! File: ppde90.f90 ! ! Program: ppde90 ! This sample program shows how to build and solve a sparse linear ! ! The program solves a linear system based on the partial differential ! equation ! ! ! ! The equation generated is ! ! b1 d d (u) b2 d d (u) a1 d (u)) a2 d (u))) ! - ------ - ------ + ----- + ------ + a3 u = 0 ! dx dx dy dy dx dy ! ! ! with Dirichlet boundary conditions on the unit cube ! ! 0<=x,y,z<=1 ! ! The equation is discretized with finite differences and uniform stepsize; ! the resulting discrete equation is ! ! ( u(x,y,z)(2b1+2b2+a1+a2)+u(x-1,y)(-b1-a1)+u(x,y-1)(-b2-a2)+ ! -u(x+1,y)b1-u(x,y+1)b2)*(1/h**2) ! ! Example taken from: C.T.Kelley ! Iterative Methods for Linear and Nonlinear Equations ! SIAM 1995 ! ! ! In this sample program the index space of the discretized ! computational domain is first numbered sequentially in a standard way, ! then the corresponding vector is distributed according to an HPF BLOCK ! distribution directive. ! ! Boundary conditions are set in a very simple way, by adding ! equations of the form ! ! u(x,y) = rhs(x,y) ! program pde90 use psb_sparse_mod use psb_error_mod use psb_prec_mod implicit none interface !.....user passed subroutine..... subroutine part_block(glob_index,n,np,pv,nv) integer, intent(in) :: glob_index, n, np integer, intent(out) :: nv integer, intent(out) :: pv(*) end subroutine part_block end interface ! input parameters character :: cmethd*10, prec*10, afmt*5 integer :: idim, iret, igsmth, matop ! miscellaneous character, parameter :: order='r' integer :: iargc,convert_descr,dim, check_descr real(kind(1.d0)), parameter :: one = 1.d0 real(kind(1.d0)) :: mpi_wtime, t1, t2, tprec, tsolve, t3, t4 external mpi_wtime ! sparse matrix and preconditioner type(psb_dspmat_type) :: a, l, u, h type(psb_dprec_type) :: pre ! descriptor type(psb_desc_type) :: desc_a, desc_a_out ! dense matrices real(kind(1.d0)), pointer :: b(:), x(:), d(:),ld(:) integer, pointer :: work(:) ! blacs parameters integer :: nprow, npcol, icontxt, iam, np, myprow, mypcol ! solver parameters integer :: iter, itmax,ierr,itrace, methd,iprec, istopc,& & iparm(20), ml, novr real(kind(1.d0)) :: err, eps, rparm(20) ! other variables integer :: i,info integer :: internal, m,ii character(len=10) :: ptype character(len=20) :: name,ch_err if(psb_get_errstatus().ne.0) goto 9999 info=0 name='pde90' call psb_set_errverbosity(2) call psb_set_erraction(0) ! initialize blacs call blacs_pinfo(iam, np) call blacs_get(izero, izero, icontxt) ! rectangular grid, p x 1 call blacs_gridinit(icontxt, order, np, ione) call blacs_gridinfo(icontxt, nprow, npcol, myprow, mypcol) ! ! get parameters ! call get_parms(icontxt,cmethd,iprec,novr,afmt,idim,istopc,itmax,itrace,ml) ! ! allocate and fill in the coefficient matrix, rhs and initial guess ! call blacs_barrier(icontxt,'ALL') t1 = mpi_wtime() call create_matrix(idim,a,b,x,desc_a,part_block,icontxt,afmt,info) t2 = mpi_wtime() - t1 if(info.ne.0) then info=4010 ch_err='create_matrix' call psb_errpush(info,name,a_err=ch_err) goto 9999 end if call dgamx2d(icontxt,'a',' ',ione, ione,t2,ione,t1,t1,-1,-1,-1) if (iam.eq.0) write(*,'("Overall matrix creation time : ",es10.4)')t2 if (iam.eq.0) write(*,'(" ")') ! ! prepare the preconditioner. ! matop=1 igsmth=-1 if(iam.eq.psb_root_) write(0,'("Setting preconditioner to : ",a)')pr_to_str(iprec) select case(iprec) case(noprec_) call psb_precset(pre,'noprec') case(diagsc_) call psb_precset(pre,'diagsc') case(bja_) call psb_precset(pre,'ilu') case(asm_) call psb_precset(pre,'asm',iv=(/novr,halo_,sum_/)) case(ash_) call psb_precset(pre,'asm',iv=(/novr,nohalo_,sum_/)) case(ras_) call psb_precset(pre,'asm',iv=(/novr,halo_,none_/)) case(rash_) call psb_precset(pre,'asm',iv=(/novr,nohalo_,none_/)) case(ras2lv_) ptype='asm' call psb_precset(pre,ptype,iv=(/novr,halo_,none_/)) ptype='ml' call psb_precset(pre,ptype,& &iv=(/add_ml_prec_,loc_aggr_,no_smth_,mat_repl_,& & pre_smooth_,igsmth/),rs=0.d0) case(ras2lvm_) ptype='asm' call psb_precset(pre,ptype,iv=(/novr,halo_,none_/)) ptype='ml' call psb_precset(pre,ptype,& & iv=(/mult_ml_prec_,glb_aggr_,pre_smooth_,igsmth,matop/),rs=0.d0) end select call blacs_barrier(icontxt,'ALL') t1 = mpi_wtime() call psb_precbld(a,pre,desc_a,info) if(info.ne.0) then info=4010 ch_err='psb_precbld' call psb_errpush(info,name,a_err=ch_err) goto 9999 end if tprec = mpi_wtime()-t1 call dgamx2d(icontxt,'a',' ',ione, ione,tprec,ione,t1,t1,-1,-1,-1) if (iam.eq.0) write(*,'("Preconditioner time : ",es10.4)')tprec if (iam.eq.0) write(*,'(" ")') ! ! iterative method parameters ! if(iam.eq.psb_root_) write(*,'("Calling iterative method ",a)')cmethd call blacs_barrier(icontxt,'ALL') t1 = mpi_wtime() eps = 1.d-9 if (cmethd.eq.'BICGSTAB') then call psb_bicgstab(a,pre,b,x,eps,desc_a,info,& & itmax,iter,err,itrace) else if (cmethd.eq.'CGS') then call psb_cgs(a,pre,b,x,eps,desc_a,info,& & itmax,iter,err,itrace) else if (cmethd.eq.'CG') then call psb_cg(a,pre,b,x,eps,desc_a,info,& & itmax,iter,err,itrace) else if (cmethd.eq.'BICGSTABL') then call psb_bicgstabl(a,pre,b,x,eps,desc_a,info,& & itmax,iter,err,itrace,ml) else write(0,*) 'unknown method ',cmethd end if if(info.ne.0) then info=4010 ch_err='solver routine' call psb_errpush(info,name,a_err=ch_err) goto 9999 end if call blacs_barrier(icontxt,'ALL') t2 = mpi_wtime() - t1 call dgamx2d(icontxt,'a',' ',ione, ione,t2,ione,t1,t1,-1,-1,-1) if (iam.eq.0) then write(*,'(" ")') write(*,'("Time to solve matrix : ",es10.4)')t2 write(*,'("Time per iteration : ",es10.4)')t2/iter write(*,'("Number of iterations : ",i0)')iter write(*,'("Error on exit : ",es10.4)')err write(*,'("Info on exit : ",i0)')info end if ! ! cleanup storage and exit ! call psb_free(b,desc_a,info) call psb_free(x,desc_a,info) call psb_spfree(a,desc_a,info) call psb_dscfree(desc_a,info) if(info.ne.0) then info=4010 ch_err='free routine' call psb_errpush(info,name,a_err=ch_err) goto 9999 end if 9999 continue if(info /= 0) then call psb_error(icontxt) call blacs_gridexit(icontxt) call blacs_exit(0) else call blacs_gridexit(icontxt) call blacs_exit(0) end if stop contains ! ! get iteration parameters from the command line ! subroutine