! ! Parallel Sparse BLAS version 3.5 ! (C) Copyright 2006-2018 ! Salvatore Filippone ! Alfredo Buttari ! ! Redistribution and use in source and binary forms, with or without ! modification, are permitted provided that the following conditions ! are met: ! 1. Redistributions of source code must retain the above copyright ! notice, this list of conditions and the following disclaimer. ! 2. Redistributions in binary form must reproduce the above copyright ! notice, this list of conditions, and the following disclaimer in the ! documentation and/or other materials provided with the distribution. ! 3. The name of the PSBLAS group or the names of its contributors may ! not be used to endorse or promote products derived from this ! software without specific written permission. ! ! THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ! ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED ! TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR ! PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE PSBLAS GROUP OR ITS CONTRIBUTORS ! BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR ! CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF ! SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS ! INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN ! CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ! ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE ! POSSIBILITY OF SUCH DAMAGE. ! ! ! File: psb_d_pde3d.f90 ! ! Program: psb_d_pde3d ! This sample program solves a linear system obtained by discretizing a ! PDE with Dirichlet BCs. ! ! ! The PDE is a general second order equation in 3d ! ! a1 dd(u) a2 dd(u) a3 dd(u) b1 d(u) b2 d(u) b3 d(u) ! - ------ - ------ - ------ + ----- + ------ + ------ + c u = f ! dxdx dydy dzdz dx dy dz ! ! with Dirichlet boundary conditions ! u = g ! ! on the unit cube 0<=x,y,z<=1. ! ! ! Note that if b1=b2=b3=c=0., the PDE is the Laplace equation. ! ! There are three choices available for data distribution: ! 1. A simple BLOCK distribution ! 2. A ditribution based on arbitrary assignment of indices to processes, ! typically from a graph partitioner ! 3. A 3D distribution in which the unit cube is partitioned ! into subcubes, each one assigned to a process. ! ! module psb_d_pde3d_mod use psb_base_mod, only : psb_dpk_, psb_ipk_, psb_lpk_, psb_desc_type,& & psb_dspmat_type, psb_d_vect_type, dzero,& & psb_d_base_sparse_mat, psb_d_base_vect_type, & & psb_i_base_vect_type, psb_l_base_vect_type interface function d_func_3d(x,y,z) result(val) import :: psb_dpk_ real(psb_dpk_), intent(in) :: x,y,z real(psb_dpk_) :: val end function d_func_3d end interface interface psb_gen_pde3d module procedure psb_d_gen_pde3d end interface psb_gen_pde3d contains function d_null_func_3d(x,y,z) result(val) real(psb_dpk_), intent(in) :: x,y,z real(psb_dpk_) :: val val = dzero end function d_null_func_3d ! ! functions parametrizing the differential equation ! ! ! Note: b1, b2 and b3 are the coefficients of the first ! derivative of the unknown function. The default ! we apply here is to have them zero, so that the resulting ! matrix is symmetric/hermitian and suitable for ! testing with CG and FCG. ! When testing methods for non-hermitian matrices you can ! change the B1/B2/B3 functions to e.g. done/sqrt((3*done)) ! function b1(x,y,z) use psb_base_mod, only : psb_dpk_, done, dzero implicit none real(psb_dpk_) :: b1 real(psb_dpk_), intent(in) :: x,y,z b1=dzero end function b1 function b2(x,y,z) use psb_base_mod, only : psb_dpk_, done, dzero implicit none real(psb_dpk_) :: b2 real(psb_dpk_), intent(in) :: x,y,z b2=dzero end function b2 function b3(x,y,z) use psb_base_mod, only : psb_dpk_, done, dzero implicit none real(psb_dpk_) :: b3 real(psb_dpk_), intent(in) :: x,y,z b3=dzero end function b3 function c(x,y,z) use psb_base_mod, only : psb_dpk_, done, dzero implicit none real(psb_dpk_) :: c real(psb_dpk_), intent(in) :: x,y,z c=dzero end function c function a1(x,y,z) use psb_base_mod, only : psb_dpk_, done, dzero implicit none real(psb_dpk_) :: a1 real(psb_dpk_), intent(in) :: x,y,z a1=done/80 end function a1 function a2(x,y,z) use psb_base_mod, only : psb_dpk_, done, dzero implicit none real(psb_dpk_) :: a2 real(psb_dpk_), intent(in) :: x,y,z a2=done/80 end function a2 function a3(x,y,z) use psb_base_mod, only : psb_dpk_, done, dzero implicit none real(psb_dpk_) :: a3 real(psb_dpk_), intent(in) :: x,y,z a3=done/80 end function a3 function g(x,y,z) use psb_base_mod, only : psb_dpk_, done, dzero implicit none real(psb_dpk_) :: g real(psb_dpk_), intent(in) :: x,y,z g = dzero if (x == done) then g = done else if (x == dzero) then g = exp(y**2-z**2) end if end function g ! ! subroutine to allocate and fill in the coefficient matrix and ! the rhs. ! subroutine psb_d_gen_pde3d(ctxt,idim,a,bv,xv,desc_a,afmt,info,& & f,amold,vmold,imold,partition,nrl,iv) use psb_base_mod use psb_util_mod #if defined(OPENMP) use omp_lib #endif ! ! Discretizes the partial differential equation ! ! a1 dd(u) a2 dd(u) a3 dd(u) b1 d(u) b2 d(u) b3 d(u) ! - ------ - ------ - ------ + ----- + ------ + ------ + c u = f ! dxdx dydy dzdz dx dy dz ! ! with Dirichlet boundary conditions ! u = g ! ! on the unit cube 0<=x,y,z<=1. ! ! ! Note that if b1=b2=b3=c=0., the PDE is the Laplace equation. ! implicit none integer(psb_ipk_) :: idim type(psb_dspmat_type) :: a type(psb_d_vect_type) :: xv,bv type(psb_desc_type) :: desc_a type(psb_ctxt_type) :: ctxt integer(psb_ipk_) :: info character(len=*) :: afmt procedure(d_func_3d), optional :: f class(psb_d_base_sparse_mat), optional :: amold class(psb_d_base_vect_type), optional :: vmold class(psb_i_base_vect_type), optional :: imold integer(psb_ipk_), optional :: partition, nrl,iv(:) ! Local variables. integer(psb_ipk_), parameter :: nb=20 type(psb_d_csc_sparse_mat) :: acsc type(psb_d_coo_sparse_mat) :: acoo type(psb_d_csr_sparse_mat) :: acsr real(psb_dpk_) :: zt(nb),x,y,z integer(psb_ipk_) :: nnz,nr,nlr,i,j,ii,ib,k, partition_, mysz integer(psb_lpk_) :: m,n,glob_row,nt integer(psb_ipk_) :: ix,iy,iz,ia,indx_owner ! For 3D partition ! Note: integer control variables going directly into an MPI call ! must be 4 bytes, i.e. psb_mpk_ integer(psb_mpk_) :: npdims(3), npp, minfo integer(psb_ipk_) :: npx,npy,npz, iamx,iamy,iamz,mynx,myny,mynz integer(psb_ipk_), allocatable :: bndx(:),bndy(:),bndz(:) ! Process grid integer(psb_ipk_) :: np, iam integer(psb_ipk_) :: icoeff integer(psb_lpk_), allocatable :: myidx(:) ! deltah dimension of each grid cell ! deltat discretization time real(psb_dpk_) :: deltah, sqdeltah, deltah2 real(psb_dpk_), parameter :: rhs=dzero,one=done,zero=dzero real(psb_dpk_) :: t0, t1, t2, t3, tasb, talc, ttot, tgen, tcdasb integer(psb_ipk_) :: err_act procedure(d_func_3d), pointer :: f_ character(len=20) :: name, ch_err,tmpfmt info = psb_success_ name = 'create_matrix' call psb_erractionsave(err_act) call psb_info(ctxt, iam, np) if (present(f)) then f_ => f else f_ => d_null_func_3d end if deltah = done/(idim+1) sqdeltah = deltah*deltah deltah2 = (2*done)* deltah if (present(partition)) then if ((1<= partition).and.