained by conversion to/from it.

3.2.1 Sparse Matrix Methods

3.2.2 get nrows — Get number of rows in a sparse matrix

nr = a%get_nrows()

Type: Asynchronous.

On Entry

a the sparse matrix
Scope: local

On Return

Function value The number of rows of sparse matrix a.

17

3.2.3 get ncols — Get number of columns in a sparse matrix

nc = a%get_ncols()

Type: Asynchronous.

On Entry

a the sparse matrix
Scope: local

On Return

Function value The number of columns of sparse matrix a.

3.2.4 get nnzeros — Get number of nonzero elements in a sparse matrix

nz = a%get_nnzeros()

Type: Asynchronous.

On Entry

a the sparse matrix
Scope: local

On Return

Function value The number of nonzero elements stored in sparse matrix a.

Notes

1. The function value is specific to the storage format of matrix a; some
storage formats employ padding, thus the returned value for the same
matrix may be different for different storage choices.

3.2.5 get size — Get maximum number of nonzero elements in a sparse
matrix

maxnz = a%get_size()

Type: Asynchronous.

On Entry

a the sparse matrix
Scope: local

On Return

Function value The maximum number of nonzero elements that can be stored
in sparse matrix a using its current memory allocation.

18

3.2.6 sizeof — Get memory occupation in bytes of a sparse matrix

memory_size = a%sizeof()

Type: Asynchronous.

On Entry

a the sparse matrix
Scope: local

On Return

Function value The memory occupation in bytes.

3.2.7 get fmt — Short description of the dynamic type

write(*,*) a%get_fmt()

Type: Asynchronous.

On Entry

a the sparse matrix
Scope: local

On Return

Function value A short string describing the dynamic type of the matrix. Pre-
defined values include NULL, COO, CSR and CSC.

3.2.8 is bld, is upd, is asb — Status check

if (a%is_bld()) then

if (a%is_upd()) then

if (a%is_asb()) then

Type: Asynchronous.

On Entry

a the sparse matrix
Scope: local

On Return

Function value A logical value indicating whether the matrix is in the Build,
Update or Assembled state, respectively.

19

3.2.9 is lower, is upper, is triangle, is unit — Format check

if (a%is_triangle()) then

if (a%is_upper()) then

if (a%is_lower()) then

if (a%is_unit()) then

Type: Asynchronous.

On Entry

a the sparse matrix
Scope: local

On Return

Function value A logical value indicating whether the matrix is triangular; if
is_triangle() returns .true. check also if it is lower, upper and with a
unit (i.e. assumed) diagonal.

3.2.10 cscnv — Convert to a different storage format

call a%cscnv(b,info [, type, mold, dupl])

call a%cscnv(info [, type, mold, dupl])

Type: Asynchronous.

On Entry

a the sparse matrix.
A variable of type psb_Tspmat_type.
Scope: local.

type a string requesting a new format.
Type: optional.

mold a variable of class(psb_T_base_sparse_mat) requesting a new format.
Type: optional.

dupl an integer value specifing how to handle duplicates (see Named Constants
below)

On Return

b,a A copy of a with a new storage format.
A variable of type psb_Tspmat_type.

info Return code.

The mold arguments may be employed to interface with special devices, such as
GPUs and other accelerators.

20

3.2.11 csclip — Reduce to a submatrix

call a%csclip(b,info[,&

& imin,imax,jmin,jmax,rscale,cscale])

Returns the submatrix A(imin:imax,jmin:jmax), optionally rescaling row/-
col indices to the range 1:imax-imin+1,1:jmax-jmin+1.

Type: Asynchronous.

On Entry

a the sparse matrix.
A variable of type psb_Tspmat_type.
Scope: local.

imin,imax,jmin,jmax Minimum and maximum row and column indices.
Type: optional.

rscale,cscale Whether to rescale row/column indices. Type: optional.

On Return

b A copy of a submatrix of a.
A variable of type psb_Tspmat_type.

info Return code.

3.2.12 clean zeros — Eliminate zero coefficients

call a%clean_zeros(info)

Eliminates zero coefficients in the input matrix. Note that depending on the
internal storage format, there may still be some amount of zero padding in the
output.

Type: Asynchronous.

On Entry

a the sparse matrix.
A variable of type psb_Tspmat_type.
Scope: local.

On Return

a The matrix a without zero coefficients.
A variable of type psb_Tspmat_type.

info Return code.

21

3.2.13 get diag — Get main diagonal

call a%get_diag(d,info)

Returns a copy of the main diagonal.

Type: Asynchronous.

On Entry

a the sparse matrix.
A variable of type psb_Tspmat_type.
Scope: local.

On Return

d A copy of the main diagonal.
A one-dimensional array of the appropriate type.

info Return code.

3.2.14 clip diag — Cut out main diagonal

call a%clip_diag(b,info)

Returns a copy of a without the main diagonal.

Type: Asynchronous.

On Entry

a the sparse matrix.
A variable of type psb_Tspmat_type.
Scope: local.

On Return

b A copy of a without the main diagonal.
A variable of type psb_Tspmat_type.

info Return code.

3.2.15 tril — Return the lower triangle

call a%tril(l,info[,&

& diag,imin,imax,jmin,jmax,rscale,cscale,u])

Returns the lower triangular part of submatrix A(imin:imax,jmin:jmax),
optionally rescaling row/col indices to the range 1:imax-imin+1,1:jmax-jmin+1
and returing the complementary upper triangle.

Type: Asynchronous.

On Entry

22

a the sparse matrix.
A variable of type psb_Tspmat_type.
Scope: local.

diag Include diagonals up to this one; diag=1 means the first superdiagonal,
diag=-1 means the first subdiagonal. Default 0.

imin,imax,jmin,jmax Minimum and maximum row and column indices.
Type: optional.

rscale,cscale Whether to rescale row/column indices. Type: optional.

On Return

l A copy of the lower triangle of a.
A variable of type psb_Tspmat_type.

u (optional) A copy of the upper triangle of a.
A variable of type psb_Tspmat_type.

info Return code.

3.2.16 triu — Return the upper triangle

call a%triu(u,info[,&

& diag,imin,imax,jmin,jmax,rscale,cscale,l])

Returns the upper triangular part of submatrix A(imin:imax,jmin:jmax),
optionally rescaling row/col indices to the range 1:imax-imin+1,1:jmax-jmin+1,
and returing the complementary lower triangle.

Type: Asynchronous.

On Entry

a the sparse matrix.
A variable of type psb_Tspmat_type.
Scope: local.

diag Include diagonals up to this one; diag=1 means the first superdiagonal,
diag=-1 means the first subdiagonal. Default 0.

imin,imax,jmin,jmax Minimum and maximum row and column indices.
Type: optional.

rscale,cscale Whether to rescale row/column indices. Type: optional.

On Return

u A copy of the upper triangle of a.
A variable of type psb_Tspmat_type.

l (optional) A copy of the lower triangle of a.
A variable of type psb_Tspmat_type.

info Return code.

23

3.2.17 psb set mat default — Set default storage format

call psb_set_mat_default(a)

Type: Asynchronous.

On Entry

a a variable of class(psb_T_base_sparse_mat) requesting a new default stor-
age format.
Type: required.

3.2.18 clone — Clone current object

call a%clone(b,info)

Type: Asynchronous.

On Entry

a the sparse matrix.
Scope: local.

On Return

b A copy of the input object.

info Return code.

3.2.19 Named Constants

psb dupl ovwrt Duplicate coefficients should be overwritten (i.e. ignore du-
plications)

psb dupl add Duplicate coefficients should be added;

psb dupl err Duplicate coefficients should trigger an error conditino

psb upd dflt Default update strategy for matrix coefficients;

psb upd srch Update strategy based on search into the data structure;

psb upd perm Update strategy based on additional permutation data (see
tools routine description).

3.3 Dense Vector Data Structure

The psb T vect type data structure encapsulates the dense vectors in a way
similar to sparse matrices, i.e. including a base type psb T base vect type. The
user will not, in general, access the vector components directly, but rather via
the routines of sec. 6. Among other simple things, we define here an extraction
method that can be used to get a full copy of the part of the vector stored on the
local process.

The type declaration is shown in figure 3 where T is a placeholder for the
data type and precision variants

24

I Integer;

S Single precision real;

D Double precision real;

C Single precision complex;

Z Double precision complex.

The actual data is contained in the polymorphic component v%v; the separation
between the application and the actual data is essential for cases where it is
necessary to link to data storage made available elsewhere outside the direct
control of the compiler/application, e.g. data stored in a graphics accelerator’s
private memory.

type psb_T_base_vect_type

TYPE(KIND_), allocatable :: v(:)

end type psb_T_base_vect_type

type psb_T_vect_type

class(psb_T_base_vect_type), allocatable :: v

end type psb_T_vect_type

Listing 3: The PSBLAS defined data type that contains a dense vector.

3.3.1 Vector Methods

3.3.2 get nrows — Get number of rows in a dense vector

nr = v%get_nrows()

Type: Asynchronous.

On Entry

v the dense vector
Scope: local

On Return

Function value The number of rows of dense vector v.

3.3.3 sizeof — Get memory occupation in bytes of a dense vector

memory_size = v%sizeof()

Type: Asynchronous.

On Entry

25

v the dense vector
Scope: local

On Return

Function value The memory occupation in bytes.

3.3.4 set — Set contents of the vector

call v%set(alpha[,first,last])

call v%set(vect[,first,last])

call v%zero()

Type: Asynchronous.

On Entry

v the dense vector
Scope: local

alpha A scalar value.
Scope: local
Type: required
Intent: in.
Specified as: a number of the data type indicated in Table 1.

first,last Boundaries for setting in the vector.
Scope: local
Type: optional
Intent: in.
Specified as: integers.

vect An array
Scope: local
Type: required
Intent: in.
Specified as: a number of the data type indicated in Table 1.

Note that a call to v%zero() is provided as a shorthand, but is equivalent to a
call to v%set(zero) with the zero constant having the appropriate type and
kind.

On Return

v the dense vector, with updated entries
Scope: local

26

3.3.5 get vect — Get a copy of the vector contents

extv = v%get_vect([n])

Type: Asynchronous.

On Entry

v the dense vector
Scope: local

n Size to be returned
Scope: local.
Type: optional; default: entire vector.

On Return

Function value An allocatable array holding a copy of the dense vector con-
tents. If the argument n is specified, the size of the returned array equals
the minimum between n and the internal size of the vector, or 0 if n is
negative; otherwise, the size of the array is the same as the internal size of
the vector.

3.3.6 clone — Clone current object

call x%clone(y,info)

Type: Asynchronous.

On Entry

x the dense vector.
Scope: local.

On Return

y A copy of the input object.

info Return code.

3.4 Preconditioner data structure

Our base library offers support for simple well known preconditioners like
Diagonal Scaling or Block Jacobi with incomplete factorization ILU(0).

A preconditioner is held in the psb Tprec type data structure reported in
figure 4. The psb_Tprec_type data type may contain a simple preconditioning
matrix with the associated communication descriptor. The internal precondi-
tioner is allocated appropriately with the dynamic type corresponding to the
desired preconditioner.

27

type psb_Tprec_type

class(psb_T_base_prec_type), allocatable :: prec

end type psb_Tprec_type

Listing 4: The PSBLAS defined data type that contains a preconditioner.

3.5 Heap data structure

Among the tools routines of sec. 6, we have a number of sorting utilities; the
heap sort is implemented in terms of heaps having the following signatures:

psb T heap : a heap containing elements of type T, where T can be i,s,c,d,z

for integer, real and complex data;

psb T idx heap : a heap containing elements of type T, as above, together with
an integer index.

Given a heap object, the following methods are defined on it:

init Initialize memory; also choose ascending or descending order;

howmany Current heap occupancy;

insert Add an item (or an item and its index);

get first Remove and return the first element;

dump Print on file;

free Release memory.

These objects are used to implement the factorization and approximate inversion
algorithms.

28

4 Computational routines

29

4.1 psb geaxpby — General Dense Matrix Sum

This subroutine is an interface to the computational kernel for dense matrix
sum:

y← α x + βy

call psb_geaxpby(alpha, x, beta, y, desc_a, info)

x, y, α, β Subroutine
Short Precision Real psb geaxpby
Long Precision Real psb geaxpby
Short Precision Complex psb geaxpby
Long Precision Complex psb geaxpby

Table 1: Data types

Type: Synchronous.

On Entry

alpha the scalar α.
Scope: global
Type: required
Intent: in.
Specified as: a number of the data type indicated in Table 1.

x the local portion of global dense matrix x.
Scope: local
Type: required
Intent: in.
Specified as: a rank one or two array or an object of type psb T vect type

containing numbers of type specified in Table 1. The rank of x must be
the same of y.

beta the scalar β.
Scope: global
Type: required
Intent: in.
Specified as: a number of the data type indicated in Table 1.

y the local portion of the global dense matrix y.
Scope: local
Type: required
Intent: inout.
Specified as: a rank one or two array or an object of type psb T vect type

containing numbers of the type indicated in Table 1. The rank of y must
be the same of x.

desc a contains data structures for communications.
Scope: local
Type: required

30

Intent: in.
Specified as: an object of type psb desc type.

On Return

y the local portion of result submatrix y.
Scope: local
Type: required
Intent: inout.
Specified as: a rank one or two array or an object of type psb T vect type

containing numbers of the type indicated in Table 1.

info Error code.
Scope: local
Type: required
Intent: out.
An integer value; 0 means no error has been detected.

31

4.2 psb gedot — Dot Product

This function computes dot product between two vectors x and y.
If x and y are real vectors it computes dot-product as:

dot← xTy

Else if x and y are complex vectors then it computes dot-product as:

dot← xHy

psb_gedot(x, y, desc_a, info [,global])

dot, x, y Function
Short Precision Real psb gedot
Long Precision Real psb gedot
Short Precision Complex psb gedot
Long Precision Complex psb gedot

Table 2: Data types

Type: Synchronous.

On Entry

x the local portion of global dense matrix x.
Scope: local
Type: required
Intent: in.
Specified as: a rank one or two array or an object of type psb T vect type

containing numbers of type specified in Table 2. The rank of x must be
the same of y.

y the local portion of global dense matrix y.
Scope: local
Type: required
Intent: in.
Specified as: a rank one or two array or an object of type psb T vect type

containing numbers of type specified in Table 2. The rank of y must be the
same of x.

desc a contains data structures for communications.
Scope: local
Type: required
Intent: in.
Specified as: an object of type psb desc type.

global Specifies whether the computation should include the global reduction
across all processes.
Scope: global
Type: optional.

32

Intent: in.
Specified as: a logical scalar. Default: global=.true.

On Return

Function value is the dot product of vectors x and y.
Scope: global unless the optional variable global=.false. has been spec-
ified
Specified as: a number of the data type indicated in Table 2.

info Error code.
Scope: local
Type: required
Intent: out.
An integer value; 0 means no error has been detected.

Notes

1. The computation of a global result requires a global communication, which
entails a significant overhead. It may be necessary and/or advisable to
compute multiple dot products at the same time; in this case, it is possible
to improve the runtime efficiency by using the following scheme:

vres(1) = psb_gedot(x1,y1,desc_a,info,global=.false.)

vres(2) = psb_gedot(x2,y2,desc_a,info,global=.false.)

vres(3) = psb_gedot(x3,y3,desc_a,info,global=.false.)

call psb_sum(ctxt,vres(1:3))

In this way the global communication, which for small sizes is a latency-
bound operation, is invoked only once.

33

4.3 psb gedots — Generalized Dot Product

This subroutine computes a series of dot products among the columns of two
dense matrices x and y:

res(i)← x(:, i)Ty(:, i)

If the matrices are complex, then the usual convention applies, i.e. the conjugate
transpose of x is used. If x and y are of rank one, then res is a scalar, else it is a
rank one array.

call psb_gedots(res, x, y, desc_a, info)

res, x, y Subroutine
Short Precision Real psb gedots
Long Precision Real psb gedots
Short Precision Complex psb gedots
Long Precision Complex psb gedots

Table 3: Data types

Type: Synchronous.

On Entry

x the local portion of global dense matrix x.
Scope: local
Type: required
Intent: in.
Specified as: a rank one or two array or an object of type psb T vect type

containing numbers of type specified in Table 3. The rank of x must be
the same of y.

y the local portion of global dense matrix y.
Scope: local
Type: required
Intent: in.
Specified as: a rank one or two array or an object of type psb T vect type

containing numbers of type specified in Table 3. The rank of y must be the
same of x.

desc a contains data structures for communications.
Scope: local
Type: required
Intent: in.
Specified as: an object of type psb desc type.

On Return

res is the dot product of vectors x and y.
Scope: global
Intent: out.
Specified as: a number or a rank-one array of the data type indicated in
Table 2.

34

info Error code.
Scope: local
Type: required
Intent: out.
An integer value; 0 means no error has been detected.

35

4.4 psb normi — Infinity-Norm of Vector

This function computes the infinity-norm of a vector x.
If x is a real vector it computes infinity norm as:

amax ← max
i
|xi|

else if x is a complex vector then it computes the infinity-norm as:

amax ← max
i

(|re(xi)|+ |im(xi)|)

psb_geamax(x, desc_a, info [,global])

psb_normi(x, desc_a, info [,global])

amax x Function
Short Precision Real Short Precision Real psb geamax
Long Precision Real Long Precision Real psb geamax
Short Precision Real Short Precision Complex psb geamax
Long Precision Real Long Precision Complex psb geamax

Table 4: Data types

Type: Synchronous.

On Entry

x the local portion of global dense matrix x.
Scope: local
Type: required
Intent: in.
Specified as: a rank one or two array or an object of type psb T vect type

containing numbers of type specified in Table 4.

desc a contains data structures for communications.
Scope: local
Type: required
Intent: in.
Specified as: an object of type psb desc type.

global Specifies whether the computation should include the global reduction
across all processes.
Scope: global
Type: optional.
Intent: in.
Specified as: a logical scalar. Default: global=.true.

On Return

Function value is the infinity norm of vector x.
Scope: global unless the optional variable global=.false. has been spec-
ified
Specified as: a long precision real number.

36

info Error code.
Scope: local
Type: required
Intent: out.
An integer value; 0 means no error has been detected.

Notes

1. The computation of a global result requires a global communication, which
entails a significant overhead. It may be necessary and/or advisable to
compute multiple norms at the same time; in this case, it is possible to
improve the runtime efficiency by using the following scheme:

vres(1) = psb_geamax(x1,desc_a,info,global=.false.)

vres(2) = psb_geamax(x2,desc_a,info,global=.false.)

vres(3) = psb_geamax(x3,desc_a,info,global=.false.)

call psb_amx(ctxt,vres(1:3))

In this way the global communication, which for small sizes is a latency-
bound operation, is invoked only once.

37

4.5 psb geamaxs — Generalized Infinity Norm

This subroutine computes a series of infinity norms on the columns of a dense
matrix x:

res(i)← max
k
|x(k, i)|

call psb_geamaxs(res, x, desc_a, info)

res x Subroutine
Short Precision Real Short Precision Real psb geamaxs
Long Precision Real Long Precision Real psb geamaxs
Short Precision Real Short Precision Complex psb geamaxs
Long Precision Real Long Precision Complex psb geamaxs

Table 5: Data types

Type: Synchronous.

On Entry

x the local portion of global dense matrix x.
Scope: local
Type: required
Intent: in.
Specified as: a rank one or two array or an object of type psb T vect type

containing numbers of type specified in Table 5.

desc a contains data structures for communications.
Scope: local
Type: required
Intent: in.
Specified as: an object of type psb desc type.

On Return

res is the infinity norm of the columns of x.
Scope: global
Intent: out.
Specified as: a number or a rank-one array of long precision real numbers.

info Error code.
Scope: local
Type: required
Intent: out.
An integer value; 0 means no error has been detected.

38

4.6 psb norm1 — 1-Norm of Vector

This function computes the 1-norm of a vector x.
If x is a real vector it computes 1-norm as:

asum← ∥xi∥

else if x is a complex vector then it computes 1-norm as:

asum← ∥re(x)∥1 + ∥im(x)∥1

psb_geasum(x, desc_a, info [,global]) psb_norm1(x, desc_a, info [,global])

asum x Function
Short Precision Real Short Precision Real psb geasum
Long Precision Real Long Precision Real psb geasum
Short Precision Real Short Precision Complex psb geasum
Long Precision Real Long Precision Complex psb geasum

Table 6: Data types

Type: Synchronous.

On Entry

x the local portion of global dense matrix x.
Scope: local
Type: required
Intent: in.
Specified as: a rank one or two array or an object of type psb T vect type

containing numbers of type specified in Table 6.

desc a contains data structures for communications.
Scope: local
Type: required
Intent: in.
Specified as: an object of type psb desc type.

global Specifies whether the computation should include the global reduction
across all processes.
Scope: global
Type: optional.
Intent: in.
Specified as: a logical scalar. Default: global=.true.