get_parms(icontxt,cmethd,iprec,novr,afmt,idim,istopc,itmax,itrace,ml) integer :: icontxt character :: cmethd*10, afmt*5 integer :: idim, iret, istopc,itmax,itrace,ml, iprec, novr character*40 :: charbuf integer :: iargc, nprow, npcol, myprow, mypcol external iargc integer :: intbuf(10), ip call blacs_gridinfo(icontxt, nprow, npcol, myprow, mypcol) if (myprow==0) then read(*,*) ip if (ip.ge.3) then read(*,*) cmethd read(*,*) iprec read(*,*) novr read(*,*) afmt ! convert strings in array do i = 1, len(cmethd) intbuf(i) = iachar(cmethd(i:i)) end do ! broadcast parameters to all processors call igebs2d(icontxt,'ALL',' ',10,1,intbuf,10) ! broadcast parameters to all processors call igebs2d(icontxt,'ALL',' ',1,1,iprec,10) ! broadcast parameters to all processors call igebs2d(icontxt,'ALL',' ',1,1,novr,10) do i = 1, len(afmt) intbuf(i) = iachar(afmt(i:i)) end do ! broadcast parameters to all processors call igebs2d(icontxt,'ALL',' ',10,1,intbuf,10) read(*,*) idim if (ip.ge.4) then read(*,*) istopc else istopc=1 endif if (ip.ge.5) then read(*,*) itmax else itmax=500 endif if (ip.ge.6) then read(*,*) itrace else itrace=-1 endif if (ip.ge.7) then read(*,*) ml else ml=1 endif ! broadcast parameters to all processors intbuf(1) = idim intbuf(2) = istopc intbuf(3) = itmax intbuf(4) = itrace intbuf(5) = ml call igebs2d(icontxt,'ALL',' ',5,1,intbuf,5) write(*,'("Solving matrix : ell1")') write(*,'("Grid dimensions : ",i4,"x",i4,"x",i4)')idim,idim,idim write(*,'("Number of processors : ",i0)')nprow write(*,'("Data distribution : BLOCK")') write(*,'("Preconditioner : ",a)')pr_to_str(iprec) if(iprec.gt.2) write(*,'("Overlapping levels : ",i0)')novr write(*,'("Iterative method : ",a)')cmethd write(*,'(" ")') else ! wrong number of parameter, print an error message and exit call pr_usage(0) call blacs_abort(icontxt,-1) stop 1 endif else ! receive parameters call igebr2d(icontxt,'ALL',' ',10,1,intbuf,10,0,0) do i = 1, 10 cmethd(i:i) = achar(intbuf(i)) end do call igebr2d(icontxt,'ALL',' ',1,1,iprec,10,0,0) call igebr2d(icontxt,'ALL',' ',1,1,novr,10,0,0) call igebr2d(icontxt,'ALL',' ',10,1,intbuf,10,0,0) do i = 1, 5 afmt(i:i) = achar(intbuf(i)) end do call igebr2d(icontxt,'ALL',' ',5,1,intbuf,5,0,0) idim = intbuf(1) istopc = intbuf(2) itmax = intbuf(3) itrace = intbuf(4) ml = intbuf(5) end if return end subroutine get_parms ! ! print an error message ! subroutine pr_usage(iout) integer :: iout write(iout,*)'incorrect parameter(s) found' write(iout,*)' usage: pde90 methd prec dim & &[istop itmax itrace]' write(iout,*)' where:' write(iout,*)' methd: cgstab tfqmr cgs' write(iout,*)' prec : ilu diagsc none' write(iout,*)' dim number of points along each axis' write(iout,*)' the size of the resulting linear ' write(iout,*)' system is dim**3' write(iout,*)' istop stopping criterion 1, 2 or 3 [1] ' write(iout,*)' itmax maximum number of iterations [500] ' write(iout,*)' itrace 0 (no tracing, default) or ' write(iout,*)' >= 0 do tracing every itrace' write(iout,*)' iterations ' end subroutine pr_usage ! ! subroutine to allocate and fill in the coefficient matrix and ! the rhs. ! subroutine create_matrix(idim,a,b,t,desc_a,parts,icontxt,afmt,info) ! ! discretize the partial diferential equation ! ! b1 dd(u) b2 dd(u) b3 dd(u) a1 d(u) a2 d(u) a3 d(u) ! - ------ - ------ - ------ - ----- - ------ - ------ + a4 u ! dxdx dydy dzdz dx dy dz ! ! = 0 ! ! boundary condition: dirichlet ! 