(partition <= 3)) then partition_ = partition else write(*,*) 'Invalid partition choice ',partition,' defaulting to 3' partition_ = 3 end if else partition_ = 3 end if ! initialize array descriptor and sparse matrix storage. provide an ! estimate of the number of non zeroes m = (1_psb_lpk_*idim)*idim*idim n = m nnz = ((n*7)/(np)) if(iam == psb_root_) write(psb_out_unit,'("Generating Matrix (size=",i0,")...")')n t0 = psb_wtime() select case(partition_) case(1) ! A BLOCK partition if (present(nrl)) then nr = nrl else ! ! Using a simple BLOCK distribution. ! nt = (m+np-1)/np nr = max(0,min(nt,m-(iam*nt))) end if nt = nr call psb_sum(ctxt,nt) if (nt /= m) then write(psb_err_unit,*) iam, 'Initialization error ',nr,nt,m info = -1 call psb_barrier(ctxt) call psb_abort(ctxt) return end if ! ! First example of use of CDALL: specify for each process a number of ! contiguous rows ! call psb_cdall(ctxt,desc_a,info,nl=nr) myidx = desc_a%get_global_indices() nlr = size(myidx) case(2) ! A partition defined by the user through IV if (present(iv)) then if (size(iv) /= m) then write(psb_err_unit,*) iam, 'Initialization error: wrong IV size',size(iv),m info = -1 call psb_barrier(ctxt) call psb_abort(ctxt) return end if else write(psb_err_unit,*) iam, 'Initialization error: IV not present' info = -1 call psb_barrier(ctxt) call psb_abort(ctxt) return end if ! ! Second example of use of CDALL: specify for each row the ! process that owns it ! call psb_cdall(ctxt,desc_a,info,vg=iv) myidx = desc_a%get_global_indices() nlr = size(myidx) case(3) ! A 3-dimensional partition ! A nifty MPI function will split the process list npdims = 0 #if defined(SERIAL_MPI) npdims = 1 #else call mpi_dims_create(np,3,npdims,info) #endif npx = npdims(1) npy = npdims(2) npz = npdims(3) allocate(bndx(0:npx),bndy(0:npy),bndz(0:npz)) ! We can reuse idx2ijk for process indices as well. call idx2ijk(iamx,iamy,iamz,iam,npx,npy,npz,base=0) ! Now let's split the 3D cube in hexahedra call dist1Didx(bndx,idim,npx) mynx = bndx(iamx+1)-bndx(iamx) call dist1Didx(bndy,idim,npy) myny = bndy(iamy+1)-bndy(iamy) call dist1Didx(bndz,idim,npz) mynz = bndz(iamz+1)-bndz(iamz) ! How many indices do I own? nlr = mynx*myny*mynz allocate(myidx(nlr)) ! Now, let's generate the list of indices I own nr = 0 do i=bndx(iamx),bndx(iamx+1)-1 do j=bndy(iamy),bndy(iamy+1)-1 do k=bndz(iamz),bndz(iamz+1)-1 nr = nr + 1 call ijk2idx(myidx(nr),i,j,k,idim,idim,idim) end do end do end do if (nr /= nlr) then write(psb_err_unit,*) iam,iamx,iamy,iamz, 'Initialization error: NR vs NLR ',& & nr,nlr,mynx,myny,mynz info = -1 call psb_barrier(ctxt) call psb_abort(ctxt) end if ! ! Third example of use of CDALL: specify for each process ! the set of global indices it owns. ! call psb_cdall(ctxt,desc_a,info,vl=myidx) ! ! Specify process topology ! block ! ! Use adjcncy methods ! integer(psb_mpk_), allocatable :: neighbours(:) integer(psb_mpk_) :: cnt logical, parameter :: debug_adj=.true. if (debug_adj.and.(np > 1)) then cnt = 0 allocate(neighbours(np)) if (iamx < npx-1) then cnt = cnt + 1 call ijk2idx(neighbours(cnt),iamx+1,iamy,iamz,npx,npy,npz,base=0) end if if (iamy < npy-1) then cnt = cnt + 1 call ijk2idx(neighbours(cnt),iamx,iamy+1,iamz,npx,npy,npz,base=0) end if if (iamz < npz-1) then cnt = cnt + 1 call ijk2idx(neighbours(cnt),iamx,iamy,iamz+1,npx,npy,npz,base=0) end if if (iamx >0) then cnt = cnt + 1 call ijk2idx(neighbours(cnt),iamx-1,iamy,iamz,npx,npy,npz,base=0) end if if (iamy >0) then cnt = cnt + 1 call ijk2idx(neighbours(cnt),iamx,iamy-1,iamz,npx,npy,npz,base=0) end if if (iamz >0) then cnt = cnt + 1 call ijk2idx(neighbours(cnt),iamx,iamy,iamz-1,npx,npy,npz,base=0) end if call psb_realloc(cnt, neighbours,info) call desc_a%set_p_adjcncy(neighbours) !write(0,*) iam,' Check on neighbours: ',desc_a%get_p_adjcncy() end if end block case default write(psb_err_unit,*) iam, 'Initialization error: should not get here' info = -1 call