On Return

Function value is the 1-norm of vector x.
Scope: global unless the optional variable global=.false. has been spec-
ified
Specified as: a long precision real number.

39

info Error code.
Scope: local
Type: required
Intent: out.
An integer value; 0 means no error has been detected.

Notes

1. The computation of a global result requires a global communication, which
entails a significant overhead. It may be necessary and/or advisable to
compute multiple norms at the same time; in this case, it is possible to
improve the runtime efficiency by using the following scheme:

vres(1) = psb_geasum(x1,desc_a,info,global=.false.)

vres(2) = psb_geasum(x2,desc_a,info,global=.false.)

vres(3) = psb_geasum(x3,desc_a,info,global=.false.)

call psb_sum(ctxt,vres(1:3))

In this way the global communication, which for small sizes is a latency-
bound operation, is invoked only once.

40

4.7 psb geasums — Generalized 1-Norm of Vector

This subroutine computes a series of 1-norms on the columns of a dense matrix
x:

res(i)← max
k
|x(k, i)|

This function computes the 1-norm of a vector x.
If x is a real vector it computes 1-norm as:

res(i)← ∥xi∥

else if x is a complex vector then it computes 1-norm as:

res(i)← ∥re(x)∥1 + ∥im(x)∥1

call psb_geasums(res, x, desc_a, info)

res x Subroutine
Short Precision Real Short Precision Real psb geasums
Long Precision Real Long Precision Real psb geasums
Short Precision Real Short Precision Complex psb geasums
Long Precision Real Long Precision Complex psb geasums

Table 7: Data types

Type: Synchronous.

On Entry

x the local portion of global dense matrix x.
Scope: local
Type: required
Intent: in.
Specified as: a rank one or two array or an object of type psb T vect type

containing numbers of type specified in Table 7.

desc a contains data structures for communications.
Scope: local
Type: required
Intent: in.
Specified as: an object of type psb desc type.

On Return

res contains the 1-norm of (the columns of) x.
Scope: global
Intent: out.
Short as: a long precision real number. Specified as: a long precision real
number.

41

info Error code.
Scope: local
Type: required
Intent: out.
An integer value; 0 means no error has been detected.

42

4.8 psb norm2 — 2-Norm of Vector

This function computes the 2-norm of a vector x.
If x is a real vector it computes 2-norm as:

nrm2←
√

xTx

else if x is a complex vector then it computes 2-norm as:

nrm2←
√

xHx

nrm2 x Function
Short Precision Real Short Precision Real psb genrm2
Long Precision Real Long Precision Real psb genrm2
Short Precision Real Short Precision Complex psb genrm2
Long Precision Real Long Precision Complex psb genrm2

Table 8: Data types

psb_genrm2(x, desc_a, info [,global])

psb_norm2(x, desc_a, info [,global])

Type: Synchronous.

On Entry

x the local portion of global dense matrix x.
Scope: local
Type: required
Intent: in.
Specified as: a rank one or two array or an object of type psb T vect type

containing numbers of type specified in Table 8.

desc a contains data structures for communications.
Scope: local
Type: required
Intent: in.
Specified as: an object of type psb desc type.

global Specifies whether the computation should include the global reduction
across all processes.
Scope: global
Type: optional.
Intent: in.
Specified as: a logical scalar. Default: global=.true.

On Return

43

Function Value is the 2-norm of vector x.
Scope: global unless the optional variable global=.false. has been spec-
ified
Type: required
Specified as: a long precision real number.

info Error code.
Scope: local
Type: required
Intent: out.
An integer value; 0 means no error has been detected.

Notes

1. The computation of a global result requires a global communication, which
entails a significant overhead. It may be necessary and/or advisable to
compute multiple norms at the same time; in this case, it is possible to
improve the runtime efficiency by using the following scheme:

vres (1) = psb genrm2 (x1 , desc a , info , g loba l = . f a l s e .)
vres (2) = psb genrm2 (x2 , desc a , info , g loba l = . f a l s e .)
vres (3) = psb genrm2 (x3 , desc a , info , g loba l = . f a l s e .)
c a l l psb nrm2 (c t x t , vres (1 : 3))

In this way the global communication, which for small sizes is a latency-
bound operation, is invoked only once.

44

4.9 psb genrm2s — Generalized 2-Norm of Vector

This subroutine computes a series of 2-norms on the columns of a dense matrix
x:

res(i)← ∥x(:, i)∥2

call psb_genrm2s(res, x, desc_a, info)

res x Subroutine
Short Precision Real Short Precision Real psb genrm2s
Long Precision Real Long Precision Real psb genrm2s
Short Precision Real Short Precision Complex psb genrm2s
Long Precision Real Long Precision Complex psb genrm2s

Table 9: Data types

Type: Synchronous.

On Entry

x the local portion of global dense matrix x.
Scope: local
Type: required
Intent: in.
Specified as: a rank one or two array or an object of type psb T vect type

containing numbers of type specified in Table 9.

desc a contains data structures for communications.
Scope: local
Type: required
Intent: in.
Specified as: an object of type psb desc type.

On Return

res contains the 1-norm of (the columns of) x.
Scope: global
Intent: out.
Specified as: a long precision real number.

info Error code.
Scope: local
Type: required
Intent: out.
An integer value; 0 means no error has been detected.

45

4.10 psb norm1 — 1-Norm of Sparse Matrix

This function computes the 1-norm of a matrix A:

nrm1← ∥A∥1

where:

A represents the global matrix A

A Function
Short Precision Real psb spnrm1
Long Precision Real psb spnrm1
Short Precision Complex psb spnrm1
Long Precision Complex psb spnrm1

Table 10: Data types

psb_spnrm1(A, desc_a, info)

psb_norm1(A, desc_a, info)

Type: Synchronous.

On Entry

a the local portion of the global sparse matrix A.
Scope: local
Type: required
Intent: in.
Specified as: an object of type psb Tspmat type.

desc a contains data structures for communications.
Scope: local
Type: required
Intent: in.
Specified as: an object of type psb desc type.

On Return

Function value is the 1-norm of sparse submatrix A.
Scope: global
Specified as: a long precision real number.

info Error code.
Scope: local
Type: required
Intent: out.
An integer value; 0 means no error has been detected.

46

4.11 psb normi — Infinity Norm of Sparse Matrix

This function computes the infinity-norm of a matrix A:

nrmi← ∥A∥∞

where:

A represents the global matrix A

A Function
Short Precision Real psb spnrmi
Long Precision Real psb spnrmi
Short Precision Complex psb spnrmi
Long Precision Complex psb spnrmi

Table 11: Data types

psb_spnrmi(A, desc_a, info)

psb_normi(A, desc_a, info)

Type: Synchronous.

On Entry

a the local portion of the global sparse matrix A.
Scope: local
Type: required
Intent: in.
Specified as: an object of type psb Tspmat type.

desc a contains data structures for communications.
Scope: local
Type: required
Intent: in.
Specified as: an object of type psb desc type.

On Return

Function value is the infinity-norm of sparse submatrix A.
Scope: global
Specified as: a long precision real number.

info Error code.
Scope: local
Type: required
Intent: out.
An integer value; 0 means no error has been detected.

47

4.12 psb spmm — Sparse Matrix by Dense Matrix Product

This subroutine computes the Sparse Matrix by Dense Matrix Product:

y← αAx + βy (1)

y← αATx + βy (2)

y← αAHx + βy (3)

where:

x is the global dense matrix x:,:

y is the global dense matrix y:,:

A is the global sparse matrix A

A, x, y, α, β Subroutine
Short Precision Real psb spmm
Long Precision Real psb spmm
Short Precision Complex psb spmm
Long Precision Complex psb spmm

Table 12: Data types

call psb_spmm(alpha, a, x, beta, y, desc_a, info)

call psb_spmm(alpha, a, x, beta, y,desc_a, info, trans, work)

Type: Synchronous.

On Entry

alpha the scalar α.
Scope: global
Type: required
Intent: in.
Specified as: a number of the data type indicated in Table 12.

a the local portion of the sparse matrix A.
Scope: local
Type: required
Intent: in.
Specified as: an object of type psb Tspmat type.

x the local portion of global dense matrix x.
Scope: local
Type: required
Intent: in.
Specified as: a rank one or two array or an object of type psb T vect type

containing numbers of type specified in Table 12. The rank of x must be
the same of y.

48

beta the scalar β.
Scope: global
Type: required
Intent: in.
Specified as: a number of the data type indicated in Table 12.

y the local portion of global dense matrix y.
Scope: local
Type: required
Intent: inout.
Specified as: a rank one or two array or an object of type psb T vect type

containing numbers of type specified in Table 12. The rank of y must be
the same of x.

desc a contains data structures for communications.
Scope: local
Type: required
Intent: in.
Specified as: an object of type psb desc type.

trans indicates what kind of operation to perform.

trans = N the operation is specified by equation 1
trans = T the operation is specified by equation 2
trans = C the operation is specified by equation 3

Scope: global
Type: optional
Intent: in.
Default: trans = N
Specified as: a character variable.

work work array.
Scope: local
Type: optional
Intent: inout.
Specified as: a rank one array of the same type of x and y with the TARGET
attribute.

On Return

y the local portion of result matrix y.
Scope: local
Type: required
Intent: inout.
Specified as: an array of rank one or two containing numbers of type
specified in Table 12.

info Error code.
Scope: local
Type: required
Intent: out.
An integer value; 0 means no error has been detected.

49

4.13 psb spsm — Triangular System Solve

This subroutine computes the Triangular System Solve:

y ← αT−1x + βy

y ← αDT−1x + βy

y ← αT−1Dx + βy

y ← αT−Tx + βy

y ← αDT−Tx + βy

y ← αT−T Dx + βy

y ← αT−Hx + βy

y ← αDT−Hx + βy

y ← αT−H Dx + βy

where:

x is the global dense matrix x:,:

y is the global dense matrix y:,:

T is the global sparse block triangular submatrix T

D is the scaling diagonal matrix.

call psb_spsm(alpha, t, x, beta, y, desc_a, info)

call psb_spsm(alpha, t, x, beta, y, desc_a, info, trans, unit, choice, diag, work)

T, x, y, D, α, β Subroutine
Short Precision Real psb spsm
Long Precision Real psb spsm
Short Precision Complex psb spsm
Long Precision Complex psb spsm

Table 13: Data types

Type: Synchronous.

On Entry

alpha the scalar α.
Scope: global
Type: required
Intent: in.
Specified as: a number of the data type indicated in Table 13.

50

t the global portion of the sparse matrix T.
Scope: local
Type: required
Intent: in.
Specified as: an object type specified in § 3.

x the local portion of global dense matrix x.
Scope: local
Type: required
Intent: in.
Specified as: a rank one or two array or an object of type psb T vect type

containing numbers of type specified in Table 13. The rank of x must be
the same of y.

beta the scalar β.
Scope: global
Type: required
Intent: in.
Specified as: a number of the data type indicated in Table 13.

y the local portion of global dense matrix y.
Scope: local
Type: required
Intent: inout.
Specified as: a rank one or two array or an object of type psb T vect type

containing numbers of type specified in Table 13. The rank of y must be
the same of x.

desc a contains data structures for communications.
Scope: local
Type: required
Intent: in.
Specified as: an object of type psb desc type.

trans specify with unitd the operation to perform.

trans = ’N’ the operation is with no transposed matrix

trans = ’T’ the operation is with transposed matrix.

trans = ’C’ the operation is with conjugate transposed matrix.

Scope: global
Type: optional
Intent: in.
Default: trans = N
Specified as: a character variable.

unitd specify with trans the operation to perform.

unitd = ’U’ the operation is with no scaling

unitd = ’L’ the operation is with left scaling

unitd = ’R’ the operation is with right scaling.

51

Scope: global
Type: optional
Intent: in.
Default: unitd = U
Specified as: a character variable.

choice specifies the update of overlap elements to be performed on exit:

psb_none_

psb_sum_

psb_avg_

psb_square_root_

Scope: global
Type: optional
Intent: in.
Default: psb_avg_
Specified as: an integer variable.

diag the diagonal scaling matrix.
Scope: local
Type: optional
Intent: in.
Default: diag(1) = 1(noscaling)
Specified as: a rank one array containing numbers of the type indicated in
Table 13.

work a work array.
Scope: local
Type: optional
Intent: inout.
Specified as: a rank one array of the same type of x with the TARGET
attribute.

On Return

y the local portion of global dense matrix y.
Scope: local
Type: required
Intent: inout.
Specified as: an array of rank one or two containing numbers of type
specified in Table 13.

info Error code.
Scope: local
Type: required
Intent: out.
An integer value; 0 means no error has been detected.

52

4.14 psb gemlt — Entrywise Product

This function computes the entrywise product between two vectors x and y

dot← x(i)y(i).

psb_gemlt(x, y, desc_a, info)

dot, x, y Function
Short Precision Real psb gemlt
Long Precision Real psb gemlt
Short Precision Complex psb gemlt
Long Precision Complex psb gemlt

Table 14: Data types

Type: Synchronous.

On Entry

x the local portion of global dense vector x.
Scope: local
Type: required
Intent: in.
Specified as: an object of type psb T vect type containing numbers of
type specified in Table 2.

y the local portion of global dense vector y.
Scope: local
Type: required
Intent: in.
Specified as: an object of type psb T vect type containing numbers of
type specified in Table 2.

desc a contains data structures for communications.
Scope: local
Type: required
Intent: in.
Specified as: an object of type psb desc type.

On Return

y the local portion of result submatrix y.
Scope: local
Type: required
Intent: inout.
Specified as: an object of type psb T vect type containing numbers of the
type indicated in Table 14.

info Error code.
Scope: local
Type: required

53

Intent: out.
An integer value; 0 means no error has been detected.

54

4.15 psb gediv — Entrywise Division

This function computes the entrywise division between two vectors x and y

/← x(i)/y(i).

psb_gediv(x, y, desc_a, info, [flag)

/, x, y Function
Short Precision Real psb gediv
Long Precision Real psb gediv
Short Precision Complex psb gediv
Long Precision Complex psb gediv

Table 15: Data types

Type: Synchronous.

On Entry

x the local portion of global dense vector x.
Scope: local
Type: required
Intent: in.
Specified as: an object of type psb T vect type containing numbers of
type specified in Table 2.

y the local portion of global dense vector y.
Scope: local
Type: required
Intent: in.
Specified as: an object of type psb T vect type containing numbers of
type specified in Table 2.

desc a contains data structures for communications.
Scope: local
Type: required
Intent: in.
Specified as: an object of type psb desc type.

flag check if any of the y(i) = 0, and in case returns error halting the computa-
tion.
Scope: local
Type: optional Intent: in.
Specified as: the logical value flag=.true.

On Return

x the local portion of result submatrix x.
Scope: local
Type: required
Intent: inout.

55

Specified as: an object of type psb T vect type containing numbers of the
type indicated in Table 14.

info Error code.
Scope: local
Type: required
Intent: out.
An integer value; 0 means no error has been detected.

56

4.16 psb geinv — Entrywise Inversion

This function computes the entrywise inverse of a vector x and puts it into y

/← 1/x(i).

psb_geinv(x, y, desc_a, info, [flag)

/, x, y Function
Short Precision Real psb geinv
Long Precision Real psb geinv
Short Precision Complex psb geinv
Long Precision Complex psb geinv

Table 16: Data types

Type: Synchronous.

On Entry

x the local portion of global dense vector x.
Scope: local
Type: required
Intent: in.
Specified as: an object of type psb T vect type containing numbers of
type specified in Table 2.

desc a contains data structures for communications.
Scope: local
Type: required
Intent: in.
Specified as: an object of type psb desc type.

flag check if any of the x(i) = 0, and in case returns error halting the computa-
tion.
Scope: local
Type: optional Intent: in.
Specified as: the logical value flag=.true.

On Return

y the local portion of result submatrix x.
Scope: local
Type: required
Intent: out.
Specified as: an object of type psb T vect type containing numbers of the
type indicated in Table 16.

info Error code.
Scope: local
Type: required
Intent: out.
An integer value; 0 means no error has been detected.

57

5 Communication routines

The routines in this chapter implement various global communication operators
on vectors associated with a discretization mesh. For auxiliary communication
routines not tied to a discretization space see 6.

58

5.1 psb halo — Halo Data Communication

These subroutines gathers the values of the halo elements:

x ← x

where:

x is a global dense submatrix.

α, x Subroutine
Integer psb halo
Short Precision Real psb halo
Long Precision Real psb halo
Short Precision Complex psb halo
Long Precision Complex psb halo

Table 17: Data types

call psb_halo(x, desc_a, info)

call psb_halo(x, desc_a, info, work, data)

Type: Synchronous.

On Entry

x global dense matrix x.
Scope: local
Type: required
Intent: inout.
Specified as: a rank one or two array or an object of type psb T vect type

containing numbers of type specified in Table 17.

desc a contains data structures for communications.
Scope: local
Type: required
Intent: in.
Specified as: a structured data of type psb desc type.

work the work array.
Scope: local
Type: optional
Intent: inout.
Specified as: a rank one array of the same type of x.

data index list selector.
Scope: global
Type: optional
Specified as: an integer. Values:psb_comm_halo_,psb_comm_mov_, psb_comm_ext_,
default: psb_comm_halo_. Chooses the index list on which to base the data
exchange.

59

On Return

x global dense result matrix x.
Scope: local
Type: required
Intent: inout.
Returned as: a rank one or two array containing numbers of type specified
in Table 17.

info the local portion of result submatrix y.
Scope: local
Type: required
Intent: out.
An integer value that contains an error code.

1 2 3 4 5 6 7 8

6463626160595857

3225

33 40

P1

P0

Figure 3: Sample discretization mesh.

Usage Example Consider the discretization mesh depicted in fig. 3, parti-
tioned among two processes as shown by the dashed line; the data distribution
is such that each process will own 32 entries in the index space, with a halo
made of 8 entries placed at local indices 33 through 40. If process 0 assigns
an initial value of 1 to its entries in the x vector, and process 1 assigns a value
of 2, then after a call to psb_halo the contents of the local vectors will be the
following:

60

Process 0 Process 1
I GLOB(I) X(I) I GLOB(I) X(I)
1 1 1.0 1 33 2.0
2 2 1.0 2 34 2.0
3 3 1.0 3 35 2.0
4 4 1.0 4 36 2.0
5 5 1.0 5 37 2.0
6 6 1.0 6 38 2.0
7 7 1.0 7 39 2.0
8 8 1.0 8 40 2.0
9 9 1.0 9 41 2.0

10 10 1.0 10 42 2.0
11 11 1.0 11 43 2.0
12 12 1.0 12 44 2.0
13 13 1.0 13 45 2.0
14 14 1.0 14 46 2.0
15 15 1.0 15 47 2.0
16 16 1.0 16 48 2.0
17 17 1.0 17 49 2.0
18 18 1.0 18 50 2.0
19 19 1.0 19 51 2.0
20 20 1.0 20 52 2.0
21 21 1.0 21 53 2.0
22 22 1.0 22 54 2.0
23 23 1.0 23 55 2.0
24 24 1.0 24 56 2.0
25 25 1.0 25 57 2.0
26 26 1.0 26 58 2.0
27 27 1.0 27 59 2.0
28 28 1.0 28 60 2.0
29 29 1.0 29 61 2.0
30 30 1.0 30 62 2.0
31 31 1.0 31 63 2.0
32 32 1.0 32 64 2.0
33 33 2.0 33 25 1.0
34 34 2.0 34 26 1.0
35 35 2.0 35 27 1.0
36 36 2.0 36 28 1.0
37 37 2.0 37 29 1.0
38 38 2.0 38 30 1.0
39 39 2.0 39 31 1.0
40 40 2.0 40 32 1.0

61

5.2 psb ovrl — Overlap Update

These subroutines applies an overlap operator to the input vector:

x ← Qx

where:

x is the global dense submatrix x

Q is the overlap operator; it is the composition of two operators Pa and PT .

x Subroutine
Short Precision Real psb ovrl
Long Precision Real psb ovrl
Short Precision Complex psb ovrl
Long Precision Complex psb ovrl

Table 18: Data types

call psb_ovrl(x, desc_a, info)

call psb_ovrl(x, desc_a, info, update=update_type, work=work)

Type: Synchronous.

On Entry

x global dense matrix x.
Scope: local
Type: required
Intent: inout.
Specified as: a rank one or two array or an object of type psb T vect type

containing numbers of type specified in Table 18.

desc a contains data structures for communications.
Scope: local
Type: required
Intent: in.
Specified as: a structured data of type psb desc type.

update Update operator.

update = psb none Do nothing;

update = psb add Sum overlap entries, i.e. apply PT ;

update = psb avg Average overlap entries, i.e. apply PaPT ;

Scope: global
Intent: in.
Default: update type = psb avg
Scope: global
Specified as: a integer variable.

62

work the work array.
Scope: local
Type: optional
Intent: inout.
Specified as: a one dimensional array of the same type of x.