0< x,y,z<1 ! ! u(x,y,z)(2b1+2b2+2b3+a1+a2+a3)+u(x-1,y,z)(-b1-a1)+u(x,y-1,z)(-b2-a2)+ ! + u(x,y,z-1)(-b3-a3)-u(x+1,y,z)b1-u(x,y+1,z)b2-u(x,y,z+1)b3 use psb_spmat_type use psb_descriptor_type use psb_tools_mod use psb_methd_mod implicit none integer :: idim integer, parameter :: nbmax=10 real(kind(1.d0)),pointer :: b(:),t(:) type(psb_desc_type) :: desc_a integer :: icontxt, info character :: afmt*5 interface ! .....user passed subroutine..... subroutine parts(global_indx,n,np,pv,nv) implicit none integer, intent(in) :: global_indx, n, np integer, intent(out) :: nv integer, intent(out) :: pv(*) end subroutine parts end interface ! local variables type(psb_dspmat_type) :: a real(kind(1.d0)) :: zt(nbmax),glob_x,glob_y,glob_z integer :: m,n,nnz,glob_row,j type(psb_dspmat_type) :: row_mat integer :: x,y,z,counter,ia,i,indx_owner integer :: nprow,npcol,myprow,mypcol integer :: element integer :: nv, inv integer, allocatable :: prv(:) integer, pointer :: ierrv(:) real(kind(1.d0)), pointer :: dwork(:) integer,pointer :: iwork(:) ! deltah dimension of each grid cell ! deltat discretization time real(kind(1.d0)) :: deltah real(kind(1.d0)),parameter :: rhs=0.d0,one=1.d0,zero=0.d0 real(kind(1.d0)) :: mpi_wtime, t1, t2, t3, tins, tasb real(kind(1.d0)) :: a1, a2, a3, a4, b1, b2, b3 external mpi_wtime,a1, a2, a3, a4, b1, b2, b3 integer :: nb, ir1, ir2, ipr, err_act logical :: own ! common area character(len=20) :: name, ch_err info = 0 name = 'create_matrix' call psb_erractionsave(err_act) call blacs_gridinfo(icontxt, nprow, npcol, myprow, mypcol) deltah = 1.d0/(idim-1) ! initialize array descriptor and sparse matrix storage. provide an ! estimate of the number of non zeroes m = idim*idim*idim n = m nnz = ((n*9)/(nprow*npcol)) if(myprow.eq.psb_root_) write(0,'("Generating Matrix (size=",i0x,")...")')n call psb_dscall(n,n,parts,icontxt,desc_a,info) call psb_spalloc(a,desc_a,info,nnz=nnz) ! define rhs from boundary conditions; also build initial guess call psb_alloc(n,b,desc_a,info) call psb_alloc(n,t,desc_a,info) if(info.ne.0) then info=4010 ch_err='allocation rout.' call psb_errpush(info,name,a_err=ch_err) goto 9999 end if ! we build an auxiliary matrix consisting of one row at a ! time; just a small matrix. might be extended to generate ! a bunch of rows per call. ! row_mat%descra(1:1) = 'G' row_mat%fida = 'CSR' ! write(*,*) 'allocating row_mat',20*nbmax allocate(row_mat%aspk(20*nbmax),row_mat%ia1(20*nbmax),& &row_mat%ia2(20*nbmax),prv(nprow),stat=info) if (info.ne.0 ) then info=4000 call psb_errpush(info,name) goto 9999 endif tins = 0.d0 call blacs_barrier(icontxt,'ALL') t1 = mpi_wtime() ! loop over rows belonging to current process in a block ! distribution. ! row_mat%ia2(1)=1 do glob_row = 1, n call parts(glob_row,n,nprow,prv,nv) do inv = 1, nv indx_owner = prv(inv) if (indx_owner == myprow) then ! local matrix pointer element=1 ! compute gridpoint coordinates if (mod(glob_row,(idim*idim)).eq.0) then x = glob_row/(idim*idim) else x = glob_row/(idim*idim)+1 endif if (mod((glob_row-(x-1)*idim*idim),idim).eq.0) then y = (glob_row-(x-1)*idim*idim)/idim else y = (glob_row-(x-1)*idim*idim)/idim+1 endif z = glob_row-(x-1)*idim*idim-(y-1)*idim ! glob_x, glob_y, glob_x coordinates glob_x=x*deltah glob_y=y*deltah glob_z=z*deltah ! check on boundary points zt(1) = 0.d0 ! internal point: build discretization ! ! term depending on (x-1,y,z) ! if (x==1) then row_mat%aspk(element)=-b1(glob_x,glob_y,glob_z)& & -a1(glob_x,glob_y,glob_z) row_mat%aspk(element) = row_mat%aspk(element)/(deltah*& & deltah) zt(1) = exp(-glob_y**2-glob_z**2)*(-row_mat%aspk(element)) else row_mat%aspk(element)=-b1(glob_x,glob_y,glob_z)& & -a1(glob_x,glob_y,glob_z) row_mat%aspk(element) = row_mat%aspk(element)/(deltah*& & deltah) row_mat%ia2(element)=(x-2)*idim*idim+(y-1)*idim+(z) element=element+1 endif ! term depending on (x,y-1,z) if (y==1) then row_mat%aspk(element)=-b2(glob_x,glob_y,glob_z)& & -a2(glob_x,glob_y,glob_z) row_mat%aspk(element) = row_mat%aspk(element)/(deltah*& & deltah) zt(1) = exp(-glob_y**2-glob_z**2)*exp(-glob_x)*(-row_mat%aspk(element)) else row_mat%aspk(element)=-b2(glob_x,glob_y,glob_z)& & -a2(glob_x,glob_y,glob_z) row_mat%aspk(element) = row_mat%aspk(element)/(deltah*& & deltah) row_mat%ia2(element)=(x-1)*idim*idim+(y-2)*idim+(z) element=element+1 endif ! term depending on (x,y,z-1) if (z==1) then row_mat%aspk(element)=-b3(glob_x,glob_y,glob_z)& & -a3(glob_x,glob_y,glob_z) row_mat%aspk(element) = row_mat%aspk(element)/(deltah*& & deltah) zt(1) = exp(-glob_y**2-glob_z**2)*exp(-glob_x)*(-row_mat%aspk(element)) else row_mat%aspk(element)=-b3(glob_x,glob_y,glob_z)& & -a3(glob_x,glob_y,glob_z) row_mat%aspk(element) = row_mat%aspk(element)/(deltah*& & deltah) row_mat%ia2(element)=(x-1)*idim*idim+(y-1)*idim+(z-1) element=element+1 endif ! term depending on (x,y,z) row_mat%aspk(element)=2*b1(glob_x,glob_y,glob_z)& & +2*b2(glob_x,glob_y,glob_z)& & +2*b3(glob_x,glob_y,glob_z)& & +a1(glob_x,glob_y,glob_z)& & +a2(glob_x,glob_y,glob_z)& & +a3(glob_x,glob_y,glob_z) row_mat%aspk(element) = row_mat%aspk(element)/(deltah*& & deltah) row_mat%ia2(element)=(x-1)*idim*idim+(y-1)*idim+(z) element=element+1 ! term depending on (x,y,z+1) if (z==idim) then row_mat%aspk(element)=-b1(glob_x,glob_y,glob_z) row_mat%aspk(element) = row_mat%aspk(element)/(deltah*& & deltah) zt(1) = exp(-glob_y**2-glob_z**2)*exp(-glob_x)*(-row_mat%aspk(element)) else row_mat%aspk(element)=-b1(glob_x,glob_y,glob_z) row_mat%aspk(element) = row_mat%aspk(element)/(deltah*& & deltah) row_mat%ia2(element)=(x-1)*idim*idim+(y-1)*idim+(z+1) element=element+1 endif ! term depending on (x,y+1,z) if (y==idim) then row_mat%aspk(element)=-b2(glob_x,glob_y,glob_z) row_mat%aspk(element) = row_mat%aspk(element)/(deltah*& & deltah) zt(1) = exp(-glob_y**2-glob_z**2)*exp(-glob_x)*(-row_mat%aspk(element)) else