psb_barrier(ctxt) call psb_abort(ctxt) return end select if (info == psb_success_) call psb_spall(a,desc_a,info,nnz=nnz, & & bldmode=psb_matbld_remote_,dupl=psb_dupl_add_) ! define rhs from boundary conditions; also build initial guess if (info == psb_success_) call psb_geall(xv,desc_a,info) if (info == psb_success_) call psb_geall(bv,desc_a,info,& & bldmode=psb_matbld_remote_,dupl=psb_dupl_add_) call psb_barrier(ctxt) talc = psb_wtime()-t0 if (info /= psb_success_) then info=psb_err_from_subroutine_ ch_err='allocation rout.' call psb_errpush(info,name,a_err=ch_err) goto 9999 end if call psb_barrier(ctxt) t1 = psb_wtime() !$omp parallel shared(deltah,myidx,a,desc_a) ! block integer(psb_ipk_) :: i,j,k,ii,ib,icoeff, ix,iy,iz, ith,nth integer(psb_lpk_) :: glob_row integer(psb_lpk_), allocatable :: irow(:),icol(:) real(psb_dpk_), allocatable :: val(:) real(psb_dpk_) :: x,y,z, zt(nb) #if defined(OPENMP) nth = omp_get_num_threads() ith = omp_get_thread_num() #else nth = 1 ith = 0 #endif allocate(val(20*nb),irow(20*nb),& &icol(20*nb),stat=info) if (info /= psb_success_ ) then info=psb_err_alloc_dealloc_ call psb_errpush(info,name) !goto 9999 endif !$omp do schedule(dynamic) ! do ii=1, nlr, nb if(info /= psb_success_) cycle ib = min(nb,nlr-ii+1) !ib = min(nb,mysz-ii+1) icoeff = 1 do k=1,ib i=ii+k-1 ! local matrix pointer glob_row=myidx(i) ! compute gridpoint coordinates call idx2ijk(ix,iy,iz,glob_row,idim,idim,idim) ! x, y, z coordinates x = (ix-1)*deltah y = (iy-1)*deltah z = (iz-1)*deltah zt(k) = f_(x,y,z) ! internal point: build discretization ! ! term depending on (x-1,y,z) ! val(icoeff) = -a1(x,y,z)/sqdeltah-b1(x,y,z)/deltah2 if (ix == 1) then zt(k) = g(dzero,y,z)*(-val(icoeff)) + zt(k) else call ijk2idx(icol(icoeff),ix-1,iy,iz,idim,idim,idim) irow(icoeff) = glob_row icoeff = icoeff+1 endif ! term depending on (x,y-1,z) val(icoeff) = -a2(x,y,z)/sqdeltah-b2(x,y,z)/deltah2 if (iy == 1) then zt(k) = g(x,dzero,z)*(-val(icoeff)) + zt(k) else call ijk2idx(icol(icoeff),ix,iy-1,iz,idim,idim,idim) irow(icoeff) = glob_row icoeff = icoeff+1 endif ! term depending on (x,y,z-1) val(icoeff)=-a3(x,y,z)/sqdeltah-b3(x,y,z)/deltah2 if (iz == 1) then zt(k) = g(x,y,dzero)*(-val(icoeff)) + zt(k) else call ijk2idx(icol(icoeff),ix,iy,iz-1,idim,idim,idim) irow(icoeff) = glob_row icoeff = icoeff+1 endif ! term depending on (x,y,z) val(icoeff)=(2*done)*(a1(x,y,z)+a2(x,y,z)+a3(x,y,z))/sqdeltah & & + c(x,y,z) call ijk2idx(icol(icoeff),ix,iy,iz,idim,idim,idim) irow(icoeff) = glob_row icoeff = icoeff+1 ! term depending on (x,y,z+1) val(icoeff)=-a3(x,y,z)/sqdeltah+b3(x,y,z)/deltah2 if (iz == idim) then zt(k) = g(x,y,done)*(-val(icoeff)) + zt(k) else call ijk2idx(icol(icoeff),ix,iy,iz+1,idim,idim,idim) irow(icoeff) = glob_row icoeff = icoeff+1 endif ! term depending on (x,y+1,z) val(icoeff)=-a2(x,y,z)/sqdeltah+b2(x,y,z)/deltah2 if (iy == idim) then zt(k) = g(x,done,z)*(-val(icoeff)) + zt(k) else call ijk2idx(icol(icoeff),ix,iy+1,iz,idim,idim,idim) irow(icoeff) = glob_row icoeff = icoeff+1 endif ! term depending on (x+1,y,z) val(icoeff)=-a1(x,y,z)/sqdeltah+b1(x,y,z)/deltah2 if (ix==idim) then zt(k) = g(done,y,z)*(-val(icoeff)) + zt(k) else call ijk2idx(icol(icoeff),ix+1,iy,iz,idim,idim,idim) irow(icoeff) = glob_row icoeff = icoeff+1 endif end do #if defined(OPENMP) !!$ write(0,*) omp_get_thread_num(),' Check insertion ',& !!$ & irow(1:icoeff-1),':',icol(1:icoeff-1) #endif call psb_spins(icoeff-1,irow,icol,val,a,desc_a,info) if(info /= psb_success_) cycle call psb_geins(ib,myidx(ii:ii+ib-1),zt(1:ib),bv,desc_a,info) if(info /= psb_success_) cycle zt(:)=dzero call psb_geins(ib,myidx(ii:ii+ib-1),zt(1:ib),xv,desc_a,info) if(info /= psb_success_) cycle end do !