On Return

x global dense result matrix x.
Scope: local
Type: required
Intent: inout.
Specified as: an array of rank one or two containing numbers of type
specified in Table 18.

info Error code.
Scope: local
Type: required
Intent: out.
An integer value; 0 means no error has been detected.

Notes

1. If there is no overlap in the data distribution associated with the descriptor,
no operations are performed;

2. The operator PT performs the reduction sum of overlap elements; it is a
“prolongation” operator PT that replicates overlap elements, accounting
for the physical replication of data;

3. The operator Pa performs a scaling on the overlap elements by the amount
of replication; thus, when combined with the reduction operator, it imple-
ments the average of replicated elements over all of their instances.

Example of use Consider the discretization mesh depicted in fig. 4, parti-
tioned among two processes as shown by the dashed lines, with an overlap of 1
extra layer with respect to the partition of fig. 3; the data distribution is such
that each process will own 40 entries in the index space, with an overlap of 16
entries placed at local indices 25 through 40; the halo will run from local index
41 through local index 48.. If process 0 assigns an initial value of 1 to its entries
in the x vector, and process 1 assigns a value of 2, then after a call to psb_ovrl

with psb_avg_ and a call to psb_halo_ the contents of the local vectors will be
the following (showing a transition among the two subdomains)

63

Process 0 Process 1
I GLOB(I) X(I) I GLOB(I) X(I)
1 1 1.0 1 33 1.5
2 2 1.0 2 34 1.5
3 3 1.0 3 35 1.5
4 4 1.0 4 36 1.5
5 5 1.0 5 37 1.5
6 6 1.0 6 38 1.5
7 7 1.0 7 39 1.5
8 8 1.0 8 40 1.5
9 9 1.0 9 41 2.0

10 10 1.0 10 42 2.0
11 11 1.0 11 43 2.0
12 12 1.0 12 44 2.0
13 13 1.0 13 45 2.0
14 14 1.0 14 46 2.0
15 15 1.0 15 47 2.0
16 16 1.0 16 48 2.0
17 17 1.0 17 49 2.0
18 18 1.0 18 50 2.0
19 19 1.0 19 51 2.0
20 20 1.0 20 52 2.0
21 21 1.0 21 53 2.0
22 22 1.0 22 54 2.0
23 23 1.0 23 55 2.0
24 24 1.0 24 56 2.0
25 25 1.5 25 57 2.0
26 26 1.5 26 58 2.0
27 27 1.5 27 59 2.0
28 28 1.5 28 60 2.0
29 29 1.5 29 61 2.0
30 30 1.5 30 62 2.0
31 31 1.5 31 63 2.0
32 32 1.5 32 64 2.0
33 33 1.5 33 25 1.5
34 34 1.5 34 26 1.5
35 35 1.5 35 27 1.5
36 36 1.5 36 28 1.5
37 37 1.5 37 29 1.5
38 38 1.5 38 30 1.5
39 39 1.5 39 31 1.5
40 40 1.5 40 32 1.5
41 41 2.0 41 17 1.0
42 42 2.0 42 18 1.0
43 43 2.0 43 19 1.0
44 44 2.0 44 20 1.0
45 45 2.0 45 21 1.0
46 46 2.0 46 22 1.0
47 47 2.0 47 23 1.0
48 48 2.0 48 24 1.0

64

1 2 3 4 5 6 7 8

6463626160595857

3225

33 40

P1

P0

Figure 4: Sample discretization mesh.

65

5.3 psb gather — Gather Global Dense Matrix

These subroutines collect the portions of global dense matrix distributed over
all process into one single array stored on one process.

glob x ← collect(loc xi)

where:

glob x is the global submatrix glob x1:m,1:n

loc xi is the local portion of global dense matrix on process i.

collect is the collect function.

xi, y Subroutine
Integer psb gather
Short Precision Real psb gather
Long Precision Real psb gather
Short Precision Complex psb gather
Long Precision Complex psb gather

Table 19: Data types

call psb_gather(glob_x, loc_x, desc_a, info, root) call psb_gather(glob_x, loc_x, desc_a, info, root)

Type: Synchronous.

On Entry

loc x the local portion of global dense matrix glob x.
Scope: local
Type: required
Intent: in.
Specified as: a rank one or two array or an object of type psb T vect type

indicated in Table 19.

desc a contains data structures for communications.
Scope: local
Type: required
Intent: in.
Specified as: a structured data of type psb desc type.

root The process that holds the global copy. If root = −1 all the processes will
have a copy of the global vector.
Scope: global
Type: optional
Intent: in.
Specified as: an integer variable −1 ≤ root ≤ np− 1, default −1.

On Return

66

glob x The array where the local parts must be gathered.
Scope: global
Type: required
Intent: out.
Specified as: a rank one or two array with the ALLOCATABLE attribute.

info Error code.
Scope: local
Type: required
Intent: out.
An integer value; 0 means no error has been detected.

67

5.4 psb scatter — Scatter Global Dense Matrix

These subroutines scatters the portions of global dense matrix owned by a
process to all the processes in the processes grid.

loc xi ← scatter(glob x)

where:

glob x is the global matrix glob x1:m,1:n

loc xi is the local portion of global dense matrix on process i.

scatter is the scatter function.

xi, y Subroutine
Integer psb scatter
Short Precision Real psb scatter
Long Precision Real psb scatter
Short Precision Complex psb scatter
Long Precision Complex psb scatter

Table 20: Data types

call psb_scatter(glob_x, loc_x, desc_a, info, root, mold)

Type: Synchronous.

On Entry

glob x The array that must be scattered into local pieces.
Scope: global
Type: required
Intent: in.
Specified as: a rank one or two array.

desc a contains data structures for communications.
Scope: local
Type: required
Intent: in.
Specified as: a structured data of type psb desc type.

root The process that holds the global copy. If root = −1 all the processes have
a copy of the global vector.
Scope: global
Type: optional
Intent: in.
Specified as: an integer variable −1 ≤ root ≤ np− 1, default psb_root_,
i.e. process 0.

68

mold The desired dynamic type for the internal vector storage.
Scope: local.
Type: optional.
Intent: in.
Specified as: an object of a class derived from psb T base vect type; this
is only allowed when loc x is of type psb T vect type.

On Return

loc x the local portion of global dense matrix glob x.
Scope: local
Type: required
Intent: out.
Specified as: a rank one or two ALLOCATABLE array or an object of type
psb T vect type containing numbers of the type indicated in Table 20.

info Error code.
Scope: local
Type: required
Intent: out.
An integer value; 0 means no error has been detected.

69

6 Data management routines

6.1 psb cdall — Allocates a communication descriptor

call psb_cdall(icontxt, desc_a, info,mg=mg,parts=parts)

call psb_cdall(icontxt, desc_a, info,vg=vg,[mg=mg,flag=flag])

call psb_cdall(icontxt, desc_a, info,vl=vl,[nl=nl,globalcheck=.false.,lidx=lidx])

call psb_cdall(icontxt, desc_a, info,nl=nl)

call psb_cdall(icontxt, desc_a, info,mg=mg,repl=.true.)

This subroutine initializes the communication descriptor associated with an
index space. One of the optional arguments parts, vg, vl, nl or repl must be
specified, thereby choosing the specific initialization strategy.

On Entry

Type: Synchronous.

icontxt the communication context.
Scope:global.
Type:required.
Intent: in.
Specified as: an integer value.

vg Data allocation: each index i ∈ {1 . . . mg} is allocated to process vg(i).
Scope:global.
Type:optional.
Intent: in.
Specified as: an integer array.

flag Specifies whether entries in vg are zero- or one-based.
Scope:global.
Type:optional.
Intent: in.
Specified as: an integer value 0, 1, default 0.

mg the (global) number of rows of the problem.
Scope:global.
Type:optional.
Intent: in.
Specified as: an integer value. It is required if parts or repl is specified,
it is optional if vg is specified.

parts the subroutine that defines the partitioning scheme.
Scope:global.
Type:required.
Specified as: a subroutine.

vl Data allocation: the set of global indices vl(1 : nl) belonging to the calling
process.
Scope:local.
Type:optional.
Intent: in.
Specified as: an integer array.

70

nl Data allocation: in a generalized block-row distribution the number of
indices belonging to the current process.
Scope:local.
Type:optional.
Intent: in.
Specified as: an integer value. May be specified together with vl.

repl Data allocation: build a replicated index space (i.e. all processes own all
indices).
Scope:global.
Type:optional.
Intent: in.
Specified as: the logical value .true.

globalcheck Data allocation: do global checks on the local index lists vl
Scope:global.
Type:optional.
Intent: in.
Specified as: a logical value, default: .false.

lidx Data allocation: the set of local indices lidx(1 : nl) to be assigned to the
global indices vl.
Scope:local.
Type:optional.
Intent: in.
Specified as: an integer array.

On Return

desc a the communication descriptor.
Scope:local.
Type:required.
Intent: out.
Specified as: a structured data of type psb desc type.

info Error code.
Scope: local
Type: required
Intent: out.
An integer value; 0 means no error has been detected.

Notes

1. One of the optional arguments parts, vg, vl, nl or repl must be specified,
thereby choosing the initialization strategy as follows:

parts In this case we have a subroutine specifying the mapping between
global indices and process/local index pairs. If this optional argu-
ment is specified, then it is mandatory to specify the argument mg as
well. The subroutine must conform to the following interface:

interface

subroutine psb_parts(glob_index,mg,np,pv,nv)

71

integer, intent (in) :: glob_index,np,mg

integer, intent (out) :: nv, pv(*)

end subroutine psb_parts

end interface

The input arguments are:

glob index The global index to be mapped;
np The number of processes in the mapping;
mg The total number of global rows in the mapping;

The output arguments are:

nv The number of entries in pv;
pv A vector containing the indices of the processes to which the

global index should be assigend; each entry must satisfy 0 ≤
pv(i) < np; if nv > 1 we have an index assigned to multiple
processes, i.e. we have an overlap among the subdomains.

vg In this case the association between an index and a process is specified
via an integer vector vg(1:mg); each index i ∈ {1 . . . mg} is assigned
to process vg(i). The vector vg must be identical on all calling pro-
cesses; its entries may have the ranges (0 . . . np − 1) or (1 . . . np)
according to the value of flag. The size mg may be specified via the
optional argument mg; the default is to use the entire vector vg, thus
having mg=size(vg).

vl In this case we are specifying the list of indices vl(1:nl) assigned
to the current process; thus, the global problem size mg is given by
the range of the aggregate of the individual vectors vl specified in
the calling processes. The size may be specified via the optional
argument nl; the default is to use the entire vector vl, thus having
nl=size(vl). If globalcheck=.true. the subroutine will check how
many times each entry in the global index space (1 . . . mg) is specified
in the input lists vl, thus allowing for the presence of overlap in the
input, and checking for “orphan” indices. If globalcheck=.false.,
the subroutine will not check for overlap, and may be significantly
faster, but the user is implicitly guaranteeing that there are neither
orphan nor overlap indices.

lidx The optional argument lidx is available for those cases in which
the user has already established a global-to-local mapping; if it is
specified, each index in vl(i) will be mapped to the corresponding
local index lidx(i). When specifying the argument lidx the user
would also likely employ lidx in calls to psb_cdins and local in
calls to psb_spins and psb_geins; see also sec. 2.3.1.

nl If this argument is specified alone (i.e. without vl) the result is a gener-
alized row-block distribution in which each process I gets assigned a
consecutive chunk of NI = nl global indices.

repl This arguments specifies to replicate all indices on all processes. This
is a special purpose data allocation that is useful in the construction
of some multilevel preconditioners.

2. On exit from this routine the descriptor is in the build state.

72

3. Calling the routine with vg or parts implies that every process will scan
the entire index space to figure out the local indices.

4. Overlapped indices are possible with both parts and vl invocations.

5. When the subroutine is invoked with vl in conjunction with globalcheck=.true.,
it will perform a scan of the index space to search for overlap or orphan
indices.

6. When the subroutine is invoked with vl in conjunction with globalcheck=.false.,
no index space scan will take place. Thus it is the responsibility of the
user to make sure that the indices specified in vl have neither orphans
nor overlaps; if this assumption fails, results will be unpredictable.

7. Orphan and overlap indices are impossible by construction when the
subroutine is invoked with nl (alone), or vg.

73

6.2 psb cdins — Communication descriptor insert routine

call psb_cdins(nz, ia, ja, desc_a, info [,ila,jla])

call psb_cdins(nz,ja,desc,info[,jla,mask,lidx])

This subroutine examines the edges of the graph associated with the dis-
cretization mesh (and isomorphic to the sparsity pattern of a linear system
coefficient matrix), storing them as necessary into the communication descriptor.
In the first form the edges are specified as pairs of indices ia(i), ja(i); the starting
index ia(i) should belong to the current process. In the second form only the
remote indices ja(i) are specified.

Type: Asynchronous.

On Entry

nz the number of points being inserted.
Scope: local.
Type: required.
Intent: in.
Specified as: an integer value.

ia the indices of the starting vertex of the edges being inserted.
Scope: local.
Type: required.
Intent: in.
Specified as: an integer array of length nz.

ja the indices of the end vertex of the edges being inserted.
Scope: local.
Type: required.
Intent: in.
Specified as: an integer array of length nz.

mask Mask entries in ja, they are inserted only when the corresponding mask

entries are .true.

Scope: local.
Type: optional.
Intent: in.
Specified as: a logical array of length nz, default .true..

lidx User defined local indices for ja.
Scope: local.
Type: optional.
Intent: in.
Specified as: an integer array of length nz.

On Return

desc a the updated communication descriptor.
Scope:local.
Type:required.
Intent: inout.
Specified as: a structured data of type psb desc type.

74

info Error code.
Scope: local
Type: required
Intent: out.
An integer value; 0 means no error has been detected.

ila the local indices of the starting vertex of the edges being inserted.
Scope: local.
Type: optional.
Intent: out.
Specified as: an integer array of length nz.

jla the local indices of the end vertex of the edges being inserted.
Scope: local.
Type: optional.
Intent: out.
Specified as: an integer array of length nz.

Notes

1. This routine may only be called if the descriptor is in the build state;

2. This routine automatically ignores edges that do not insist on the current
process, i.e. edges for which neither the starting nor the end vertex belong
to the current process.

3. The second form of this routine will be useful when dealing with user-
specified index mappings; see also 2.3.1.

75

6.3 psb cdasb — Communication descriptor assembly routine

call psb_cdasb(desc_a, info [, mold])

Type: Synchronous.

On Entry

desc a the communication descriptor.
Scope:local.
Type:required.
Intent: inout.
Specified as: a structured data of type psb desc type.

mold The desired dynamic type for the internal index storage.
Scope: local.
Type: optional.
Intent: in.
Specified as: a object of type derived from (integer) psb T base vect type.

On Return

desc a the communication descriptor.
Scope:local.
Type:required.
Intent: inout.
Specified as: a structured data of type psb desc type.

info Error code.
Scope: local
Type: required
Intent: out.
An integer value; 0 means no error has been detected.

Notes

1. On exit from this routine the descriptor is in the assembled state.

This call will set up all the necessary information for the halo data exchanges.
In doing so, the library will need to identify the set of processes owning the
halo indices through the use of the desc%fnd_owner() method; the owning
processes are the topological neighbours of the calling process. If the user
has some background information on the processes that are neighbours of the
current one, it is possible to specify explicitly the list of adjacent processes with
a call to desc%set_p_adjcncy(list); this will speed up the subsequent call to
psb_cdasb.

76

6.4 psb cdcpy — Copies a communication descriptor

call psb_cdcpy(desc_in, desc_out, info)

Type: Asynchronous.

On Entry

desc in the communication descriptor.
Scope:local.
Type:required.
Intent: in.
Specified as: a structured data of type psb desc type.

On Return

desc out the communication descriptor copy.
Scope:local.
Type:required.
Intent: out.
Specified as: a structured data of type psb desc type.

info Error code.
Scope: local
Type: required
Intent: out.
An integer value; 0 means no error has been detected.

77

6.5 psb cdfree — Frees a communication descriptor

call psb_cdfree(desc_a, info)

Type: Synchronous.

On Entry

desc a the communication descriptor to be freed.
Scope:local.
Type:required.
Intent: inout.
Specified as: a structured data of type psb desc type.

On Return

info Error code.
Scope: local
Type: required
Intent: out.
An integer value; 0 means no error has been detected.

78

6.6 psb cdbldext — Build an extended communication descrip-
tor

call psb_cdbldext(a,desc_a,nl,desc_out, info, extype)

This subroutine builds an extended communication descriptor, based on the
input descriptor desc_a and on the stencil specified through the input sparse
matrix a.

Type: Synchronous.

On Entry

a A sparse matrix Scope:local.
Type:required.
Intent: in.
Specified as: a structured data type.

desc a the communication descriptor.
Scope:local.
Type:required.
Intent: in.
Specified as: a structured data of type psb Tspmat type.

nl the number of additional layers desired.
Scope:global.
Type:required.
Intent: in.
Specified as: an integer value nl ≥ 0.

extype the kind of estension required.
Scope:global.
Type:optional .
Intent: in.
Specified as: an integer value psb_ovt_xhal_, psb_ovt_asov_, default:
psb_ovt_xhal_

On Return

desc out the extended communication descriptor.
Scope:local.
Type:required.
Intent: inout.
Specified as: a structured data of type psb desc type.

info Error code.
Scope: local
Type: required
Intent: out.
An integer value; 0 means no error has been detected.

Notes

79

1. Specifying psb_ovt_xhal_ for the extype argument the user will obtain a
descriptor for a domain partition in which the additional layers are fetched
as part of an (extended) halo; however the index-to-process mapping is
identical to that of the base descriptor;

2. Specifying psb_ovt_asov_ for the extype argument the user will obtain
a descriptor with an overlapped decomposition: the additional layer is
aggregated to the local subdomain (and thus is an overlap), and a new
halo extending beyond the last additional layer is formed.

80

6.7 psb spall — Allocates a sparse matrix

call psb_spall(a, desc_a, info [, nnz, dupl, bldmode])

Type: Synchronous.

On Entry

desc a the communication descriptor.
Scope:local.
Type:required.
Intent: in.
Specified as: a structured data of type psb desc type.

nnz An estimate of the number of nonzeroes in the local part of the assembled
matrix.
Scope: global.
Type: optional.
Intent: in.
Specified as: an integer value.

dupl How to handle duplicate coefficients.
Scope: global.
Type: optional.
Intent: in.
Specified as: integer, possible values: psb_dupl_ovwrt_, psb_dupl_add_,
psb_dupl_err_.

bldmode Whether to keep track of matrix entries that do not belong to the
current process.
Scope: global.
Type: optional.
Intent: in.
Specified as: an integer value psb_matbld_noremote_, psb_matbld_remote_.
Default: psb_matbld_noremote_.

On Return

a the matrix to be allocated.
Scope:local
Type:required
Intent: out.
Specified as: a structured data of type psb Tspmat type.

info Error code.
Scope: local
Type: required
Intent: out.
An integer value; 0 means no error has been detected.

Notes

1. On exit from this routine the sparse matrix is in the build state.

81

2. The descriptor may be in either the build or assembled state.

3. Providing a good estimate for the number of nonzeroes nnz in the assem-
bled matrix may substantially improve performance in the matrix build
phase, as it will reduce or eliminate the need for (potentially multiple)
data reallocations;

4. Using psb_matbld_remote_ is likely to cause a runtime overhead at as-
sembly time;

82

6.8 psb spins — Insert a set of coefficients into a sparse matrix

call psb_spins(nz, ia, ja, val, a, desc_a, info [,local])

call psb_spins(nr, irw, irp, ja, val, a, desc_a, info [,local])

Type: Asynchronous.

On Entry

nz the number of coefficients to be inserted.
Scope:local.
Type:required.
Intent: in.
Specified as: an integer scalar.

nr the number of rows to be inserted.
Scope:local.
Type:required.
Intent: in.
Specified as: an integer scalar.

irw the first row to be inserted.
Scope:local.
Type:required.
Intent: in.
Specified as: an integer scalar.

ia the row indices of the coefficients to be inserted.
Scope:local.
Type:required.
Intent: in.
Specified as: an integer array of size nz.

irp the row pointers of the coefficients to be inserted.
Scope:local.
Type:required.
Intent: in.
Specified as: an integer array of size nr + 1.

ja the column indices of the coefficients to be inserted.
Scope:local.
Type:required.
Intent: in.
Specified as: an integer array of size nz.

val the coefficients to be inserted.
Scope:local.
Type:required.
Intent: in.
Specified as: an array of size nz. Must be of the same type and kind of the
coefficients of the sparse matrix a.

83

desc a The communication descriptor.
Scope: local.
Type: required.
Intent: inout.
Specified as: a variable of type psb desc type.

local Whether the entries in the indices vectors ia, ja are already in local
numbering.
Scope:local.
Type:optional.
Specified as: a logical value; default: .false..