row_mat%aspk(element)=-b2(glob_x,glob_y,glob_z) row_mat%aspk(element) = row_mat%aspk(element)/(deltah*& & deltah) row_mat%ia2(element)=(x-1)*idim*idim+(y)*idim+(z) element=element+1 endif ! term depending on (x+1,y,z) if (x<idim) then row_mat%aspk(element)=-b3(glob_x,glob_y,glob_z) row_mat%aspk(element) = row_mat%aspk(element)/(deltah*& & deltah) row_mat%ia2(element)=(x)*idim*idim+(y-1)*idim+(z) element=element+1 endif row_mat%m=1 row_mat%k=n row_mat%ia1(1:element-1)=glob_row ia=glob_row t3 = mpi_wtime() call psb_spins(element-1,row_mat%ia1,row_mat%ia2,row_mat%aspk,a,desc_a,info) if(info.ne.0) exit tins = tins + (mpi_wtime()-t3) ! build rhs !!$ if (x==1) then !!$ glob_y=(y-idim/2)*deltah !!$ glob_z=(z-idim/2)*deltah !!$ zt(1) = exp(-glob_y**2-glob_z**2) !!$ else if ((y==1).or.(y==idim).or.(z==1).or.(z==idim)) then !!$ glob_x=3*(x-1)*deltah !!$ glob_y=(y-idim/2)*deltah !!$ glob_z=(z-idim/2)*deltah !!$ zt(1) = exp(-glob_y**2-glob_z**2)*exp(-glob_x) !!$ else !!$ zt(1) = 0.d0 !!$ endif call psb_ins(1,b,ia,zt(1:1),desc_a,info) if(info.ne.0) exit zt(1)=0.d0 call psb_ins(1,t,ia,zt(1:1),desc_a,info) if(info.ne.0) exit end if end do end do call blacs_barrier(icontxt,'ALL') t2 = mpi_wtime()-t1 if(info.ne.0) then info=4010 ch_err='insert rout.' call psb_errpush(info,name,a_err=ch_err) goto 9999 end if deallocate(row_mat%aspk,row_mat%ia1,row_mat%ia2) t1 = mpi_wtime() call psb_dscasb(desc_a,info) call psb_spasb(a,desc_a,info,dup=1,afmt=afmt) call blacs_barrier(icontxt,'ALL') tasb = mpi_wtime()-t1 if(info.ne.0) then info=4010 ch_err='asb rout.' call psb_errpush(info,name,a_err=ch_err) goto 9999 end if call dgamx2d(icontxt,'a',' ',ione, ione,t2,ione,t1,t1,-1,-1,-1) call dgamx2d(icontxt,'a',' ',ione, ione,tins,ione,t1,t1,-1,-1,-1) call dgamx2d(icontxt,'a',' ',ione, ione,tasb,ione,t1,t1,-1,-1,-1) if(myprow.eq.psb_root_) then write(*,'("The matrix has been generated and assembeld in ",a3," format.")')a%fida(1:3) write(*,'("-pspins time : ",es10.4)')tins write(*,'("-insert time : ",es10.4)')t2 write(*,'("-assembly time : ",es10.4)')tasb end if call psb_asb(b,desc_a,info) call psb_asb(t,desc_a,info) if(info.ne.0) then info=4010 ch_err='asb rout.' call psb_errpush(info,name,a_err=ch_err) goto 9999 end if call psb_erractionrestore(err_act) return 9999 continue call psb_erractionrestore(err_act) if (err_act.eq.act_abort) then call psb_error(icontxt) return end if return end subroutine create_matrix end program pde90 ! ! functions parametrizing the differential equation ! function a1(x,y,z) real(kind(1.d0)) :: a1 real(kind(1.d0)) :: x,y,z a1=1.d0 end function a1 function a2(x,y,z) real(kind(1.d0)) :: a2 real(kind(1.d0)) :: x,y,z a2=2.d1*y end function a2 function a3(x,y,z) real(kind(1.d0)) :: a3 real(kind(1.d0)) :: x,y,z a3=1.d0 end function a3 function a4(x,y,z) real(kind(1.d0)) :: a4 real(kind(1.d0)) :: x,y,z a4=1.d0 end function a4 function b1(x,y,z) real(kind(1.d0)) :: b1 real(kind(1.d0)) :: x,y,z b1=1.d0 end function b1 function b2(x,y,z) real(kind(1.d0)) :: b2 real(kind(1.d0)) :: x,y,z b2=1.d0 end function b2 function b3(x,y,z) real(kind(1.d0)) :: b3 real(kind(1.d0)) :: x,y,z b3=1.d0 end function b3