$omp end do deallocate(val,irow,icol) end block !$omp end parallel tgen = psb_wtime()-t1 if(info /= psb_success_) then info=psb_err_from_subroutine_ ch_err='insert rout.' call psb_errpush(info,name,a_err=ch_err) goto 9999 end if call psb_barrier(ctxt) t1 = psb_wtime() call psb_cdasb(desc_a,info,mold=imold) tcdasb = psb_wtime()-t1 call psb_barrier(ctxt) t1 = psb_wtime() if (info == psb_success_) then if (present(amold)) then call psb_spasb(a,desc_a,info,mold=amold) else call psb_spasb(a,desc_a,info,afmt=afmt) end if end if call psb_barrier(ctxt) if(info /= psb_success_) then info=psb_err_from_subroutine_ ch_err='asb rout.' call psb_errpush(info,name,a_err=ch_err) goto 9999 end if if (info == psb_success_) call psb_geasb(xv,desc_a,info,mold=vmold) if (info == psb_success_) call psb_geasb(bv,desc_a,info,mold=vmold) if(info /= psb_success_) then info=psb_err_from_subroutine_ ch_err='asb rout.' call psb_errpush(info,name,a_err=ch_err) goto 9999 end if tasb = psb_wtime()-t1 call psb_barrier(ctxt) ttot = psb_wtime() - t0 call psb_amx(ctxt,talc) call psb_amx(ctxt,tgen) call psb_amx(ctxt,tasb) call psb_amx(ctxt,ttot) if(iam == psb_root_) then tmpfmt = a%get_fmt() write(psb_out_unit,'("The matrix has been generated and assembled in ",a3," format.")')& & tmpfmt write(psb_out_unit,'("-allocation time : ",es12.5)') talc write(psb_out_unit,'("-coeff. gen. time : ",es12.5)') tgen write(psb_out_unit,'("-desc asbly time : ",es12.5)') tcdasb write(psb_out_unit,'("- mat asbly time : ",es12.5)') tasb write(psb_out_unit,'("-total time : ",es12.5)') ttot end if call psb_erractionrestore(err_act) return 9999 call psb_error_handler(ctxt,err_act) return end subroutine psb_d_gen_pde3d function outside(i,j,k,bndx,bndy,bndz,iamx,iamy,iamz) result(res) logical :: res integer(psb_ipk_), intent(in) :: i,j,k,iamx,iamy,iamz integer(psb_ipk_), intent(in) :: bndx(0:),bndy(0:),bndz(0:) res = (i=bndx(iamx+1)) & & .or.(j=bndy(iamy+1)) & & .or.(k=bndz(iamz+1)) end function outside end module psb_d_pde3d_mod program psb_d_oacc_pde3d use psb_base_mod use psb_prec_mod use psb_krylov_mod use psb_util_mod use psb_d_pde3d_mod #if defined(OPENACC) use psb_oacc_mod #endif implicit none ! input parameters character(len=20) :: kmethd, ptype character(len=5) :: afmt, agfmt integer(psb_ipk_) :: idim integer(psb_epk_) :: system_size ! miscellaneous real(psb_dpk_), parameter :: one = done real(psb_dpk_) :: t1, t2, tprec ! sparse matrix and preconditioner type(psb_dspmat_type) :: a, agpu type(psb_dprec_type) :: prec ! descriptor type(psb_desc_type) :: desc_a ! dense vectors type(psb_d_vect_type), target :: xxv, bv, xg, bg #ifdef OPENACC type(psb_d_vect_oacc) :: vmold type(psb_i_vect_oacc) :: imold type(psb_d_oacc_csr_sparse_mat) :: acsrg #endif real(psb_dpk_), allocatable :: x0(:) ! parallel environment type(psb_ctxt_type) :: ctxt integer(psb_ipk_) :: iam, np, nth ! solver parameters integer(psb_ipk_) :: iter, itmax, itrace, istopc, irst, ipart integer(psb_epk_) :: amatsize, precsize, descsize, d2size real(psb_dpk_) :: err, eps ! Parameters for solvers in Block-Jacobi preconditioner type ainvparms character(len=12) :: alg, orth_alg, ilu_alg, ilut_scale integer(psb_ipk_) :: fill, inv_fill real(psb_dpk_) :: thresh, inv_thresh end type ainvparms type(ainvparms) :: parms ! other variables integer(psb_ipk_) :: info, i character(len=20) :: name, ch_err character(len=40) :: fname info = psb_success_ call psb_init(ctxt) call psb_info(ctxt, iam, np) #if defined(OPENACC) call psb_oacc_init(ctxt) #endif nth = 1 if (iam < 0) then ! This should not happen, but just in case call psb_exit(ctxt) stop endif if (psb_errstatus_fatal()) goto 9999 name = 