On Return

a the matrix into which coefficients will be inserted.
Scope:local
Type:required
Intent: inout.
Specified as: a structured data of type psb Tspmat type.

desc a The communication descriptor.
Scope: local.
Type: required.
Intent: inout.
Specified as: a variable of type psb desc type.

info Error code.
Scope: local
Type: required
Intent: out.
An integer value; 0 means no error has been detected.

Notes

1. On entry to this routine the descriptor may be in either the build or
assembled state.

2. On entry to this routine the sparse matrix may be in either the build or
update state.

3. If the descriptor is in the build state, then the sparse matrix must also be
in the build state; the action of the routine is to (implicitly) call psb_cdins
to add entries to the sparsity pattern; each sparse matrix entry implicitly
defines a graph edge, that is passed to the descriptor routine for the
appropriate processing;

4. The input data can be passed in either COO or CSR formats;

5. In COO format the coefficients to be inserted are represented by the or-
dered triples ia(i), ja(i), val(i), for i = 1, . . . , nz; these triples are arbitrary;

84

6. In CSR format the coefficients to be inserted for each input row i =
1, nr are represented by the ordered triples (i + irw− 1), ja(j), val(j), for
j = irp(i), . . . , irp(i + 1)− 1; these triples should belong to the current
process, i.e. i+ irw− 1 should be one of the local indices, but are otherwise
arbitrary;

7. There is no requirement that a given row must be passed in its entirety to
a single call to this routine: the buildup of a row may be split into as many
calls as desired (even in the CSR format);

8. Coefficients from different rows may also be mixed up freely in a single
call, according to the application needs;

9. Coefficients from matrix rows not owned by the calling process are treated
according to the value of bldmode specified at allocation time; if bldmode
was chosen as psb_matbld_remote_ the library will keep track of them,
otherwise they are silently ignored;

10. If the descriptor is in the assembled state, then any entries in the sparse
matrix that would generate additional communication requirements are
ignored;

11. If the matrix is in the update state, any entries in positions that were not
present in the original matrix are ignored.

85

6.9 psb spasb — Sparse matrix assembly routine

call psb_spasb(a, desc_a, info [, afmt, upd, mold])

Type: Synchronous.

On Entry

desc a the communication descriptor.
Scope:local.
Type:required.
Intent: in/out.
Specified as: a structured data of type psb desc type.

afmt the storage format for the sparse matrix.
Scope: local.
Type: optional.
Intent: in.
Specified as: an array of characters. Defalt: ’CSR’.

upd Provide for updates to the matrix coefficients.
Scope: global.
Type: optional.
Intent: in.
Specified as: integer, possible values: psb_upd_srch_, psb_upd_perm_

mold The desired dynamic type for the internal matrix storage.
Scope: local.
Type: optional.
Intent: in.
Specified as: an object of a class derived from psb T base sparse mat.

On Return

a the matrix to be assembled.
Scope:local
Type:required
Intent: inout.
Specified as: a structured data of type psb Tspmat type.

desc a the communication descriptor.
Scope:local.
Type:required.
Intent: in/out.
Specified as: a structured data of type psb desc type. If the matrix was
allocated with bldmode=psb_matbld_remote_, then the descriptor will be
reassembled.

info Error code.
Scope: local
Type: required
Intent: out.
An integer value; 0 means no error has been detected.

86

Notes

1. On entry to this routine the descriptor must be in the assembled state, i.e.
psb_cdasb must already have been called.

2. The sparse matrix may be in either the build or update state;

3. Duplicate entries are detected and handled in both build and update state,
with the exception of the error action that is only taken in the build state,
i.e. on the first assembly;

4. If the update choice is psb_upd_perm_, then subsequent calls to psb_spins

to update the matrix must be arranged in such a way as to produce
exactly the same sequence of coefficient values as encountered at the first
assembly;

5. The output storage format need not be the same on all processes;

6. On exit from this routine the matrix is in the assembled state, and thus is
suitable for the computational routines;

7. If the bldmode=psb_matbld_remote_ value was specified at allocation
time, contributions defined on the current process but belonging to a
remote process will be handled accordingly. This is most likely to occur in
finite element applications, with dupl=psb_dupl_add_; it is necessary to
check for possible updates needed in the descriptor, hence there will be a
runtime overhead.

87

6.10 psb spfree — Frees a sparse matrix

call psb_spfree(a, desc_a, info)

Type: Synchronous.

On Entry

a the matrix to be freed.
Scope:local
Type:required
Intent: inout.
Specified as: a structured data of type psb Tspmat type.

desc a the communication descriptor.
Scope:local.
Type:required.
Intent: in.
Specified as: a structured data of type psb desc type.

On Return

info Error code.
Scope: local
Type: required
Intent: out.
An integer value; 0 means no error has been detected.

88

6.11 psb sprn — Reinit sparse matrix structure for psblas rou-
tines.

call psb_sprn(a, decsc_a, info, clear)

Type: Synchronous.

On Entry

a the matrix to be reinitialized.
Scope:local
Type:required
Intent: inout.
Specified as: a structured data of type psb Tspmat type.

desc a the communication descriptor.
Scope:local.
Type:required.
Intent: in.
Specified as: a structured data of type psb desc type.

clear Choose whether to zero out matrix coefficients
Scope:local.
Type:optional.
Intent: in.
Default: true.

On Return

info Error code.
Scope: local
Type: required
Intent: out.
An integer value; 0 means no error has been detected.

Notes

1. On exit from this routine the sparse matrix is in the update state.

89

6.12 psb geall — Allocates a dense matrix

call psb_geall(x, desc_a, info[, dupl, bldmode, n, lb])

Type: Synchronous.

On Entry

desc a The communication descriptor.
Scope: local
Type: required
Intent: in.
Specified as: a variable of type psb desc type.

n The number of columns of the dense matrix to be allocated.
Scope: local
Type: optional
Intent: in.
Specified as: Integer scalar, default 1. It is not a valid argument if x is a
rank-1 array.

lb The lower bound for the column index range of the dense matrix to be
allocated.
Scope: local
Type: optional
Intent: in.
Specified as: Integer scalar, default 1. It is not a valid argument if x is a
rank-1 array.

dupl How to handle duplicate coefficients.
Scope: global.
Type: optional.
Intent: in.
Specified as: integer, possible values: psb_dupl_ovwrt_, psb_dupl_add_;
psb_dupl_err_ has no effect.

bldmode Whether to keep track of matrix entries that do not belong to the
current process.
Scope: global.
Type: optional.
Intent: in.
Specified as: an integer value psb_matbld_noremote_, psb_matbld_remote_.
Default: psb_matbld_noremote_.

On Return

x The dense matrix to be allocated.
Scope: local
Type: required
Intent: out.
Specified as: a rank one or two array with the ALLOCATABLE attribute
or an object of type psb T vect type, of type real, complex or integer.

90

info Error code.
Scope: local
Type: required
Intent: out.
An integer value; 0 means no error has been detected.

Notes

1. Using psb_matbld_remote_ is likely to cause a runtime overhead at as-
sembly time;

91

6.13 psb geins — Dense matrix insertion routine

call psb_geins(m, irw, val, x, desc_a, info [,local])

Type: Asynchronous.

On Entry

m Number of rows in val to be inserted.
Scope:local.
Type:required.
Intent: in.
Specified as: an integer value.

irw Indices of the rows to be inserted. Specifically, row i of val will be in-
serted into the local row corresponding to the global row index irw(i).
Scope:local.
Type:required.
Intent: in.
Specified as: an integer array.

val the dense submatrix to be inserted.
Scope:local.
Type:required.
Intent: in.
Specified as: a rank 1 or 2 array. Specified as: an integer value.

desc a the communication descriptor.
Scope:local.
Type:required.
Intent: in.
Specified as: a structured data of type psb desc type.

local Whether the entries in the index vector irw, are already in local number-
ing.
Scope:local.
Type:optional.
Specified as: a logical value; default: .false..

On Return

x the output dense matrix.
Scope: local
Type: required
Intent: inout.
Specified as: a rank one or two array or an object of type psb T vect type,
of type real, complex or integer.

info Error code.
Scope: local
Type: required
Intent: out.
An integer value; 0 means no error has been detected.

92

Notes

1. Dense vectors/matrices do not have an associated state;

2. Duplicate entries are either overwritten or added, there is no provision
for raising an error condition.

93

6.14 psb geasb — Assembly a dense matrix

call psb_geasb(x, desc_a, info, mold)

Type: Synchronous.

On Entry

desc a The communication descriptor.
Scope: local
Type: required
Intent: in.
Specified as: a variable of type psb desc type.

mold The desired dynamic type for the internal vector storage.
Scope: local.
Type: optional.
Intent: in.
Specified as: an object of a class derived from psb T base vect type; this
is only allowed when x is of type psb T vect type.

On Return

x The dense matrix to be assembled.
Scope: local
Type: required
Intent: inout.
Specified as: a rank one or two array with the ALLOCATABLE or an object
of type psb T vect type, of type real, complex or integer.

info Error code.
Scope: local
Type: required
Intent: out.
An integer value; 0 means no error has been detected.

Notes

1. On entry to this routine the descriptor must be in the assembled state, i.e.
psb_cdasb must already have been called.

2. If the bldmode=psb_matbld_remote_ value was specified at allocation
time, contributions defined on the current process but belonging to a
remote process will be handled accordingly. This is most likely to occur in
finite element applications, with dupl=psb_dupl_add_.

94

6.15 psb gefree — Frees a dense matrix

call psb_gefree(x, desc_a, info)

Type: Synchronous.

On Entry

x The dense matrix to be freed.
Scope: local
Type: required
Intent: inout.
Specified as: a rank one or two array with the ALLOCATABLE or an object
of type psb T vect type, of type real, complex or integer.

desc a The communication descriptor.
Scope: local
Type: required
Intent: in.
Specified as: a variable of type psb desc type.

On Return

info Error code.
Scope: local
Type: required
Intent: out.
An integer value; 0 means no error has been detected.

95

6.16 psb gelp — Applies a left permutation to a dense matrix

call psb_gelp(trans, iperm, x, info)

Type: Asynchronous.

On Entry

trans A character that specifies whether to permute A or AT .
Scope: local
Type: required
Intent: in.
Specified as: a single character with value ’N’ for A or ’T’ for AT .

iperm An integer array containing permutation information.
Scope: local
Type: required
Intent: in.
Specified as: an integer one-dimensional array.

x The dense matrix to be permuted.
Scope: local
Type: required
Intent: inout.
Specified as: a one or two dimensional array.

On Return

info Error code.
Scope: local
Type: required
Intent: out.
An integer value; 0 means no error has been detected.

96

6.17 psb glob to loc — Global to local indices convertion

call psb_glob_to_loc(x, y, desc_a, info, iact,owned)

call psb_glob_to_loc(x, desc_a, info, iact,owned)

Type: Asynchronous.

On Entry

x An integer vector of indices to be converted.
Scope: local
Type: required
Intent: in, inout.
Specified as: a rank one integer array.

desc a the communication descriptor.
Scope:local.
Type:required.
Intent: in.
Specified as: a structured data of type psb desc type.

iact specifies action to be taken in case of range errors. Scope: global
Type: optional
Intent: in.
Specified as: a character variable Ignore, Warning or Abort, default Ignore.

owned Specfies valid range of input Scope: global
Type: optional
Intent: in.
If true, then only indices strictly owned by the current process are consid-
ered valid, if false then halo indices are also accepted. Default: false.

On Return

x If y is not present, then x is overwritten with the translated integer indices.
Scope: global
Type: required
Intent: inout.
Specified as: a rank one integer array.

y If y is present, then y is overwritten with the translated integer indices, and x
is left unchanged. Scope: global
Type: optional
Intent: out.
Specified as: a rank one integer array.

info Error code.
Scope: local
Type: required
Intent: out.
An integer value; 0 means no error has been detected.

Notes

97

1. If an input index is out of range, then the corresponding output index is
set to a negative number;

2. The default Ignore means that the negative output is the only action taken
on an out-of-range input.

98

6.18 psb loc to glob — Local to global indices conversion

call psb_loc_to_glob(x, y, desc_a, info, iact)

call psb_loc_to_glob(x, desc_a, info, iact)

Type: Asynchronous.

On Entry

x An integer vector of indices to be converted.
Scope: local
Type: required
Intent: in, inout.
Specified as: a rank one integer array.

desc a the communication descriptor.
Scope:local.
Type:required.
Intent: in.
Specified as: a structured data of type psb desc type.

iact specifies action to be taken in case of range errors. Scope: global
Type: optional
Intent: in.
Specified as: a character variable Ignore, Warning or Abort, default Ignore.

On Return

x If y is not present, then x is overwritten with the translated integer indices.
Scope: global
Type: required
Intent: inout.
Specified as: a rank one integer array.

y If y is not present, then y is overwritten with the translated integer indices,
and x is left unchanged. Scope: global
Type: optional
Intent: out.
Specified as: a rank one integer array.

info Error code.
Scope: local
Type: required
Intent: out.
An integer value; 0 means no error has been detected.

99

6.19 psb is owned —

call psb_is_owned(x, desc_a)

Type: Asynchronous.

On Entry

x Integer index.
Scope: local
Type: required
Intent: in.
Specified as: a scalar integer.

desc a the communication descriptor.
Scope:local.
Type:required.
Intent: in.
Specified as: a structured data of type psb desc type.

On Return

Function value A logical mask which is true if x is owned by the current pro-
cess Scope: local
Type: required
Intent: out.

Notes

1. This routine returns a .true. value for an index that is strictly owned by
the current process, excluding the halo indices

100

6.20 psb owned index —

call psb_owned_index(y, x, desc_a, info)

Type: Asynchronous.

On Entry

x Integer indices.
Scope: local
Type: required
Intent: in, inout.
Specified as: a scalar or a rank one integer array.

desc a the communication descriptor.
Scope:local.
Type:required.
Intent: in.
Specified as: a structured data of type psb desc type.

iact specifies action to be taken in case of range errors. Scope: global
Type: optional
Intent: in.
Specified as: a character variable Ignore, Warning or Abort, default Ignore.

On Return

y A logical mask which is true for all corresponding entries of x that are owned
by the current process Scope: local
Type: required
Intent: out.
Specified as: a scalar or rank one logical array.

info Error code.
Scope: local
Type: required
Intent: out.
An integer value; 0 means no error has been detected.

Notes

1. This routine returns a .true. value for those indices that are strictly
owned by the current process, excluding the halo indices

101

6.21 psb is local —

call psb_is_local(x, desc_a)

Type: Asynchronous.

On Entry

x Integer index.
Scope: local
Type: required
Intent: in.
Specified as: a scalar integer.

desc a the communication descriptor.
Scope:local.
Type:required.
Intent: in.
Specified as: a structured data of type psb desc type.

On Return

Function value A logical mask which is true if x is local to the current process
Scope: local
Type: required
Intent: out.

Notes

1. This routine returns a .true. value for an index that is local to the current
process, including the halo indices

102

6.22 psb local index —

call psb_local_index(y, x, desc_a, info)

Type: Asynchronous.

On Entry

x Integer indices.
Scope: local
Type: required
Intent: in, inout.
Specified as: a scalar or a rank one integer array.

desc a the communication descriptor.
Scope:local.
Type:required.
Intent: in.
Specified as: a structured data of type psb desc type.

iact specifies action to be taken in case of range errors. Scope: global
Type: optional
Intent: in.
Specified as: a character variable Ignore, Warning or Abort, default Ignore.

On Return

y A logical mask which is true for all corresponding entries of x that are local
to the current process Scope: local
Type: required
Intent: out.
Specified as: a scalar or rank one logical array.

info Error code.
Scope: local
Type: required
Intent: out.
An integer value; 0 means no error has been detected.

Notes

1. This routine returns a .true. value for those indices that are local to the
current process, including the halo indices.

103

6.23 psb get boundary — Extract list of boundary elements

call psb_get_boundary(bndel, desc, info)

Type: Asynchronous.

On Entry

desc the communication descriptor.
Scope:local.
Type:required.
Intent: in.
Specified as: a structured data of type psb desc type.

On Return

bndel The list of boundary elements on the calling process, in local numbering.
Scope: local
Type: required
Intent: out.
Specified as: a rank one array with the ALLOCATABLE attribute, of type
integer.

info Error code.
Scope: local
Type: required
Intent: out.
An integer value; 0 means no error has been detected.

Notes

1. If there are no boundary elements (i.e., if the local part of the connectivity
graph is self-contained) the output vector is set to the “not allocated” state.

2. Otherwise the size of bndel will be exactly equal to the number of bound-
ary elements.

104

6.24 psb get overlap — Extract list of overlap elements

call psb_get_overlap(ovrel, desc, info)

Type: Asynchronous.

On Entry

desc the communication descriptor.
Scope:local.
Type:required.
Intent: in.
Specified as: a structured data of type psb desc type.

On Return

ovrel The list of overlap elements on the calling process, in local numbering.
Scope: local
Type: required
Intent: out.
Specified as: a rank one array with the ALLOCATABLE attribute, of type
integer.

info Error code.
Scope: local
Type: required
Intent: out.
An integer value; 0 means no error has been detected.

Notes

1. If there are no overlap elements the output vector is set to the “not allo-
cated” state.

2. Otherwise the size of ovrel will be exactly equal to the number of overlap
elements.

105

6.25 psb sp getrow — Extract row(s) from a sparse matrix

call psb_sp_getrow(row, a, nz, ia, ja, val, info, &

& append, nzin, lrw)

Type: Asynchronous.

On Entry

row The (first) row to be extracted.
Scope:local
Type:required
Intent: in.
Specified as: an integer > 0.

a the matrix from which to get rows.
Scope:local
Type:required
Intent: in.
Specified as: a structured data of type psb Tspmat type.

append Whether to append or overwrite existing output.
Scope:local
Type:optional
Intent: in.
Specified as: a logical value default: false (overwrite).

nzin Input size to be appended to.
Scope:local
Type:optional
Intent: in.
Specified as: an integer > 0. When append is true, specifies how many
entries in the output vectors are already filled.

lrw The last row to be extracted.
Scope:local
Type:optional
Intent: in.
Specified as: an integer > 0, default: row.

On Return

nz the number of elements returned by this call.
Scope:local.
Type:required.
Intent: out.
Returned as: an integer scalar.

ia the row indices.
Scope:local.
Type:required.
Intent: inout.
Specified as: an integer array with the ALLOCATABLE attribute.

106

ja the column indices of the elements to be inserted.
Scope:local.
Type:required.
Intent: inout.
Specified as: an integer array with the ALLOCATABLE attribute.

val the elements to be inserted.
Scope:local.
Type:required.
Intent: inout.
Specified as: a real array with the ALLOCATABLE attribute.

info Error code.
Scope: local
Type: required
Intent: out.
An integer value; 0 means no error has been detected.

Notes

1. The output nz is always the size of the output generated by the current
call; thus, if append=.true., the total output size will be nzin + nz, with
the newly extracted coefficients stored in entries nzin+1:nzin+nz of the
array arguments;

2. When append=.true. the output arrays are reallocated as necessary;

3. The row and column indices are returned in the local numbering scheme; if
the global numbering is desired, the user may employ the psb_loc_to_glob
routine on the output.

107

6.26 psb sizeof — Memory occupation

This function computes the memory occupation of a PSBLAS object.

isz = psb_sizeof(a)

isz = psb_sizeof(desc_a)

isz = psb_sizeof(prec)

Type: Asynchronous.

On Entry

a A sparse matrix A.
Scope: local
Type: required
Intent: in.
Specified as: a structured data of type psb Tspmat type.

desc a Communication descriptor.
Scope: local
Type: required
Intent: in.
Specified as: a structured data of type psb desc type.

prec Scope: local
Type: required
Intent: in.
Specified as: a preconditioner data structure psb Tprec type.

On Return

Function value The memory occupation of the object specified in the calling
sequence, in bytes.
Scope: local
Returned as: an integer(psb_long_int_k_) number.

108

6.27 Sorting utilities —

psb msort — Sorting by the Merge-sort algorithm
psb qsort — Sorting by the Quicksort algorithm
psb hsort — Sorting by the Heapsort algorithm

call psb_msort(x,ix,dir,flag)

call psb_qsort(x,ix,dir,flag)

call psb_hsort(x,ix,dir,flag)

These serial routines sort a sequence X into ascending or descending order.
The argument meaning is identical for the three calls; the only difference is the
algorithm used to accomplish the task (see Usage Notes below).

Type: Asynchronous.

On Entry

x The sequence to be sorted.
Type:required.
Specified as: an integer, real or complex array of rank 1.

ix A vector of indices.
Type:optional.
Specified as: an integer array of (at least) the same size as X.

dir The desired ordering.
Type:optional.
Specified as: an integer value:

Integer and real data: psb_sort_up_, psb_sort_down_, psb_asort_up_,
psb_asort_down_; default psb_sort_up_.