'pde3d90_oacc' call psb_set_errverbosity(itwo) ! Hello world if (iam == psb_root_) then write(*,*) 'Welcome to PSBLAS version: ', psb_version_string_ write(*,*) 'This is the ', trim(name), ' sample program' end if ! get parameters call get_parms(ctxt, kmethd, ptype, afmt, agfmt, idim, istopc, itmax, itrace, irst, ipart, parms) ! allocate and fill in the coefficient matrix, rhs and initial guess call psb_barrier(ctxt) t1 = psb_wtime() call psb_gen_pde3d(ctxt, idim, a, bv, xxv, desc_a, afmt, info, partition = ipart) call psb_barrier(ctxt) t2 = psb_wtime() - t1 if (info /= psb_success_) then info = psb_err_from_subroutine_ ch_err = 'psb_gen_pde3d' call psb_errpush(info, name, a_err = ch_err) goto 9999 end if if (iam == psb_root_) write(psb_out_unit, '("Overall matrix creation time : ", es12.5)') t2 if (iam == psb_root_) write(psb_out_unit, '(" ")') #ifdef OPENACC ! Convert matrix to GPU format call a%cscnv(agpu, info, mold = acsrg) if ((info /= 0) .or. (psb_get_errstatus() /= 0)) then write(0,*) 'From cscnv ', info call psb_error() stop end if call desc_a%cnv(mold = imold) call psb_geasb(bg, desc_a, info, scratch = .true., mold = vmold) call psb_geasb(xg, desc_a, info, scratch = .true., mold = vmold) #endif ! prepare the preconditioner. if (iam == psb_root_) write(psb_out_unit, '("Setting preconditioner to : ", a)') ptype call prec%init(ctxt, ptype, info) ! Set the options for the BJAC preconditioner if (psb_toupper(ptype) == "BJAC") then call prec%set('sub_solve', parms%alg, info) select case (psb_toupper(parms%alg)) case ("ILU") call prec%set('sub_fillin', parms%fill, info) call prec%set('ilu_alg', parms%ilu_alg, info) case ("ILUT") call prec%set('sub_fillin', parms%fill, info) call prec%set('sub_iluthrs', parms%thresh, info) call prec%set('ilut_scale', parms%ilut_scale, info) case ("AINV") call prec%set('inv_thresh', parms%inv_thresh, info) call prec%set('inv_fillin', parms%inv_fill, info) call prec%set('ilut_scale', parms%ilut_scale, info) call prec%set('ainv_alg', parms%orth_alg, info) case ("INVK") call prec%set('sub_fillin', parms%fill, info) call prec%set('inv_fillin', parms%inv_fill, info) call prec%set('ilut_scale', parms%ilut_scale, info) case ("INVT") call prec%set('sub_fillin', parms%fill, info) call prec%set('inv_fillin', parms%inv_fill, info) call prec%set('sub_iluthrs', parms%thresh, info) call prec%set('inv_thresh', parms%inv_thresh, info) call prec%set('ilut_scale', parms%ilut_scale, info) case default ! Do nothing, use default setting in the init routine end select else ! nothing to set for NONE or DIAG preconditioner end if call psb_barrier(ctxt) t1 = psb_wtime() call prec%build(a, desc_a, info) if (info /= psb_success_) then info = psb_err_from_subroutine_ ch_err = 'psb_precbld' call psb_errpush(info, name, a_err = ch_err) goto 9999 end if tprec = psb_wtime() - t1 call psb_amx(ctxt, tprec) if (iam == psb_root_) write(psb_out_unit, '("Preconditioner time : ", es12.5)') tprec if (iam == psb_root_) write(psb_out_unit, '(" ")') call prec%descr(info) ! iterative method parameters if (iam == psb_root_) write(psb_out_unit, '("Calling iterative method ", a)') kmethd call psb_barrier(ctxt) t1 = psb_wtime() eps = 1.d-6 #ifdef OPENACC call psb_krylov(kmethd, agpu, prec, bv, xxv, eps, desc_a, info, & itmax = itmax, iter = iter, err = err, itrace = itrace, istop = istopc, irst = irst) #else call psb_krylov(kmethd, a, prec, bv, xxv, eps, desc_a, info, & itmax = itmax, iter = iter, err = err, itrace = itrace, istop = istopc, irst = irst) #endif if (info /= psb_success_) then info = psb_err_from_subroutine_ ch_err = 'solver routine' call psb_errpush(info, name, a_err = ch_err) goto 9999 end if call