Complex data: psb_lsort_up_, psb_lsort_down_, psb_asort_up_, psb_asort_down_;
default psb_lsort_up_.

flag Whether to keep the original values in IX.
Type:optional.
Specified as: an integer value psb_sort_ovw_idx_ or psb_sort_keep_idx_;
default psb_sort_ovw_idx_.

On Return

x The sequence of values, in the chosen ordering.
Type:required.
Specified as: an integer, real or complex array of rank 1.

ix A vector of indices.
Type: Optional
An integer array of rank 1, whose entries are moved to the same position
as the corresponding entries in x.

109

Notes

1. For integer or real data the sorting can be performed in the up/down
direction, on the natural or absolute values;

2. For complex data the sorting can be done in a lexicographic order (i.e.:
sort on the real part with ties broken according to the imaginary part) or
on the absolute values;

3. The routines return the items in the chosen ordering; the output difference
is the handling of ties (i.e. items with an equal value) in the original input.
With the merge-sort algorithm ties are preserved in the same relative order
as they had in the original sequence, while this is not guaranteed for
quicksort or heapsort;

4. If f lag = psb sort ovw idx then the entries in ix(1 : n) where n is the size
of x are initialized to ix(i)← i; thus, upon return from the subroutine, for
each index i we have in ix(i) the position that the item x(i) occupied in
the original data sequence;

5. If f lag = psb sort keep idx the routine will assume that the entries in
ix(:) have already been initialized by the user;

6. The three sorting algorithms have a similar O(n log n) expected running
time; in the average case quicksort will be the fastest and merge-sort the
slowest. However note that:

(a) The worst case running time for quicksort is O(n2); the algorithm im-
plemented here follows the well-known median-of-three heuristics,
but the worst case may still apply;

(b) The worst case running time for merge-sort and heap-sort is O(n log n)
as the average case;

(c) The merge-sort algorithm is implemented to take advantage of sub-
sequences that may be already in the desired ordering prior to the
subroutine call; this situation is relatively common when dealing
with groups of indices of sparse matrix entries, thus merge-sort is the
preferred choice when a sorting is needed by other routines in the
library.

110

7 Parallel environment routines

111

7.1 psb init — Initializes PSBLAS parallel environment

call psb_init(ctxt, np, basectxt, ids)

This subroutine initializes the PSBLAS parallel environment, defining a
virtual parallel machine.

Type: Synchronous.

On Entry

np Number of processes in the PSBLAS virtual parallel machine.
Scope: global.
Type: optional.
Intent: in.
Specified as: an integer value. Default: use all available processes.

basectxt the initial communication context. The new context will be defined
from the processes participating in the initial one.
Scope: global.
Type: optional.
Intent: in.
Specified as: an integer value. Default: use MPI COMM WORLD.

ids Identities of the processes to use for the new context; the argument is
ignored when np is not specified. This allows the processes in the new
environment to be in an order different from the original one.
Scope: global.
Type: optional.
Intent: in.
Specified as: an integer array. Default: use the indices (0 . . . np− 1).

On Return

ctxt the communication context identifying the virtual parallel machine, type
psb_ctxt_type. Note that this is always a duplicate of basectxt, so that
library communications are completely separated from other communica-
tion operations.
Scope: global.
Type: required.
Intent: out.
Specified as: an integer variable.

Notes

1. A call to this routine must precede any other PSBLAS call.

2. It is an error to specify a value for np greater than the number of processes
available in the underlying base parallel environment.

112

7.2 psb info — Return information about PSBLAS parallel en-
vironment

call psb_info(ctxt, iam, np)

This subroutine returns information about the PSBLAS parallel environment,
defining a virtual parallel machine.

Type: Asynchronous.

On Entry

ctxt the communication context identifying the virtual parallel machine.
Scope: global.
Type: required.
Intent: in.
Specified as: an integer variable.

On Return

iam Identifier of current process in the PSBLAS virtual parallel machine.
Scope: local.
Type: required.
Intent: out.
Specified as: an integer value. −1 ≤ iam ≤ np− 1

np Number of processes in the PSBLAS virtual parallel machine.
Scope: global.
Type: required.
Intent: out.
Specified as: an integer variable.

Notes

1. For processes in the virtual parallel machine the identifier will satisfy
0 ≤ iam ≤ np− 1;

2. If the user has requested on psb_init a number of processes less than
the total available in the parallel execution environment, the remaining
processes will have on return iam = −1; the only call involving ctxt that
any such process may execute is to psb_exit.

113

7.3 psb exit — Exit from PSBLAS parallel environment

call psb_exit(ctxt)

call psb_exit(ctxt,close)

This subroutine exits from the PSBLAS parallel virtual machine.

Type: Synchronous.

On Entry

ctxt the communication context identifying the virtual parallel machine.
Scope: global.
Type: required.
Intent: in.
Specified as: an integer variable.

close Whether to close all data structures related to the virtual parallel machine,
besides those associated with ctxt.
Scope: global.
Type: optional.
Intent: in.
Specified as: a logical variable, default value: true.

Notes

1. This routine may be called even if a previous call to psb_info has returned
with iam = −1; indeed, it it is the only routine that may be called with
argument ctxt in this situation.

2. A call to this routine with close=.true. implies a call to MPI_Finalize,
after which no parallel routine may be called.

3. If the user whishes to use multiple communication contexts in the same
program, or to enter and exit multiple times into the parallel environ-
ment, this routine may be called to selectively close the contexts with
close=.false., while on the last call it should be called with close=.true.

to shutdown in a clean way the entire parallel environment.

114

7.4 psb get mpi comm — Get the MPI communicator

icomm = psb_get_mpi_comm(ctxt)

This function returns the MPI communicator associated with a PSBLAS
context

Type: Asynchronous.

On Entry

ctxt the communication context identifying the virtual parallel machine.
Scope: global.
Type: required.
Intent: in.
Specified as: an integer variable.

On Return

Function value The MPI communicator associated with the PSBLAS virtual
parallel machine.
Scope: global.
Type: required.
Intent: out.

Notes The subroutine version psb_get_mpicomm is still available but is depre-
cated.

115

7.5 psb get mpi rank — Get the MPI rank

rank = psb_get_mpi_rank(ctxt, id)

This function returns the MPI rank of the PSBLAS process id

Type: Asynchronous.

On Entry

ctxt the communication context identifying the virtual parallel machine.
Scope: global.
Type: required.
Intent: in.
Specified as: an integer variable.

id Identifier of a process in the PSBLAS virtual parallel machine.
Scope: local.
Type: required.
Intent: in.
Specified as: an integer value. 0 ≤ id ≤ np− 1

On Return

Funciton value The MPI rank associated with the PSBLAS process id.
Scope: local.
Type: required.
Intent: out.

Notes The subroutine version psb_get_rank is still available but is deprecated.

116

7.6 psb wtime — Wall clock timing

time = psb_wtime()

This function returns a wall clock timer. The resolution of the timer is
dependent on the underlying parallel environment implementation.

Type: Asynchronous.

On Exit

Function value the elapsed time in seconds.
Returned as: a real(psb_dpk_) variable.

117

7.7 psb barrier — Sinchronization point parallel environment

call psb_barrier(ctxt)

This subroutine acts as an explicit synchronization point for the PSBLAS
parallel virtual machine.

Type: Synchronous.

On Entry

ctxt the communication context identifying the virtual parallel machine.
Scope: global.
Type: required.
Intent: in.
Specified as: an integer variable.

118

7.8 psb abort — Abort a computation

call psb_abort(ctxt)

This subroutine aborts computation on the parallel virtual machine.

Type: Asynchronous.

On Entry

ctxt the communication context identifying the virtual parallel machine.
Scope: global.
Type: required.
Intent: in.
Specified as: an integer variable.

119

7.9 psb bcast — Broadcast data

call psb_bcast(ctxt, dat [, root, mode, request])

This subroutine implements a broadcast operation based on the underlying
communication library.

Type: Synchronous.

On Entry

ctxt the communication context identifying the virtual parallel machine.
Scope: global.
Type: required.
Intent: in.
Specified as: an integer variable.

dat On the root process, the data to be broadcast.
Scope: global.
Type: required.
Intent: inout.
Specified as: an integer, real or complex variable, which may be a scalar, or
a rank 1 or 2 array, or a character or logical variable, which may be a scalar
or rank 1 array. Type, kind, rank and size must agree on all processes.

root Root process holding data to be broadcast.
Scope: global.
Type: optional.
Intent: in.
Specified as: an integer value 0 <= root <= np− 1, default 0

mode Whether the call is started in non-blocking mode and completed later, or
is executed synchronously.
Scope: global.
Type: optional.
Intent: in.
Specified as: an integer value. The action to be taken is determined by
its bit fields, which can be set with bitwise OR. Basic action values are
psb_collective_start_, psb_collective_end_. Default: both fields are
selected (i.e. require synchronous completion).

request A request variable to check for operation completion.
Scope: local.
Type: optional.
Intent: inout.
If mode does not specify synchronous completion, then this variable must
be present.

On Return

dat On all processes other than root, the broadcasted data.
Scope: global.

120

Type: required.
Intent: inout.
Specified as: an integer, real or complex variable, which may be a scalar,
or a rank 1 or 2 array, or a character or logical scalar. Type, kind, rank and
size must agree on all processes.

request A request variable to check for operation completion.
Scope: local.
Type: optional.
Intent: inout.
If mode does not specify synchronous completion, then this variable must
be present.

Notes

1. The dat argument is both input and output, and its value may be changed
even on processes different from the final result destination.

2. The mode argument can be built with the bitwise IOR() operator; in the
following example, the argument is forcing immediate completion, hence
the request argument needs not be specified:

call psb_bcast(ctxt,dat,&

& mode=ior(psb_collective_start_,psb_collective_end_))

3. When splitting the operation in two calls, the dat argument must not be
accessed between calls:

call psb_bcast(ctxt,dat,mode=psb_collective_start_,&

& request=bcast_request)

....... ! Do not access dat

call psb_bcast(ctxt,dat,mode=psb_collective_end_,&

& request=bcast_request)

121

7.10 psb sum — Global sum

call psb_sum(ctxt, dat [, root, mode, request])

This subroutine implements a sum reduction operation based on the under-
lying communication library.

Type: Synchronous.

On Entry

ctxt the communication context identifying the virtual parallel machine.
Scope: global.
Type: required.
Intent: in.
Specified as: an integer variable.

dat The local contribution to the global sum.
Scope: global.
Type: required.
Intent: inout.
Specified as: an integer, real or complex variable, which may be a scalar, or
a rank 1 or 2 array. Type, kind, rank and size must agree on all processes.

root Process to hold the final sum, or −1 to make it available on all processes.
Scope: global.
Type: optional.
Intent: in.
Specified as: an integer value −1 <= root <= np− 1, default -1.

mode Whether the call is started in non-blocking mode and completed later, or
is executed synchronously.
Scope: global.
Type: optional.
Intent: in.
Specified as: an integer value. The action to be taken is determined by
its bit fields, which can be set with bitwise OR. Basic action values are
psb_collective_start_, psb_collective_end_. Default: both fields are
selected (i.e. require synchronous completion).

request A request variable to check for operation completion.
Scope: local.
Type: optional.
Intent: inout.
If mode does not specify synchronous completion, then this variable must
be present.

On Return

dat On destination process(es), the result of the sum operation.
Scope: global.
Type: required.

122

Intent: inout.
Specified as: an integer, real or complex variable, which may be a scalar,
or a rank 1 or 2 array.
Type, kind, rank and size must agree on all processes.

request A request variable to check for operation completion.
Scope: local.
Type: optional.
Intent: inout.
If mode does not specify synchronous completion, then this variable must
be present.

Notes

1. The dat argument is both input and output, and its value may be changed
even on processes different from the final result destination.

2. The mode argument can be built with the bitwise IOR() operator; in the
following example, the argument is forcing immediate completion, hence
the request argument needs not be specified:

call psb_sum(ctxt,dat,&

& mode=ior(psb_collective_start_,psb_collective_end_))

3. When splitting the operation in two calls, the dat argument must not be
accessed between calls:

call psb_sum(ctxt,dat,mode=psb_collective_start_,&

& request=sum_request)

....... ! Do not access dat

call psb_sum(ctxt,dat,mode=psb_collective_end_,&

& request=sum_request)

123

7.11 psb max — Global maximum

call psb_max(ctxt, dat [, root, mode, request])

This subroutine implements a maximum valuereduction operation based on
the underlying communication library.

Type: Synchronous.

On Entry

ctxt the communication context identifying the virtual parallel machine.
Scope: global.
Type: required.
Intent: in.
Specified as: an integer variable.

dat The local contribution to the global maximum.
Scope: local.
Type: required.
Intent: inout.
Specified as: an integer or real variable, which may be a scalar, or a rank 1
or 2 array. Type, kind, rank and size must agree on all processes.

root Process to hold the final maximum, or −1 to make it available on all pro-
cesses.
Scope: global.
Type: optional.
Intent: in.
Specified as: an integer value −1 <= root <= np− 1, default -1.

mode Whether the call is started in non-blocking mode and completed later, or
is executed synchronously.
Scope: global.
Type: optional.
Intent: in.
Specified as: an integer value. The action to be taken is determined by
its bit fields, which can be set with bitwise OR. Basic action values are
psb_collective_start_, psb_collective_end_. Default: both fields are
selected (i.e. require synchronous completion).

request A request variable to check for operation completion.
Scope: local.
Type: optional.
Intent: inout.
If mode does not specify synchronous completion, then this variable must
be present.

On Return

124

dat On destination process(es), the result of the maximum operation.
Scope: global.
Type: required.
Intent: in.
Specified as: an integer or real variable, which may be a scalar, or a rank 1
or 2 array. Type, kind, rank and size must agree on all processes.

request A request variable to check for operation completion.
Scope: local.
Type: optional.
Intent: inout.
If mode does not specify synchronous completion, then this variable must
be present.

Notes

1. The dat argument is both input and output, and its value may be changed
even on processes different from the final result destination.

2. The mode argument can be built with the bitwise IOR() operator; in the
following example, the argument is forcing immediate completion, hence
the request argument needs not be specified:

call psb_max(ctxt,dat,&

& mode=ior(psb_collective_start_,psb_collective_end_))

3. When splitting the operation in two calls, the dat argument must not be
accessed between calls:

call psb_max(ctxt,dat,mode=psb_collective_start_,&

& request=max_request)

....... ! Do not access dat

call psb_max(ctxt,dat,mode=psb_collective_end_,&

& request=max_request)

125

7.12 psb min — Global minimum

call psb_min(ctxt, dat [, root, mode, request])

This subroutine implements a minimum value reduction operation based
on the underlying communication library.

Type: Synchronous.

On Entry

ctxt the communication context identifying the virtual parallel machine.
Scope: global.
Type: required.
Intent: in.
Specified as: an integer variable.

dat The local contribution to the global minimum.
Scope: local.
Type: required.
Intent: inout.
Specified as: an integer or real variable, which may be a scalar, or a rank 1
or 2 array. Type, kind, rank and size must agree on all processes.

root Process to hold the final value, or −1 to make it available on all processes.
Scope: global.
Type: optional.
Intent: in.
Specified as: an integer value −1 <= root <= np− 1, default -1.

mode Whether the call is started in non-blocking mode and completed later, or
is executed synchronously.
Scope: global.
Type: optional.
Intent: in.
Specified as: an integer value. The action to be taken is determined by
its bit fields, which can be set with bitwise OR. Basic action values are
psb_collective_start_, psb_collective_end_. Default: both fields are
selected (i.e. require synchronous completion).

request A request variable to check for operation completion.
Scope: local.
Type: optional.
Intent: inout.
If mode does not specify synchronous completion, then this variable must
be present.

On Return

dat On destination process(es), the result of the minimum operation.
Scope: global.

126

Type: required.
Intent: inout.
Specified as: an integer or real variable, which may be a scalar, or a rank 1
or 2 array.
Type, kind, rank and size must agree on all processes.

request A request variable to check for operation completion.
Scope: local.
Type: optional.
Intent: inout.
If mode does not specify synchronous completion, then this variable must
be present.

Notes

1. The dat argument is both input and output, and its value may be changed
even on processes different from the final result destination.

2. The mode argument can be built with the bitwise IOR() operator; in the
following example, the argument is forcing immediate completion, hence
the request argument needs not be specified:

call psb_min(ctxt,dat,&

& mode=ior(psb_collective_start_,psb_collective_end_))

3. When splitting the operation in two calls, the dat argument must not be
accessed between calls:

call psb_min(ctxt,dat,mode=psb_collective_start_,&

& request=min_request)

....... ! Do not access dat

call psb_min(ctxt,dat,mode=psb_collective_end_,&

& request=min_request)

127

7.13 psb amx — Global maximum absolute value

call psb_amx(ctxt, dat [, root, mode, request])

This subroutine implements a maximum absolute value reduction operation
based on the underlying communication library.

Type: Synchronous.

On Entry

ctxt the communication context identifying the virtual parallel machine.
Scope: global.
Type: required.
Intent: in.
Specified as: an integer variable.

dat The local contribution to the global maximum.
Scope: local.
Type: required.
Intent: inout.
Specified as: an integer, real or complex variable, which may be a scalar, or
a rank 1 or 2 array. Type, kind, rank and size must agree on all processes.

root Process to hold the final value, or −1 to make it available on all processes.
Scope: global.
Type: optional.
Intent: in.
Specified as: an integer value −1 <= root <= np− 1, default -1.

mode Whether the call is started in non-blocking mode and completed later, or
is executed synchronously.
Scope: global.
Type: optional.
Intent: in.
Specified as: an integer value. The action to be taken is determined by
its bit fields, which can be set with bitwise OR. Basic action values are
psb_collective_start_, psb_collective_end_. Default: both fields are
selected (i.e. require synchronous completion).

request A request variable to check for operation completion.
Scope: local.
Type: optional.
Intent: inout.
If mode does not specify synchronous completion, then this variable must
be present.

On Return

dat On destination process(es), the result of the maximum operation.
Scope: global.

128

Type: required.
Intent: inout.
Specified as: an integer, real or complex variable, which may be a scalar, or
a rank 1 or 2 array. Type, kind, rank and size must agree on all processes.

request A request variable to check for operation completion.
Scope: local.
Type: optional.
Intent: inout.
If mode does not specify synchronous completion, then this variable must
be present.

Notes

1. The dat argument is both input and output, and its value may be changed
even on processes different from the final result destination.

2. The mode argument can be built with the bitwise IOR() operator; in the
following example, the argument is forcing immediate completion, hence
the request argument needs not be specified:

call psb_amx(ctxt,dat,&

& mode=ior(psb_collective_start_,psb_collective_end_))

3. When splitting the operation in two calls, the dat argument must not be
accessed between calls:

call psb_amx(ctxt,dat,mode=psb_collective_start_,&

& request=amx_request)

....... ! Do not access dat

call psb_amx(ctxt,dat,mode=psb_collective_end_,&

& request=amx_request)

129

7.14 psb amn — Global minimum absolute value

call psb_amn(ctxt, dat [, root, mode, request])

This subroutine implements a minimum absolute value reduction operation
based on the underlying communication library.

Type: Synchronous.

On Entry

ctxt the communication context identifying the virtual parallel machine.
Scope: global.
Type: required.
Intent: in.
Specified as: an integer variable.

dat The local contribution to the global minimum.
Scope: local.
Type: required.
Intent: inout.
Specified as: an integer, real or complex variable, which may be a scalar, or
a rank 1 or 2 array. Type, kind, rank and size must agree on all processes.

root Process to hold the final value, or −1 to make it available on all processes.
Scope: global.
Type: optional.
Intent: in.
Specified as: an integer value −1 <= root <= np− 1, default -1.

mode Whether the call is started in non-blocking mode and completed later, or
is executed synchronously.
Scope: global.
Type: optional.
Intent: in.
Specified as: an integer value. The action to be taken is determined by
its bit fields, which can be set with bitwise OR. Basic action values are
psb_collective_start_, psb_collective_end_. Default: both fields are
selected (i.e. require synchronous completion).

request A request variable to check for operation completion.
Scope: local.
Type: optional.
Intent: inout.
If mode does not specify synchronous completion, then this variable must
be present.

On Return

dat On destination process(es), the result of the minimum operation.
Scope: global.

130

Type: required.
Intent: inout.
Specified as: an integer, real or complex variable, which may be a scalar,
or a rank 1 or 2 array.
Type, kind, rank and size must agree on all processes.

request A request variable to check for operation completion.
Scope: local.
Type: optional.
Intent: inout.
If mode does not specify synchronous completion, then this variable must
be present.

Notes

1. The dat argument is both input and output, and its value may be changed
even on processes different from the final result destination.

2. The mode argument can be built with the bitwise IOR() operator; in the
following example, the argument is forcing immediate completion, hence
the request argument needs not be specified:

call psb_amn(ctxt,dat,&

& mode=ior(psb_collective_start_,psb_collective_end_))

3. When splitting the operation in two calls, the dat argument must not be
accessed between calls:

call psb_amn(ctxt,dat,mode=psb_collective_start_,&

& request=amn_request)

....... ! Do not access dat

call psb_amn(ctxt,dat,mode=psb_collective_end_,&

& request=amn_request)

131

7.15 psb nrm2 — Global 2-norm reduction

call psb_nrm2(ctxt, dat [, root, mode, request])

This subroutine implements a 2-norm value reduction operation based on
the underlying communication library.

Type: Synchronous.

On Entry

ctxt the communication context identifying the virtual parallel machine.
Scope: global.
Type: required.
Intent: in.
Specified as: an integer variable.

dat The local contribution to the global minimum.
Scope: local.
Type: required.
Intent: inout.
Specified as: a real variable, which may be a scalar, or a rank 1 array. Kind,
rank and size must agree on all processes.

root Process to hold the final value, or −1 to make it available on all processes.
Scope: global.
Type: optional.
Intent: in.
Specified as: an integer value −1 <= root <= np− 1, default -1.

mode Whether the call is started in non-blocking mode and completed later, or
is executed synchronously.
Scope: global.
Type: optional.
Intent: in.
Specified as: an integer value. The action to be taken is determined by
its bit fields, which can be set with bitwise OR. Basic action values are
psb_collective_start_, psb_collective_end_. Default: both fields are
selected (i.e. require synchronous completion).

request A request variable to check for operation completion.
Scope: local.
Type: optional.
Intent: inout.
If mode does not specify synchronous completion, then this variable must
be present.

On Return

dat On destination process(es), the result of the 2-norm reduction.
Scope: global.

132

Type: required.
Intent: inout.
Specified as: a real variable, which may be a scalar, or a rank 1 array.
Kind, rank and size must agree on all processes.

request A request variable to check for operation completion.
Scope: local.
Type: optional.
Intent: inout.
If mode does not specify synchronous completion, then this variable must
be present.

Notes

1. This reduction is appropriate to compute the results of multiple (local)
NRM2 operations at the same time.

2. Denoting by dati the value of the variable dat on process i, the output res
is equivalent to the computation of

res =
√

∑
i

dat2
i ,

with care taken to avoid unnecessary overflow.

3. The dat argument is both input and output, and its value may be changed
even on processes different from the final result destination.

4. The mode argument can be built with the bitwise IOR() operator; in the
following example, the argument is forcing immediate completion, hence
the request argument needs not be specified:

call psb_nrm2(ctxt,dat,&

& mode=ior(psb_collective_start_,psb_collective_end_))

5. When splitting the operation in two calls, the dat argument must not be
accessed between calls:

call psb_nrm2(ctxt,dat,mode=psb_collective_start_,&

& request=nrm2_request)

....... ! Do not access dat

call psb_nrm2(ctxt,dat,mode=psb_collective_end_,&

& request=nrm2_request)

133

7.16 psb snd — Send data

call psb_snd(ctxt, dat, dst, m)

This subroutine sends a packet of data to a destination.

Type: Synchronous: see usage notes.

On Entry

ctxt the communication context identifying the virtual parallel machine.
Scope: global.
Type: required.
Intent: in.
Specified as: an integer variable.

dat The data to be sent.
Scope: local.
Type: required.
Intent: in.
Specified as: an integer, real or complex variable, which may be a scalar,
or a rank 1 or 2 array, or a character or logical scalar. Type, kind and rank
must agree on sender and receiver process; if m is not specified, size must
agree as well.

dst Destination process.
Scope: global.
Type: required.
Intent: in.
Specified as: an integer value 0 <= dst <= np− 1.

m Number of rows.
Scope: global.
Type: Optional.
Intent: in.
Specified as: an integer value 0 <= m <= size(dat, 1).
When dat is a rank 2 array, specifies the number of rows to be sent inde-
pendently of the leading dimension size(dat, 1); must have the same value
on sending and receiving processes.

On Return

Notes

1. This subroutine implies a synchronization, but only between the calling
process and the destination process dst.

134

7.17 psb rcv — Receive data

call psb_rcv(ctxt, dat, src, m)

This subroutine receives a packet of data to a destination.

Type: Synchronous: see usage notes.

On Entry

ctxt the communication context identifying the virtual parallel machine.
Scope: global.
Type: required.
Intent: in.
Specified as: an integer variable.

src Source process.
Scope: global.
Type: required.
Intent: in.
Specified as: an integer value 0 <= src <= np− 1.

m Number of rows.
Scope: global.
Type: Optional.
Intent: in.
Specified as: an integer value 0 <= m <= size(dat, 1).
When dat is a rank 2 array, specifies the number of rows to be sent inde-
pendently of the leading dimension size(dat, 1); must have the same value
on sending and receiving processes.

On Return

dat The data to be received.
Scope: local.
Type: required.
Intent: inout.
Specified as: an integer, real or complex variable, which may be a scalar,
or a rank 1 or 2 array, or a character or logical scalar. Type, kind and rank
must agree on sender and receiver process; if m is not specified, size must
agree as well.

Notes

1. This subroutine implies a synchronization, but only between the calling
process and the source process src.

135

8 Error handling

The PSBLAS library error handling policy has been completely rewritten in
version 2.0. The idea behind the design of this new error handling strategy
is to keep error messages on a stack allowing the user to trace back up to the
point where the first error message has been generated. Every routine in the
PSBLAS-2.0 library has, as last non-optional argument, an integer info variable;
whenever, inside the routine, an error is detected, this variable is set to a value
corresponding to a specific error code. Then this error code is also pushed
on the error stack and then either control is returned to the caller routine or
the execution is aborted, depending on the users choice. At the time when the
execution is aborted, an error message is printed on standard output with a level
of verbosity than can be chosen by the user. If the execution is not aborted, then,
the caller routine checks the value returned in the info variable and, if not zero,
an error condition is raised. This process continues on all the levels of nested
calls until the level where the user decides to abort the program execution.

Figure 5 shows the layout of a generic psb_foo routine with respect to the
PSBLAS-2.0 error handling policy. It is possible to see how, whenever an error
condition is detected, the info variable is set to the corresponding error code
which is, then, pushed on top of the stack by means of the psb_errpush. An
error condition may be directly detected inside a routine or indirectly checking
the error code returned returned by a called routine. Whenever an error is
encountered, after it has been pushed on stack, the program execution skips to a
point where the error condition is handled; the error condition is handled either
by returning control to the caller routine or by calling the psb_error routine
which prints the content of the error stack and aborts the program execution,
according to the choice made by the user with psb_set_erraction. The default
is to print the error and terminate the program, but the user may choose to
handle the error explicitly.

Figure 6 reports a sample error message generated by the PSBLAS-2.0 library.
This error has been generated by the fact that the user has chosen the invalid
“FOO” storage format to represent the sparse matrix. From this error message it
is possible to see that the error has been detected inside the psb_cest subroutine
called by psb_spasb ... by process 0 (i.e. the root process).

136

subroutine psb_foo(some args, info)

!...

if(error detected) then

info=errcode1

call psb_errpush('psb_foo', errcode1)

goto 9999

end if

!...

call psb_bar(some args, info)

if(info .ne. zero) then

info=errcode2

call psb_errpush('psb_foo', errcode2)

goto 9999

end if

!...

9999 continue

if (err_act .eq. act_abort) then

call psb_error(icontxt)

return

else

return

end if

end subroutine psb_foo

Listing 5: The layout of a generic psb foo routine with respect to PSBLAS-2.0
error handling policy.

==

Process: 0. PSBLAS Error (4010) in subroutine: df_sample

Error from call to subroutine mat dist

==

Process: 0. PSBLAS Error (4010) in subroutine: mat_distv

Error from call to subroutine psb_spasb

==

Process: 0. PSBLAS Error (4010) in subroutine: psb_spasb

Error from call to subroutine psb_cest

==

Process: 0. PSBLAS Error (136) in subroutine: psb_cest

Format FOO is unknown

==

Aborting...

Listing 6: A sample PSBLAS-3.0 error message. Process 0 detected an error
condition inside the psb cest subroutine

137

8.1 psb errpush — Pushes an error code onto the error stack

c a l l psb errpush (e r r c , r name , i e r r , a e r r)

Type: Asynchronous.

On Entry

err c the error code
Scope: local
Type: required
Intent: in.
Specified as: an integer.

r name the soutine where the error has been caught.
Scope: local
Type: required
Intent: in.
Specified as: a string.

i err addional info for error code
Scope: local
Type: optional
Specified as: an integer array

a err addional info for error code
Scope: local
Type: optional
Specified as: a string.

138

8.2 psb error — Prints the error stack content and aborts execu-
tion

c a l l p sb err or (i c o n t x t)

Type: Asynchronous.

On Entry

icontxt the communication context.
Scope: global
Type: optional
Intent: in.
Specified as: an integer.

139

8.3 psb set errverbosity — Sets the verbosity of error messages

c a l l p s b s e t e r r v e r b o s i t y (v)

Type: Asynchronous.

On Entry

v the verbosity level
Scope: global
Type: required
Intent: in.
Specified as: an integer.

140

8.4 psb set erraction — Set the type of action to be taken upon
error condition

c a l l p s b s e t e r r a c t i o n (e r r a c t)

Type: Asynchronous.

On Entry

err act the type of action.
Scope: global
Type: required
Intent: in.
Specified as: an integer. Possible values: psb_act_ret, psb_act_abort.

141

9 Utilities

We have some utilities available for input and output of sparse matrices; the
interfaces to these routines are available in the module psb_util_mod.

142

9.1 hb read — Read a sparse matrix from a file in the Harwell–
Boeing format

c a l l hb read (a , i r e t , i u n i t , f i lename , b , m t i t l e)

Type: Asynchronous.

On Entry

filename The name of the file to be read.
Type:optional.
Specified as: a character variable containing a valid file name, or -, in
which case the default input unit 5 (i.e. standard input in Unix jargon) is
used. Default: -.

iunit The Fortran file unit number.
Type:optional.
Specified as: an integer value. Only meaningful if filename is not -.

On Return

a the sparse matrix read from file.
Type:required.
Specified as: a structured data of type psb Tspmat type.

b Rigth hand side(s).
Type: Optional
An array of type real or complex, rank 2 and having the ALLOCATABLE
attribute; will be allocated and filled in if the input file contains a right
hand side, otherwise will be left in the UNALLOCATED state.

mtitle Matrix title.
Type: Optional
A charachter variable of length 72 holding a copy of the matrix title as
specified by the Harwell-Boeing format and contained in the input file.

iret Error code.
Type: required
An integer value; 0 means no error has been detected.

143

9.2 hb write — Write a sparse matrix to a file in the Harwell–
Boeing format

c a l l hb write (a , i r e t , i u n i t , f i lename , key , rhs , m t i t l e)

Type: Asynchronous.

On Entry

a the sparse matrix to be written.
Type:required.
Specified as: a structured data of type psb Tspmat type.

b Rigth hand side.
Type: Optional
An array of type real or complex, rank 1 and having the ALLOCATABLE
attribute; will be allocated and filled in if the input file contains a right
hand side.

filename The name of the file to be written to.
Type:optional.
Specified as: a character variable containing a valid file name, or -, in
which case the default output unit 6 (i.e. standard output in Unix jargon)
is used. Default: -.

iunit The Fortran file unit number.
Type:optional.
Specified as: an integer value. Only meaningful if filename is not -.

key Matrix key.
Type: Optional
A charachter variable of length 8 holding the matrix key as specified by
the Harwell-Boeing format and to be written to file.

mtitle Matrix title.
Type: Optional
A charachter variable of length 72 holding the matrix title as specified by
the Harwell-Boeing format and to be written to file.

On Return

iret Error code.
Type: required
An integer value; 0 means no error has been detected.

144

9.3 mm mat read — Read a sparse matrix from a file in the
MatrixMarket format

c a l l mm mat read (a , i r e t , i u n i t , f i lename)

Type: Asynchronous.

On Entry

filename The name of the file to be read.
Type:optional.
Specified as: a character variable containing a valid file name, or -, in
which case the default input unit 5 (i.e. standard input in Unix jargon) is
used. Default: -.

iunit The Fortran file unit number.
Type:optional.
Specified as: an integer value. Only meaningful if filename is not -.

On Return

a the sparse matrix read from file.
Type:required.
Specified as: a structured data of type psb Tspmat type.

iret Error code.
Type: required
An integer value; 0 means no error has been detected.

145

9.4 mm array read — Read a dense array from a file in the
MatrixMarket format

c a l l mm array read (b , i r e t , i u n i t , f i lename)

Type: Asynchronous.

On Entry

filename The name of the file to be read.
Type:optional.
Specified as: a character variable containing a valid file name, or -, in
which case the default input unit 5 (i.e. standard input in Unix jargon) is
used. Default: -.

iunit The Fortran file unit number.
Type:optional.
Specified as: an integer value. Only meaningful if filename is not -.

On Return

b Rigth hand side(s).
Type: required
An array of type real or complex, rank 1 or 2 and having the ALLO-
CATABLE attribute, or an object of type psb T vect type, of type real or
complex.
Will be allocated and filled in if the input file contains a right hand side,
otherwise will be left in the UNALLOCATED state.

iret Error code.
Type: required
An integer value; 0 means no error has been detected.

146

9.5 mm mat write — Write a sparse matrix to a file in the Ma-
trixMarket format

c a l l mm mat write (a , m t i t l e , i r e t , i u n i t , f i lename)

Type: Asynchronous.

On Entry

a the sparse matrix to be written.
Type:required.
Specified as: a structured data of type psb Tspmat type.

mtitle Matrix title.
Type: required
A charachter variable holding a descriptive title for the matrix to be written
to file.

filename The name of the file to be written to.
Type:optional.
Specified as: a character variable containing a valid file name, or -, in
which case the default output unit 6 (i.e. standard output in Unix jargon)
is used. Default: -.

iunit The Fortran file unit number.
Type:optional.
Specified as: an integer value. Only meaningful if filename is not -.

On Return

iret Error code.
Type: required
An integer value; 0 means no error has been detected.

Notes
If this function is called on a matrix a on a distributed communicator only

the local part is written in output. To get a single MatrixMarket file with the
whole matrix when appropriate, e.g. for debugging purposes, one could gather
the whole matrix on a single rank and then write it. Consider the following
example for a double precision matrix

type(psb_ldspmat_type) :: aglobal

call psb_gather(aglobal,a,desc_a,info)

if (iam == psb_root_) then

call mm_mat_write(aglobal,mtitle,info,filename)

end if

call psb_spfree(aglobal, desc_a, info)

To simplify this procedure in C, there is a utility function

psb_i_t psb_c_<s,d,c,z>global_mat_write(ah,cdh);

that produces exactly this result.

147

9.6 mm array write — Write a dense array from a file in the
MatrixMarket format

c a l l mm array write (b , v t i t l e , i r e t , i u n i t , f i lename)

Type: Asynchronous.

On Entry

b Rigth hand side(s).
Type: required
An array of type real or complex, rank 1 or 2, or an object of type psb T vect type,
of type real or complex; its contents will be written to disk.

filename The name of the file to be written.

vtitle Matrix title.
Type: required
A charachter variable holding a descriptive title for the vector to be written
to file. Type:optional.
Specified as: a character variable containing a valid file name, or -, in
which case the default input unit 5 (i.e. standard input in Unix jargon) is
used. Default: -.

iunit The Fortran file unit number.
Type:optional.
Specified as: an integer value. Only meaningful if filename is not -.

On Return

iret Error code.
Type: required
An integer value; 0 means no error has been detected.

Notes
If this function is called on a vector v on a distributed communicator only

the local part is written in output. To get a single MatrixMarket file with the
whole vector when appropriate, e.g. for debugging purposes, one could gather
the whole vector on a single rank and then write it. Consider the following
example for a double precision vector

real(psb_dpk_), allocatable :: vglobal(:)

call psb_gather(vglobal,v,desc,info)

if (iam == psb_root_) then

call mm_array_write(vglobal,vtitle,info,filename)

end if

call deallocate(vglobal, stat=info)

To simplify this procedure in C, there is a utility function

148

psb_i_t psb_c_<s,d,c,z>global_vec_write(vh,cdh);

that produces exactly this result.

149

10 Preconditioner routines

The base PSBLAS library contains the implementation of two simple precondi-
tioning techniques:

• Diagonal Scaling

• Block Jacobi with ILU(0) factorization

The supporting data type and subroutine interfaces are defined in the mod-
ule psb_prec_mod. The old interfaces psb_precinit and psb_precbld are still
supported for backward compatibility

150

10.1 init — Initialize a preconditioner

call prec%init(icontxt,ptype, info)

Type: Asynchronous.

On Entry

icontxt the communication context.
Scope:global.
Type:required.
Intent: in.
Specified as: an integer value.

ptype the type of preconditioner. Scope: global
Type: required
Intent: in.
Specified as: a character string, see usage notes.

On Exit

prec Scope: local
Type: required
Intent: inout.
Specified as: a preconditioner data structure psb Tprec type.

info Scope: global
Type: required
Intent: out.
Error code: if no error, 0 is returned.

Notes Legal inputs to this subroutine are interpreted depending on the ptype
string as follows4:

NONE No preconditioning, i.e. the preconditioner is just a copy operator.

DIAG Diagonal scaling; each entry of the input vector is multiplied by the
reciprocal of the sum of the absolute values of the coefficients in the
corresponding row of matrix A;

BJAC Precondition by a factorization or an approximante inverse of the block-
diagonal of matrix A, where block boundaries are determined by the data
allocation boundaries for each process; requires no communication. See
also Table-21.

4The string is case-insensitive

151

10.2 Set — set preconditioner parameters

call p%set(what,val,info)

This method sets the parameters defining the subdomain solver when the
preconditioner type is BJAC. More precisely, the parameter identified by what is
assigned the value contained in val.

Arguments
what character(len=*).

The parameter to be set. It can be specified through its name; the string is
case-insensitive. See Table 21.

val integer or character(len=*) or real(psb_spk_) or real(psb_dpk_),
intent(in).
The value of the parameter to be set. The list of allowed values and the
corresponding data types is given in Table 21. When the value is of type
character(len=*), it is also treated as case insensitive.

info integer, intent(out).
Error code. If no error, 0 is returned. See Section 8 for details.

A number of subdomain solvers can be chosen with this method; a list of the
parameters that can be set, along with their allowed and default values, is given
in Table-21.

152

w
h
a
t

D
A

TA
T

Y
P

E
v
a
l

D
E

FA
U

LT
C

O
M

M
E

N
T

S

'
S
U
B
_
S
O
L
V
E
'

c
h
a
r
a
c
t
e
r
(
l
e
n
=
*
)

'
I
L
U
'

'
I
L
U
T
'

'
I
N
V
T
'

'
I
N
V
K
'

'
A
I
N
V
'

T
he

lo
ca

l
so

lv
er

to
be

u
se

d
w

it
h

th
e

sm
oo

th
er

or
on

e-
le

ve
l

p
re

co
nd

it
io

ne
r

IL
U

(p
),

IL
U

(p
,t

),
A

p
pr

ox
im

at
e

In
ve

rs
es

IN
V

K
(p

,q
),

IN
V

T
(p

1,
p2

,t
1,

t 2
)

an
d

A
IN

V
(t

);
no

te
th

at
ap

p
ro

xi
m

at
e

in
ve

rs
es

ar
e

sp
ec

ifi
ca

lly
su

it
ed

fo
r

G
P

U
s

si
nc

e
th

ey
d

o
no

t
em

p
lo

y
tr

ia
ng

u
la

r
sy

st
em

so
lv

e
ke

rn
el

s,
se

e
[2

].
'
S
U
B
_
F
I
L
L
I
N
'

i
n
t
e
g
e
r

A
ny

in
te

ge
r

nu
m

be
r
≥

0
0

Fi
ll-

in
le

ve
lp

of
th

e
in

co
m

pl
et

e
LU

fa
ct

or
iz

at
io

ns
.

'
S
U
B
_
I
L
U
T
H
R
S
'

r
e
a
l
(
k
i
n
d
_
p
a
r
a
m
e
t
e
r
)

A
ny

re
al

nu
m

-
be

r
≥

0
0

D
ro

p
to

le
ra

nc
e

ti
n

th
e

IL
U

(p
,t

)f
ac

to
ri

za
ti

on
.

'
I
L
U
_
A
L
G
'

c
h
a
r
a
c
t
e
r
(
l
e
n
=
*
)

'
M
I
L
U
'

'
N
O
N
E
'

IL
U

al
go

ri
th

m
ic

va
ri

an
t

'
I
L
U
T
_
S
C
A
L
E
'

c
h
a
r
a
c
t
e
r
(
l
e
n
=
*
)

'
M
A
X
V
A
L
'

'
D
I
A
G
'

'
A
R
S
W
U
M
'

'
A
R
C
S
U
M
'

'
A
C
L
S
U
M
'

'
N
O
N
E
'

'
N
O
N
E
'

IL
U

sc
al

in
g

st
ra

te
gy

'
I
N
V
_
F
I
L
L
I
N
'

i
n
t
e
g
e
r

A
ny

in
te

ge
r

nu
m

be
r
≥

0
0

Se
co

nd
fi

ll-
in

le
ve

lq
of

th
e

IN
V

K
(p

,q
)

ap
p

ro
xi

-
m

at
e

in
ve

rs
e.