psb_barrier(ctxt) t2 = psb_wtime() - t1 call psb_amx(ctxt, t2) amatsize = a%sizeof() descsize = desc_a%sizeof() precsize = prec%sizeof() system_size = desc_a%get_global_rows() call psb_sum(ctxt, amatsize) call psb_sum(ctxt, descsize) call psb_sum(ctxt, precsize) if (iam == psb_root_) then write(psb_out_unit, '(" ")') write(psb_out_unit, '("Number of processes : ", i12)') np write(psb_out_unit, '("Number of threads : ", i12)') nth write(psb_out_unit, '("Total number of tasks : ", i12)') nth * np write(psb_out_unit, '("Linear system size : ", i12)') system_size write(psb_out_unit, '("Time to solve system : ", es12.5)') t2 write(psb_out_unit, '("Time per iteration : ", es12.5)') t2 / iter write(psb_out_unit, '("Number of iterations : ", i12)') iter write(psb_out_unit, '("Convergence indicator on exit : ", es12.5)') err write(psb_out_unit, '("Info on exit : ", i12)') info write(psb_out_unit, '("Total memory occupation for A: ", i12)') amatsize write(psb_out_unit, '("Total memory occupation for PREC: ", i12)') precsize write(psb_out_unit, '("Total memory occupation for DESC_A: ", i12)') descsize write(psb_out_unit, '("Storage format for A: ", a)') a%get_fmt() write(psb_out_unit, '("Storage format for DESC_A: ", a)') desc_a%get_fmt() end if ! cleanup storage and exit call psb_gefree(bv, desc_a, info) call psb_gefree(xxv, desc_a, info) call psb_spfree(a, desc_a, info) call prec%free(info) call psb_cdfree(desc_a, info) if (info /= psb_success_) then info = psb_err_from_subroutine_ ch_err = 'free routine' call psb_errpush(info, name, a_err = ch_err) goto 9999 end if #ifdef OPENACC call psb_oacc_exit() #endif call psb_exit(ctxt) stop 9999 call psb_error(ctxt) stop contains ! get iteration parameters from standard input subroutine get_parms(ctxt, kmethd, ptype, afmt, agfmt, idim, istopc, itmax, itrace, irst, ipart, parms) type(psb_ctxt_type) :: ctxt character(len = *) :: kmethd, ptype, afmt, agfmt integer(psb_ipk_) :: idim, istopc, itmax, itrace, irst, ipart integer(psb_ipk_) :: np, iam integer(psb_ipk_) :: ip, inp_unit character(len = 1024) :: filename type(ainvparms) :: parms call psb_info(ctxt, iam, np) if (iam == 0) then if (command_argument_count() > 0) then call get_command_argument(1, filename) inp_unit = 30 open(inp_unit, file = filename, action = 'read', iostat = info) if (info /= 0) then write(psb_err_unit, *) 'Could not open file ', filename, ' for input' call psb_abort(ctxt) stop else write(psb_err_unit, *) 'Opened file ', trim(filename), ' for input' end if else inp_unit = psb_inp_unit end if read(inp_unit, *) ip if (ip >= 3) then read(inp_unit, *) kmethd read(inp_unit, *) ptype read(inp_unit, *) afmt read(inp_unit, *) agfmt read(inp_unit, *) idim if (ip >= 4) then read(inp_unit, *) ipart else ipart = 3 endif if (ip >= 5) then read(inp_unit, *) istopc else istopc = 1 endif if (ip >= 6) then read(inp_unit, *) itmax else itmax = 500 endif if (ip >= 7) then read(inp_unit, *) itrace else itrace = -1 endif if (ip >= 8) then read(inp_unit, *) irst else irst = 1 endif if (ip >= 9) then read(inp_unit, *) parms%alg read(inp_unit, *) parms%ilu_alg read(inp_unit, *) parms%ilut_scale read(inp_unit, *) parms%fill read(inp_unit, *) parms%inv_fill read(inp_unit, *) parms%thresh read(inp_unit, *) parms%inv_thresh read(inp_unit, *) parms%orth_alg else parms%alg = 'ILU' ! Block Solver ILU, ILUT, INVK, AINVT, AORTH parms%ilu_alg = 'NONE' ! If ILU : MILU or NONE otherwise ignored parms%ilut_scale = 'NONE' ! If ILUT: NONE, MAXVAL, DIAG, ARWSUM, ACLSUM, ARCSUM parms%fill = 0 ! Level of fill for forward factorization parms%inv_fill = 1 ! Level of fill for inverse factorization (only INVK) parms%thresh = 1E-1_psb_dpk_ ! Threshold