'
I
N
V
_
I
L
U
T
H
R
S
'

r
e
a
l
(
k
i
n
d
_
p
a
r
a
m
e
t
e
r
)

A
ny

re
al

nu
m

-
be

r
≥

0
0

Se
co

nd
dr

op
to

le
ra

nc
e

s
in

th
e

IN
V

T(
t,

s)
ap

pr
ox

-
im

at
e

in
ve

rs
e.

'
A
I
N
V
_
A
L
G
'

c
h
a
r
a
c
t
e
r
(
l
e
n
=
*
)

'
L
L
K
'

'
S
Y
M
-
L
L
K
'

'
S
T
A
B
-
L
L
K
'

'
M
L
K
,
L
M
X
'

'
L
L
K
'

A
IN

V
al

go
ri

th
m

ic
st

ra
te

gy
.

Ta
bl

e
21

:P
ar

am
et

er
s

de
fin

in
g

th
e

so
lv

er
of

th
e

BJ
A

C
pr

ec
on

di
ti

on
er

.

153

10.3 build — Builds a preconditioner

call prec%build(a, desc_a, info[,amold,vmold,imold])

Type: Synchronous.

On Entry

a the system sparse matrix. Scope: local
Type: required
Intent: in, target.
Specified as: a sparse matrix data structure psb Tspmat type.

prec the preconditioner.
Scope: local
Type: required
Intent: inout.
Specified as: an already initialized precondtioner data structure psb Tprec type

desc a the problem communication descriptor. Scope: local
Type: required
Intent: in, target.
Specified as: a communication descriptor data structure psb desc type.

amold The desired dynamic type for the internal matrix storage.
Scope: local.
Type: optional.
Intent: in.
Specified as: an object of a class derived from psb T base sparse mat.

vmold The desired dynamic type for the internal vector storage.
Scope: local.
Type: optional.
Intent: in.
Specified as: an object of a class derived from psb T base vect type.

imold The desired dynamic type for the internal integer vector storage.
Scope: local.
Type: optional.
Intent: in.
Specified as: an object of a class derived from (integer) psb T base vect type.

On Return

prec the preconditioner.
Scope: local
Type: required
Intent: inout.
Specified as: a precondtioner data structure psb Tprec type

154

info Error code.
Scope: local
Type: required
Intent: out.
An integer value; 0 means no error has been detected.

The amold, vmold and imold arguments may be employed to interface with
special devices, such as GPUs and other accelerators.

155

10.4 apply — Preconditioner application routine

call prec%apply(x,y,desc_a,info,trans,work)

call prec%apply(x,desc_a,info,trans)

Type: Synchronous.

On Entry

prec the preconditioner. Scope: local
Type: required
Intent: in.
Specified as: a preconditioner data structure psb Tprec type.

x the source vector. Scope: local
Type: required
Intent: inout.
Specified as: a rank one array or an object of type psb T vect type.

desc a the problem communication descriptor. Scope: local
Type: required
Intent: in.
Specified as: a communication data structure psb desc type.

trans Scope:
Type: optional
Intent: in.
Specified as: a character.

work an optional work space Scope: local
Type: optional
Intent: inout.
Specified as: a double precision array.

On Return

y the destination vector. Scope: local
Type: required
Intent: inout.
Specified as: a rank one array or an object of type psb T vect type.

info Error code.
Scope: local
Type: required
Intent: out.
An integer value; 0 means no error has been detected.

156

10.5 descr — Prints a description of current preconditioner

call prec%descr(info)

call prec%descr(info,iout, root)

Type: Asynchronous.

On Entry

prec the preconditioner. Scope: local
Type: required
Intent: in.
Specified as: a preconditioner data structure psb Tprec type.

iout output unit. Scope: local
Type: optional
Intent: in.
Specified as: an integer number. Default: default output unit.

root Process from which to print Scope: local
Type: optional
Intent: in.
Specified as: an integer number between 0 and np − 1, in which case
the specified process will print the description, or −1, in which case all
processes will print. Default: 0.

On Return

info Error code.
Scope: local
Type: required
Intent: out.
An integer value; 0 means no error has been detected.

157

10.6 clone — clone current preconditioner

call prec%clone(precout,info)

Type: Asynchronous.

On Entry

prec the preconditioner.
Scope: local.

On Return

precout A copy of the input object.

info Return code.

158

10.7 free — Free a preconditioner

call prec%free(info)

Type: Asynchronous.

On Entry

prec the preconditioner.
Scope: local.
Type: required
Intent: inout.
Specified as: a preconditioner data structure psb Tprec type.

On Exit

prec Scope: local
Type: required
Intent: inout.
Specified as: a preconditioner data structure psb Tprec type.

info Scope: global
Type: required
Intent: out.
Error code: if no error, 0 is returned.

Notes Releases all internal storage.

159

11 Iterative Methods

In this chapter we provide routines for preconditioners and iterative methods.
The interfaces for iterative methods are available in the module psb_linsolve_mod.

160

11.1 psb krylov — Krylov Methods Driver Routine

This subroutine is a driver that provides a general interface for all the Krylov-
Subspace family methods implemented in PSBLAS version 2.

The stopping criterion can take the following values:

1 normwise backward error in the infinity norm; the iteration is stopped when

err =
∥ri∥

(∥A∥∥xi∥+ ∥b∥)
< eps

2 Relative residual in the 2-norm; the iteration is stopped when

err =
∥ri∥
∥b∥2

< eps

3 Relative residual reduction in the 2-norm; the iteration is stopped when

err =
∥ri∥
∥r0∥2

< eps

The behaviour is controlled by the istop argument (see later). In the above
formulae, xi is the tentative solution and ri = b− Axi the corresponding residual
at the i-th iteration.

c a l l psb krylov (method , a , prec , b , x , eps , desc a , info ,&
& itmax , i t e r , err , i t r a c e , i r s t , i s top , cond)

Type: Synchronous.

On Entry

method a string that defines the iterative method to be used. Supported values
are:

CG: the Conjugate Gradient method;

CGS: the Conjugate Gradient Stabilized method;

GCR: the Generalized Conjugate Residual method;

FCG: the Flexible Conjugate Gradient method5;

BICG: the Bi-Conjugate Gradient method;

BICGSTAB: the Bi-Conjugate Gradient Stabilized method;

BICGSTABL: the Bi-Conjugate Gradient Stabilized method with restart-
ing;

RGMRES: the Generalized Minimal Residual method with restarting.

a the local portion of global sparse matrix A.
Scope: local
Type: required
Intent: in.
Specified as: a structured data of type psb Tspmat type.

5Note: the implementation is for FCG(1).

161

prec The data structure containing the preconditioner.
Scope: local
Type: required
Intent: in.
Specified as: a structured data of type psb Tprec type.

b The RHS vector.
Scope: local
Type: required
Intent: in.
Specified as: a rank one array or an object of type psb T vect type.

x The initial guess.
Scope: local
Type: required
Intent: inout.
Specified as: a rank one array or an object of type psb T vect type.

eps The stopping tolerance.
Scope: global
Type: required
Intent: in.
Specified as: a real number.

desc a contains data structures for communications.
Scope: local
Type: required
Intent: in.
Specified as: a structured data of type psb desc type.

itmax The maximum number of iterations to perform.
Scope: global
Type: optional
Intent: in.
Default: itmax = 1000.
Specified as: an integer variable itmax ≥ 1.

itrace If > 0 print out an informational message about convergence every itrace
iterations. If = 0 print a message in case of convergence failure.
Scope: global
Type: optional
Intent: in.
Default: itrace = −1.

irst An integer specifying the restart parameter.
Scope: global
Type: optional.
Intent: in.
Values: irst > 0. This is employed for the BiCGSTABL or RGMRES
methods, otherwise it is ignored.

162

istop An integer specifying the stopping criterion.
Scope: global
Type: optional.
Intent: in.
Values: 1: use the normwise backward error, 2: use the scaled 2-norm of
the residual, 3: use the residual reduction in the 2-norm. Default: 2.

On Return

x The computed solution.
Scope: local
Type: required
Intent: inout.
Specified as: a rank one array or an object of type psb T vect type.

iter The number of iterations performed.
Scope: global
Type: optional
Intent: out.
Returned as: an integer variable.

err The convergence estimate on exit.
Scope: global
Type: optional
Intent: out.
Returned as: a real number.

cond An estimate of the condition number of matrix A; only available with the
CG method on real data.
Scope: global
Type: optional
Intent: out.
Returned as: a real number. A correct result will be greater than or equal
to one; if specified for non-real data, or an error occurred, zero is returned.

info Error code.
Scope: local
Type: required
Intent: out.
An integer value; 0 means no error has been detected.

163

11.2 psb richardson — Richardson Iteration Driver Routine

This subroutine is a driver implementig a Richardson iteration

xk+1 = M−1(b− Axk) + xk,

with the preconditioner operator M defined in the previous section.
The stopping criterion can take the following values:

1 normwise backward error in the infinity norm; the iteration is stopped when

err =
∥ri∥

(∥A∥∥xi∥+ ∥b∥)
< eps

2 Relative residual in the 2-norm; the iteration is stopped when

err =
∥ri∥
∥b∥2

< eps

3 Relative residual reduction in the 2-norm; the iteration is stopped when

err =
∥ri∥
∥r0∥2

< eps

The behaviour is controlled by the istop argument (see later). In the above
formulae, xi is the tentative solution and ri = b− Axi the corresponding residual
at the i-th iteration.

c a l l psb r ichardson (a , prec , b , x , eps , desc a , info ,&
& itmax , i t e r , err , i t r a c e , i s t o p)

Type: Synchronous.

On Entry

a the local portion of global sparse matrix A.
Scope: local
Type: required
Intent: in.
Specified as: a structured data of type psb Tspmat type.

prec The data structure containing the preconditioner.
Scope: local
Type: required
Intent: in.
Specified as: a structured data of type psb Tprec type.

b The RHS vector.
Scope: local
Type: required
Intent: in.
Specified as: a rank one array or an object of type psb T vect type.

164

x The initial guess.
Scope: local
Type: required
Intent: inout.
Specified as: a rank one array or an object of type psb T vect type.

eps The stopping tolerance.
Scope: global
Type: required
Intent: in.
Specified as: a real number.

desc a contains data structures for communications.
Scope: local
Type: required
Intent: in.
Specified as: a structured data of type psb desc type.

itmax The maximum number of iterations to perform.
Scope: global
Type: optional
Intent: in.
Default: itmax = 1000.
Specified as: an integer variable itmax ≥ 1.

itrace If > 0 print out an informational message about convergence every itrace
iterations. If = 0 print a message in case of convergence failure.
Scope: global
Type: optional
Intent: in.
Default: itrace = −1.

istop An integer specifying the stopping criterion.
Scope: global
Type: optional.
Intent: in.
Values: 1: use the normwise backward error, 2: use the scaled 2-norm of
the residual, 3: use the residual reduction in the 2-norm. Default: 2.

On Return

x The computed solution.
Scope: local
Type: required
Intent: inout.
Specified as: a rank one array or an object of type psb T vect type.

iter The number of iterations performed.
Scope: global
Type: optional
Intent: out.
Returned as: an integer variable.

165

err The convergence estimate on exit.
Scope: global
Type: optional
Intent: out.
Returned as: a real number.

info Error code.
Scope: local
Type: required
Intent: out.
An integer value; 0 means no error has been detected.

166

12 Extensions

The EXT, CUDA and RSB subdirectories contains a set of extensions to the base
library. The extensions provide additional storage formats beyond the ones
already contained in the base library, as well as interfaces to:

SPGPU a CUDA library originally published as https://code.google.com/
p/spgpu/ and now included in the cuda subdir, for computations on
NVIDIA GPUs;

LIBRSB http://sourceforge.net/projects/librsb/, for computations on
multicore parallel machines.

The infrastructure laid out in the base library to allow for these extensions
is detailed in the references [21, 22, 11]; the CUDA-specific data formats are
described in [23].

12.1 Using the extensions

A sample application using the PSBLAS extensions will contain the following
steps:

• USE the appropriat modules (psb_ext_mod, psb_cuda_mod);

• Declare a mold variable of the necessary type (e.g. psb_d_ell_sparse_mat,
psb_d_hlg_sparse_mat, psb_d_vect_cuda);

• Pass the mold variable to the base library interface where needed to ensure
the appropriate dynamic type.

Suppose you want to use the CUDA-enabled ELLPACK data structure; you
would use a piece of code like this (and don’t forget, you need CUDA-side
vectors along with the matrices):

program my_cuda_test

use psb_base_mod

use psb_util_mod

use psb_ext_mod

use psb_cuda_mod

type(psb_dspmat_type) :: a, agpu

type(psb_d_vect_type) :: x, xg, bg

real(psb_dpk_), allocatable :: xtmp(:)

type(psb_d_vect_cuda) :: vmold

type(psb_d_elg_sparse_mat) :: aelg

type(psb_ctxt_type) :: ctxt

integer :: iam, np

call psb_init(ctxt)

call psb_info(ctxt,iam,np)

call psb_cuda_init(ctxt, iam)

167

https://code.google.com/p/spgpu/
https://code.google.com/p/spgpu/
http://sourceforge.net/projects/librsb/

! My own home-grown matrix generator

call gen_matrix(ctxt,idim,desc_a,a,x,info)

if (info /= 0) goto 9999

call a%cscnv(agpu,info,mold=aelg)

if (info /= 0) goto 9999

xtmp = x%get_vect()

call xg%bld(xtmp,mold=vmold)

call bg%bld(size(xtmp),mold=vmold)

! Do sparse MV

call psb_spmm(done,agpu,xg,dzero,bg,desc_a,info)

9999 continue

if (info == 0) then

write(*,*) '42'

else

write(*,*) 'Something went wrong ',info

end if

call psb_cuda_exit()

call psb_exit(ctxt)

stop

end program my_cuda_test

A full example of this strategy can be seen in the test/ext/kernel and
test/cuda/kernel subdirectories, where we provide sample programs to test
the speed of the sparse matrix-vector product with the various data structures
included in the library.

12.2 Extensions’ Data Structures

Access to the facilities provided by the EXT library is mainly achieved through
the data types that are provided within. The data classes are derived from
the base classes in PSBLAS, through the Fortran 2003 mechanism of type exten-
sion [18].

The data classes are divided between the general purpose CPU extensions,
the GPU interfaces and the RSB interfaces. In the description we will make use
of the notation introduced in Table 22.

12.3 CPU-class extensions

ELLPACK

The ELLPACK/ITPACK format (shown in Figure 6) comprises two 2-dimensional
arrays AS and JA with M rows and MAXNZR columns, where MAXNZR is the max-
imum number of nonzeros in any row [?]. Each row of the arrays AS and JA

contains the coefficients and column indices; rows shorter than MAXNZR are
padded with zero coefficients and appropriate column indices, e.g. the last valid
one found in the same row.

168

Table 22: Notation for parameters describing a sparse matrix

Name Description
M Number of rows in matrix
N Number of columns in matrix
NZ Number of nonzeros in matrix
AVGNZR Average number of nonzeros per row
MAXNZR Maximum number of nonzeros per row
NDIAG Numero of nonzero diagonals
AS Coefficients array
IA Row indices array
JA Column indices array
IRP Row start pointers array
JCP Column start pointers array
NZR Number of nonzeros per row array
OFFSET Offset for diagonals

Figure 5: Example of sparse matrix

The matrix-vector product y = Ax can be computed with the code shown in
Alg. 1; it costs one memory write per outer iteration, plus three memory reads
and two floating-point operations per inner iteration.

Unless all rows have exactly the same number of nonzeros, some of the
coefficients in the AS array will be zeros; therefore this data structure will
have an overhead both in terms of memory space and redundant operations
(multiplications by zero). The overhead can be acceptable if:

1. The maximum number of nonzeros per row is not much larger than the
average;

2. The regularity of the data structure allows for faster code, e.g. by allowing
vectorization, thereby offsetting the additional storage requirements.

In the extreme case where the input matrix has one full row, the ELLPACK
structure would require more memory than the normal 2D array storage. The
ELLPACK storage format was very popular in the vector computing days; in
modern CPUs it is not quite as popular, but it is the basis for many GPU formats.

The relevant data type is psb_T_ell_sparse_mat:

169

1

1

2

3

2

3

8

4

8

9

10

107

AS ARRAY JA ARRAY

Figure 6: ELLPACK compression of matrix in Figure 5

do i =1 ,n
t =0
do j =1 ,maxnzr

t = t + as (i , j) * x (j a (i , j))
end do
y (i) = t

end do

Algorithm 1: Matrix-Vector product in ELL format

type, extends(psb_d_base_sparse_mat) :: psb_d_ell_sparse_mat

!

! ITPACK/ELL format, extended.

!

integer(psb_ipk_), allocatable :: irn(:), ja(:,:), idiag(:)

real(psb_dpk_), allocatable :: val(:,:)

contains

....

end type psb_d_ell_sparse_mat

Hacked ELLPACK

The hacked ELLPACK (HLL) format alleviates the main problem of the ELLPACK
format, that is, the amount of memory required by padding for sparse matrices
in which the maximum row length is larger than the average.

The number of elements allocated to padding is [(m ∗ maxNR) − (m ∗
avgNR) = m ∗ (maxNR − avgNR)] for both AS and JA arrays, where m is
equal to the number of rows of the matrix, maxNR is the maximum number of
nonzero elements in every row and avgNR is the average number of nonzeros.
Therefore a single densely populated row can seriously affect the total size of
the allocation.

To limit this effect, in the HLL format we break the original matrix into
equally sized groups of rows (called hacks), and then store these groups as inde-
pendent matrices in ELLPACK format. The groups can be arranged selecting
rows in an arbitrarily manner; indeed, if the rows are sorted by decreasing

170

number of nonzeros we obtain essentially the JAgged Diagonals format. If the
rows are not in the original order, then an additional vector rIdx is required,
storing the actual row index for each row in the data structure.

The multiple ELLPACK-like buffers are stacked together inside a single, one
dimensional array; an additional vector hackOffsets is provided to keep track of
the individual submatrices. All hacks have the same number of rows hackSize;
hence, the hackOffsets vector is an array of (m/hackSize) + 1 elements, each one
pointing to the first index of a submatrix inside the stacked cM/rP buffers, plus
an additional element pointing past the end of the last block, where the next
one would begin. We thus have the property that the elements of the k-th hack
are stored between hackOffsets[k] and hackOffsets[k+1], similarly to what
happens in the CSR format.

HACK OFFSET JA ARRAY AS ARRAY

11

7

2 8

1 3 9

2 8 10

3 4 7 10

Figure 7: Hacked ELLPACK compression of matrix in Figure 5

With this data structure a very long row only affects one hack, and therefore
the additional memory is limited to the hack in which the row appears.

The relevant data type is psb_T_hll_sparse_mat:

type, extends(psb_d_base_sparse_mat) :: psb_d_hll_sparse_mat

!

! HLL format. (Hacked ELL)

!

integer(psb_ipk_) :: hksz

integer(psb_ipk_), allocatable :: irn(:), ja(:), idiag(:),

hkoffs(:)↪→

real(psb_dpk_), allocatable :: val(:)

contains

....

end type

Diagonal storage

The DIAgonal (DIA) format (shown in Figure 8) has a 2-dimensional array AS

containing in each column the coefficients along a diagonal of the matrix, and an
integer array OFFSET that determines where each diagonal starts. The diagonals
in AS are padded with zeros as necessary.

The code to compute the matrix-vector product y = Ax is shown in Alg. 2;
it costs one memory read per outer iteration, plus three memory reads, one

171

memory write and two floating-point operations per inner iteration. The ac-
cesses to AS and x are in strict sequential order, therefore no indirect addressing
is required.

-2 -1 0 1 2 7

AS ARRAY OFFSET ARRAY

Figure 8: DIA compression of matrix in Figure 5

do j=1,ndiag

if (offset(j) > 0) then

ir1 = 1; ir2 = m - offset(j);

else

ir1 = 1 - offset(j); ir2 = m;

end if

do i=ir1,ir2

y(i) = y(i) + alpha*as(i,j)*x(i+offset(j))

end do

end do

Algorithm 2: Matrix-Vector product in DIA format

The relevant data type is psb_T_dia_sparse_mat:

type, extends(psb_d_base_sparse_mat) :: psb_d_dia_sparse_mat

!

! DIA format, extended.

!

integer(psb_ipk_), allocatable :: offset(:)

integer(psb_ipk_) :: nzeros

real(psb_dpk_), allocatable :: data(:,:)

end type

Hacked DIA

Storage by DIAgonals is an attractive option for matrices whose coefficients are
located on a small set of diagonals, since they do away with storing explicitly
the indices and therefore reduce significantly memory traffic. However, having
a few coefficients outside of the main set of diagonals may significantly increase

172

the amount of needed padding; moreover, while the DIA code is easily vector-
ized, it does not necessarily make optimal use of the memory hierarchy. While
processing each diagonal we are updating entries in the output vector y, which
is then accessed multiple times; if the vector y is too large to remain in the cache
memory, the associated cache miss penalty is paid multiple times.

The hacked DIA (HDIA) format was designed to contain the amount of
padding, by breaking the original matrix into equally sized groups of rows
(hacks), and then storing these groups as independent matrices in DIA format.
This approach is similar to that of HLL, and requires using an offset vector for
each submatrix. Again, similarly to HLL, the various submatrices are stacked
inside a linear array to improve memory management. The fact that the matrix
is accessed in slices helps in reducing cache misses, especially regarding accesses
to the vector y.

An additional vector hackOffsets is provided to complete the matrix format;
given that hackSize is the number of rows of each hack, the hackOffsets vector is
made by an array of (m/hackSize) + 1 elements, pointing to the first diagonal
offset of a submatrix inside the stacked offsets buffers, plus an additional element
equal to the number of nonzero diagonals in the whole matrix. We thus have the
property that the number of diagonals of the k-th hack is given by hackOffsets[k+1]
- hackOffsets[k].

0 0

0

4

1 7

-1 3 5 6 7

-1

HACK OFFSET OFFSET AS ARRAY

Figure 9: Hacked DIA compression of matrix in Figure 5

The relevant data type is psb_T_hdia_sparse_mat:

type pm

real(psb_dpk_), allocatable :: data(:,:)

end type pm

type po

integer(psb_ipk_), allocatable :: off(:)

end type po

type, extends(psb_d_base_sparse_mat) :: psb_d_hdia_sparse_mat

!

! HDIA format, extended.

!

type(pm), allocatable :: hdia(:)

type(po), allocatable :: offset(:)

integer(psb_ipk_) :: nblocks, nzeros

integer(psb_ipk_) :: hack = 64

173

integer(psb_long_int_k_) :: dim=0

contains

....

end type

174

12.4 CUDA-class extensions

For computing with CUDA we define a dual memorization strategy in which
each variable on the CPU (“host”) side has a GPU (“device”) side. When a
GPU-type variable is initialized, the data contained is (usually) the same on
both sides. Each operator invoked on the variable may change the data so that
only the host side or the device side are up-to-date.

Keeping track of the updates to data in the variables is essential: we want to
perform most computations on the GPU, but we cannot afford the time needed
to move data between the host memory and the device memory because the
bandwidth of the interconnection bus would become the main bottleneck of the
computation. Thus, each and every computational routine in the library is built
according to the following principles:

• If the data type being handled is GPU-enabled, make sure that its device
copy is up to date, perform any arithmetic operation on the GPU, and
if the data has been altered as a result, mark the main-memory copy as
outdated.

• The main-memory copy is never updated unless this is requested by the
user either

explicitly by invoking a synchronization method;
implicitly by invoking a method that involves other data items that are

not GPU-enabled, e.g., by assignment ov a vector to a normal array.

In this way, data items are put on the GPU memory “on demand” and remain
there as long as “normal” computations are carried out. As an example, the
following call to a matrix-vector product

call psb_spmm(alpha,a,x,beta,y,desc_a,info)

will transparently and automatically be performed on the GPU whenever all
three data inputs a, x and y are GPU-enabled. If a program makes many such
calls sequentially, then

• The first kernel invocation will find the data in main memory, and will
copy it to the GPU memory, thus incurring a significant overhead; the
result is however not copied back, and therefore:

• Subsequent kernel invocations involving the same vector will find the
data on the GPU side so that they will run at full speed.

For all invocations after the first the only data that will have to be transferred
to/from the main memory will be the scalars alpha and beta, and the return
code info.

Vectors: The data type psb_T_vect_gpu provides a GPU-enabled extension of
the inner type psb_T_base_vect_type, and must be used together with
the other inner matrix type to make full use of the GPU computational
capabilities;

CSR: The data type psb_T_csrg_sparse_mat provides an interface to the GPU
version of CSR available in the NVIDIA CuSPARSE library;

175

HYB: The data type psb_T_hybg_sparse_mat provides an interface to the HYB
GPU storage available in the NVIDIA CuSPARSE library. The internal
structure is opaque, hence the host side is just CSR; the HYB data format
is only available up to CUDA version 10.

ELL: The data type psb_T_elg_sparse_mat provides an interface to the ELL-
PACK implementation from SPGPU;

HLL: The data type psb_T_hlg_sparse_mat provides an interface to the Hacked
ELLPACK implementation from SPGPU;

HDIA: The data type psb_T_hdiag_sparse_mat provides an interface to the
Hacked DIAgonals implementation from SPGPU;

13 CUDA Environment Routines

psb cuda init — Initializes PSBLAS-CUDA environment

call psb_cuda_init(ctxt [, device])

This subroutine initializes the PSBLAS-CUDA environment.

Type: Synchronous.

On Entry

device ID of CUDA device to attach to.
Scope: local.
Type: optional.
Intent: in.
Specified as: an integer value. Default: use mod(iam,ngpu) where iam is
the calling process index and ngpu is the total number of CUDA devices
available on the current node.

Notes

1. A call to this routine must precede any other PSBLAS-CUDA call.

psb cuda exit — Exit from PSBLAS-CUDA environment

call psb_cuda_exit(ctxt)

This subroutine exits from the PSBLAS CUDA context.

Type: Synchronous.

On Entry

ctxt the communication context identifying the virtual parallel machine.
Scope: global.
Type: required.
Intent: in.
Specified as: an integer variable.

176

psb cuda DeviceSync — Synchronize CUDA device

call psb_cuda_DeviceSync()

This subroutine ensures that all previosly invoked kernels, i.e. all invocation
of CUDA-side code, have completed.

psb cuda getDeviceCount

ngpus = psb_cuda_getDeviceCount()

Get number of devices available on current computing node.

psb cuda getDevice

ngpus = psb_cuda_getDevice()

Get device in use by current process.

psb cuda setDevice

info = psb_cuda_setDevice(dev)

Set device to be used by current process.

psb cuda DeviceHasUVA

hasUva = psb_cuda_DeviceHasUVA()

Returns true if device currently in use supports UVA (Unified Virtual Ad-
dressing).

psb cuda WarpSize

nw = psb_cuda_WarpSize()

Returns the warp size.

psb cuda MultiProcessors

nmp = psb_cuda_MultiProcessors()

Returns the number of multiprocessors in the CUDA device.

psb cuda MaxThreadsPerMP

nt = psb_cuda_MaxThreadsPerMP()

Returns the maximum number of threads per multiprocessor.

177

psb cuda MaxRegistersPerBlock

nr = psb_cuda_MaxRegistersPerBlock()

Returns the maximum number of register per thread block.

psb cuda MemoryClockRate

cl = psb_cuda_MemoryClockRate()

Returns the memory clock rate in KHz, as an integer.

psb cuda MemoryBusWidth

nb = psb_cuda_MemoryBusWidth()

Returns the memory bus width in bits.

psb cuda MemoryPeakBandwidth

bw = psb_cuda_MemoryPeakBandwidth()

Returns the peak memory bandwidth in MB/s (real double precision).

178

References

[1] G. Bella, S. Filippone, A. De Maio and M. Testa, A Simulation Model for
Forest Fires, in J. Dongarra, K. Madsen, J. Wasniewski, editors, Proceedings
of PARA 04 Workshop on State of the Art in Scientific Computing, pp. 546–
553, Lecture Notes in Computer Science, Springer, 2005.

[2] D. Bertaccini and S. Filippone, Sparse approximate inverse preconditioners
on high performance GPU platforms, Comput. Math. Appl., 71, (2016), no. 3,
693–711.

[3] A. Buttari, D. di Serafino, P. D’Ambra, S. Filippone,2LEV-D2P4: a package
of high-performance preconditioners,Applicable Algebra in Engineering,
Communications and Computing, Volume 18, Number 3, May, 2007, pp.
223-239

[4] P. D’Ambra, S. Filippone, D. Di SerafinoOn the Development of PSBLAS-
based Parallel Two-level Schwarz Preconditioners Applied Numeri-
cal Mathematics, Elsevier Science, Volume 57, Issues 11-12, November-
December 2007, Pages 1181-1196.

[5] Dongarra, J. J., DuCroz, J., Hammarling, S. and Hanson, R., An Extended
Set of Fortran Basic Linear Algebra Subprograms, ACM Trans. Math. Softw.
vol. 14, 1–17, 1988.

[6] Dongarra, J., DuCroz, J., Hammarling, S. and Duff, I., A Set of level 3 Basic
Linear Algebra Subprograms, ACM Trans. Math. Softw. vol. 16, 1–17, 1990.

[7] J. J. Dongarra and R. C. Whaley, A User’s Guide to the BLACS v. 1.1, Lapack
Working Note 94, Tech. Rep. UT-CS-95-281, University of Tennessee, March
1995 (updated May 1997).

[8] I. Duff, M. Marrone, G. Radicati and C. Vittoli, Level 3 Basic Linear Algebra
Subprograms for Sparse Matrices: a User Level Interface, ACM Transactions on
Mathematical Software, 23(3), pp. 379–401, 1997.

[9] I. Duff, M. Heroux and R. Pozo, An Overview of the Sparse Basic Linear
Algebra Subprograms: the New Standard from the BLAS Technical Forum, ACM
Transactions on Mathematical Software, 28(2), pp. 239–267, 2002.

[10] S. Filippone and M. Colajanni, PSBLAS: A Library for Parallel Linear Alge-
bra Computation on Sparse Matrices, ACM Transactions on Mathematical
Software, 26(4), pp. 527–550, 2000.

[11] S. Filippone and A. Buttari, Object-Oriented Techniques for Sparse Matrix
Computations in Fortran 2003, ACM Transactions on Mathematical Software,
38(4), 2012.

[12] S. Filippone, P. D’Ambra, M. Colajanni, Using a Parallel Library of Sparse
Linear Algebra in a Fluid Dynamics Applications Code on Linux Clusters, in
G. Joubert, A. Murli, F. Peters, M. Vanneschi, editors, Parallel Computing -
Advances & Current Issues, pp. 441–448, Imperial College Press, 2002.

179

[13] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. 1995. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley.

[14] Karypis, G. and Kumar, V., METIS: Unstructured Graph Partitioning and
Sparse Matrix Ordering System. Minneapolis, MN 55455: University of
Minnesota, Department of Computer Science, 1995. Internet Address:
http://www.cs.umn.edu/~karypis.

[15] Lawson, C., Hanson, R., Kincaid, D. and Krogh, F., Basic Linear Algebra
Subprograms for Fortran usage, ACM Trans. Math. Softw. vol. 5, 38–329,
1979.

[16] Machiels, L. and Deville, M. Fortran 90: An entry to object-oriented program-
ming for the solution of partial differential equations. ACM Trans. Math. Softw.
vol. 23, 32–49.

[17] Metcalf, M., Reid, J. and Cohen, M. Fortran 95/2003 explained. Oxford Uni-
versity Press, 2004.

[18] Metcalf, M., Reid, J. and Cohen, M. Modern Fortran explained. Oxford Uni-
versity Press, 2011.

[19] Rouson, D.W.I., Xia, J., Xu, X.: Scientific Software Design: The Object-
Oriented Way. Cambridge University Press (2011)

[20] M. Snir, S. Otto, S. Huss-Lederman, D. Walker and J. Dongarra, MPI: The
Complete Reference. Volume 1 - The MPI Core, second edition, MIT Press,
1998.

[21] D. Barbieri, V. Cardellini, S. Filippone and D. Rouson Design Patterns
for Scientific Computations on Sparse Matrices, HPSS 2011, Algorithms and
Programming Tools for Next-Generation High-Performance Scientific Soft-
ware, Bordeaux, Sep. 2011

[22] Cardellini, V., Filippone, S., and Rouson, D. 2014, Design patterns for
sparse-matrix computations on hybrid CPU/GPU platforms, Scientific
Programming 22, 1, 1–19.

[23] D. Barbieri, V. Cardellini, A. Fanfarillo, S. Filippone, Three storage formats
for sparse matrices on GPGPUs, Tech. Rep. DICII RR-15.6, Università di
Roma Tor Vergata (February 2015).

[24] S. Filippone, V. Cardellini, D. Barbieri, and A. Fanfarillo. Sparse matrix-
vector multiplication on GPGPUs. ACM Trans. Math. Softw., 43(4):30:1–
30:49, 2017.

180

	PSBLAS-v3.9.0 User's Guide
	1 Introduction
	2 General overview
	2.1 Basic Nomenclature
	2.2 Library contents
	2.3 Application structure
	2.3.1 User-defined index mappings

	2.4 Programming model

	3 Data Structures and Classes
	3.1 Descriptor data structure
	3.1.1 Descriptor Methods
	3.1.2 get_local_rows — Get number of local rows
	3.1.3 get_local_cols — Get number of local cols
	3.1.4 get_global_rows — Get number of global rows
	3.1.5 get_global_cols — Get number of global cols
	3.1.6 get_global_indices — Get vector of global indices
	3.1.7 get_context — Get communication context
	3.1.8 Clone — clone current object
	3.1.9 CNV — convert internal storage format
	3.1.10 psb_cd_get_large_threshold — Get threshold for index mapping switch
	3.1.11 psb_cd_set_large_threshold — Set threshold for index mapping switch
	3.1.12 get_p_adjcncy — Get process adjacency list
	3.1.13 set_p_adjcncy — Set process adjacency list
	3.1.14 fnd_owner — Find the owner process of a set of indices
	3.1.15 Named Constants

	3.2 Sparse Matrix class
	3.2.1 Sparse Matrix Methods
	3.2.2 get_nrows — Get number of rows in a sparse matrix
	3.2.3 get_ncols — Get number of columns in a sparse matrix
	3.2.4 get_nnzeros — Get number of nonzero elements in a sparse matrix
	3.2.5 get_size — Get maximum number of nonzero elements in a sparse matrix
	3.2.6 sizeof — Get memory occupation in bytes of a sparse matrix
	3.2.7 get_fmt — Short description of the dynamic type
	3.2.8 is_bld, is_upd, is_asb — Status check
	3.2.9 is_lower, is_upper, is_triangle, is_unit — Format check
	3.2.10 cscnv — Convert to a different storage format
	3.2.11 csclip — Reduce to a submatrix
	3.2.12 clean_zeros — Eliminate zero coefficients
	3.2.13 get_diag — Get main diagonal
	3.2.14 clip_diag — Cut out main diagonal
	3.2.15 tril — Return the lower triangle
	3.2.16 triu — Return the upper triangle
	3.2.17 psb_set_mat_default — Set default storage format
	3.2.18 clone — Clone current object
	3.2.19 Named Constants

	3.3 Dense Vector Data Structure
	3.3.1 Vector Methods
	3.3.2 get_nrows — Get number of rows in a dense vector
	3.3.3 sizeof — Get memory occupation in bytes of a dense vector
	3.3.4 set — Set contents of the vector
	3.3.5 get_vect — Get a copy of the vector contents
	3.3.6 clone — Clone current object

	3.4 Preconditioner data structure
	3.5 Heap data structure

	4 Computational routines
	4.1 psb_geaxpby — General Dense Matrix Sum
	4.2 psb_gedot — Dot Product
	4.3 psb_gedots — Generalized Dot Product
	4.4 psb_normi — Infinity-Norm of Vector
	4.5 psb_geamaxs — Generalized Infinity Norm
	4.6 psb_norm1 — 1-Norm of Vector
	4.7 psb_geasums — Generalized 1-Norm of Vector
	4.8 psb_norm2 — 2-Norm of Vector
	4.9 psb_genrm2s — Generalized 2-Norm of Vector
	4.10 psb_norm1 — 1-Norm of Sparse Matrix
	4.11 psb_normi — Infinity Norm of Sparse Matrix
	4.12 psb_spmm — Sparse Matrix by Dense Matrix Product
	4.13 psb_spsm — Triangular System Solve
	4.14 psb_gemlt — Entrywise Product
	4.15 psb_gediv — Entrywise Division
	4.16 psb_geinv — Entrywise Inversion

	5 Communication routines
	5.1 psb_halo — Halo Data Communication
	5.2 psb_ovrl — Overlap Update
	5.3 psb_gather — Gather Global Dense Matrix
	5.4 psb_scatter — Scatter Global Dense Matrix

	6 Data management routines
	6.1 psb_cdall — Allocates a communication descriptor
	6.2 psb_cdins — Communication descriptor insert routine
	6.3 psb_cdasb — Communication descriptor assembly routine
	6.4 psb_cdcpy — Copies a communication descriptor
	6.5 psb_cdfree — Frees a communication descriptor
	6.6 psb_cdbldext — Build an extended communication descriptor
	6.7 psb_spall — Allocates a sparse matrix
	6.8 psb_spins — Insert a set of coefficients into a sparse matrix
	6.9 psb_spasb — Sparse matrix assembly routine
	6.10 psb_spfree — Frees a sparse matrix
	6.11 psb_sprn — Reinit sparse matrix structure for psblas routines.
	6.12 psb_geall — Allocates a dense matrix
	6.13 psb_geins — Dense matrix insertion routine
	6.14 psb_geasb — Assembly a dense matrix
	6.15 psb_gefree — Frees a dense matrix
	6.16 psb_gelp — Applies a left permutation to a dense matrix
	6.17 psb_glob_to_loc — Global to local indices convertion
	6.18 psb_loc_to_glob — Local to global indices conversion
	6.19 psb_is_owned —
	6.20 psb_owned_index —
	6.21 psb_is_local —
	6.22 psb_local_index —
	6.23 psb_get_boundary — Extract list of boundary elements
	6.24 psb_get_overlap — Extract list of overlap elements
	6.25 psb_sp_getrow — Extract row(s) from a sparse matrix
	6.26 psb_sizeof — Memory occupation
	6.27 Sorting utilities —

	7 Parallel environment routines
	7.1 psb_init — Initializes PSBLAS parallel environment
	7.2 psb_info — Return information about PSBLAS parallel environment
	7.3 psb_exit — Exit from PSBLAS parallel environment
	7.4 psb_get_mpi_comm — Get the MPI communicator
	7.5 psb_get_mpi_rank — Get the MPI rank
	7.6 psb_wtime — Wall clock timing
	7.7 psb_barrier — Sinchronization point parallel environment
	7.8 psb_abort — Abort a computation
	7.9 psb_bcast — Broadcast data
	7.10 psb_sum — Global sum
	7.11 psb_max — Global maximum
	7.12 psb_min — Global minimum
	7.13 psb_amx — Global maximum absolute value
	7.14 psb_amn — Global minimum absolute value
	7.15 psb_nrm2 — Global 2-norm reduction
	7.16 psb_snd — Send data
	7.17 psb_rcv — Receive data

	8 Error handling
	8.1 psb_errpush — Pushes an error code onto the error stack
	8.2 psb_error — Prints the error stack content and aborts execution
	8.3 psb_set_errverbosity — Sets the verbosity of error messages
	8.4 psb_set_erraction — Set the type of action to be taken upon error condition

	9 Utilities
	9.1 hb_read — Read a sparse matrix from a file in the Harwell–Boeing format
	9.2 hb_write — Write a sparse matrix to a file in the Harwell–Boeing format
	9.3 mm_mat_read — Read a sparse matrix from a file in the MatrixMarket format
	9.4 mm_array_read — Read a dense array from a file in the MatrixMarket format
	9.5 mm_mat_write — Write a sparse matrix to a file in the MatrixMarket format
	9.6 mm_array_write — Write a dense array from a file in the MatrixMarket format

	10 Preconditioner routines
	10.1 init — Initialize a preconditioner
	10.2 Set — set preconditioner parameters
	10.3 build — Builds a preconditioner
	10.4 apply — Preconditioner application routine
	10.5 descr — Prints a description of current preconditioner
	10.6 clone — clone current preconditioner
	10.7 free — Free a preconditioner

	11 Iterative Methods
	11.1 psb_krylov — Krylov Methods Driver Routine
	11.2 psb_richardson — Richardson Iteration Driver Routine

	12 Extensions
	12.1 Using the extensions
	12.2 Extensions' Data Structures
	12.3 CPU-class extensions
	12.4 CUDA-class extensions

	13 CUDA Environment Routines
	psb_cuda_init
	psb_cuda_exit
	psb_cuda_DeviceSync
	psb_cuda_getDeviceCount
	psb_cuda_getDevice
	psb_cuda_setDevice
	psb_cuda_DeviceHasUVA
	psb_cuda_WarpSize
	psb_cuda_MultiProcessors
	psb_cuda_MaxThreadsPerMP
	psb_cuda_MaxRegisterPerBlock
	psb_cuda_MemoryClockRate
	psb_cuda_MemoryBusWidth
	psb_cuda_MemoryPeakBandwidth