for forward factorization parms%inv_thresh = 1E-1_psb_dpk_ ! Threshold for inverse factorization parms%orth_alg = 'LLK' ! What orthogonalization algorithm? endif write(psb_out_unit, '("Solving matrix : ell1")') write(psb_out_unit, & '("Grid dimensions : ", i4, " x ", i4, " x ", i4)') & idim, idim, idim write(psb_out_unit, '("Number of processors : ", i0)') np select case (ipart) case (1) write(psb_out_unit, '("Data distribution : BLOCK")') case (3) write(psb_out_unit, '("Data distribution : 3D")') case default ipart = 3 write(psb_out_unit, '("Unknown data distrbution, defaulting to 3D")') end select write(psb_out_unit, '("Preconditioner : ", a)') ptype if (psb_toupper(ptype) == "BJAC") then write(psb_out_unit, '("Block subsolver : ", a)') parms%alg select case (psb_toupper(parms%alg)) case ('ILU') write(psb_out_unit, '("Fill in : ", i0)') parms%fill write(psb_out_unit, '("MILU : ", a)') parms%ilu_alg case ('ILUT') write(psb_out_unit, '("Fill in : ", i0)') parms%fill write(psb_out_unit, '("Threshold : ", es12.5)') parms%thresh write(psb_out_unit, '("Scaling : ", a)') parms%ilut_scale case ('INVK') write(psb_out_unit, '("Fill in : ", i0)') parms%fill write(psb_out_unit, '("Invese Fill in : ", i0)') parms%inv_fill write(psb_out_unit, '("Scaling : ", a)') parms%ilut_scale case ('INVT') write(psb_out_unit, '("Fill in : ", i0)') parms%fill write(psb_out_unit, '("Threshold : ", es12.5)') parms%thresh write(psb_out_unit, '("Invese Fill in : ", i0)') parms%inv_fill write(psb_out_unit, '("Inverse Threshold : ", es12.5)') parms%inv_thresh write(psb_out_unit, '("Scaling : ", a)') parms%ilut_scale case ('AINV', 'AORTH') write(psb_out_unit, '("Inverse Threshold : ", es12.5)') parms%inv_thresh write(psb_out_unit, '("Invese Fill in : ", i0)') parms%inv_fill write(psb_out_unit, '("Orthogonalization : ", a)') parms%orth_alg write(psb_out_unit, '("Scaling : ", a)') parms%ilut_scale case default write(psb_out_unit, '("Unknown diagonal solver")') end select end if write(psb_out_unit, '("Iterative method : ", a)') kmethd write(psb_out_unit, '(" ")') else ! wrong number of parameter, print an error message and exit call pr_usage(izero) call psb_abort(ctxt) stop 1 endif if (inp_unit /= psb_inp_unit) then close(inp_unit) end if end if ! broadcast parameters to all processors call psb_bcast(ctxt, kmethd) call psb_bcast(ctxt, afmt) call psb_bcast(ctxt, agfmt) call psb_bcast(ctxt, ptype) call psb_bcast(ctxt, idim) call psb_bcast(ctxt, ipart) call psb_bcast(ctxt, istopc) call psb_bcast(ctxt, itmax) call psb_bcast(ctxt, itrace) call psb_bcast(ctxt, irst) call psb_bcast(ctxt, parms%alg) call psb_bcast(ctxt, parms%fill) call psb_bcast(ctxt, parms%inv_fill) call psb_bcast(ctxt, parms%thresh) call psb_bcast(ctxt, parms%inv_thresh) call psb_bcast(ctxt, parms%orth_alg) call psb_bcast(ctxt, parms%ilut_scale) return end subroutine get_parms ! print an error message subroutine pr_usage(iout) integer(psb_ipk_) :: iout write(iout, *) 'incorrect parameter(s) found' write(iout, *) ' usage: pde3d90 methd prec dim &' write(iout, *) '[istop itmax itrace]' write(iout, *) ' where:' write(iout, *) ' methd: cgstab cgs rgmres bicgstabl' write(iout, *) ' prec : bjac diag none' write(iout, *) ' dim number of points along each axis' write(iout, *) ' the size of the resulting linear ' write(iout, *) ' system is dim**3' write(iout, *) ' ipart data partition 1 3 ' write(iout, *) ' istop stopping criterion 1, 2 ' write(iout, *) ' itmax maximum number of iterations [500] ' write(iout, *) ' itrace <=0 (no tracing, default) or ' write(iout, *) ' >= 1 do tracing every itrace' write(iout, *) ' iterations ' end subroutine pr_usage end program psb_d_oacc_pde3d