!!$ !!$ Parallel Sparse BLAS version 3.1 !!$ (C) Copyright 2006, 2007, 2008, 2009, 2010, 2012, 2013 !!$ Salvatore Filippone University of Rome Tor Vergata !!$ Alfredo Buttari CNRS-IRIT, Toulouse !!$ !!$ Redistribution and use in source and binary forms, with or without !!$ modification, are permitted provided that the following conditions !!$ are met: !!$ 1. Redistributions of source code must retain the above copyright !!$ notice, this list of conditions and the following disclaimer. !!$ 2. Redistributions in binary form must reproduce the above copyright !!$ notice, this list of conditions, and the following disclaimer in the !!$ documentation and/or other materials provided with the distribution. !!$ 3. The name of the PSBLAS group or the names of its contributors may !!$ not be used to endorse or promote products derived from this !!$ software without specific written permission. !!$ !!$ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS !!$ ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED !!$ TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR !!$ PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE PSBLAS GROUP OR ITS CONTRIBUTORS !!$ BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR !!$ CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF !!$ SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS !!$ INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN !!$ CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) !!$ ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE !!$ POSSIBILITY OF SUCH DAMAGE. !!$ !!$ program arnoldi_file use psb_base_mod use psb_util_mod implicit none ! input parameters character(len=40) :: kmethd, ptype, mtrx_file, rhs_file ! sparse matrices type(psb_zspmat_type) :: a, aux_a ! dense matrices complex(psb_dpk_), allocatable, target :: aux_b(:,:), d(:) complex(psb_dpk_), allocatable , save :: x_col_glob(:), r_col_glob(:) complex(psb_dpk_), allocatable, target :: H(:,:),eig(:),work(:),Z(:,:) integer, allocatable :: indexes(:) type(psb_z_vect_type), allocatable, target :: V(:) complex(psb_dpk_), pointer :: b_col_glob(:) type(psb_z_vect_type) :: b_col, x_col, r_col ! communications data structure type(psb_desc_type):: desc_a integer(psb_ipk_) :: ictxt, iam, np ! solver paramters integer(psb_ipk_) :: iter, itmax, ierr, itrace, ircode, ipart,& & methd, istopc, irst, nr integer(psb_long_int_k_) :: amatsize, descsize, annz, nbytes real(psb_dpk_) :: err, eps,cond character(len=5) :: afmt character(len=20) :: name character(len=2) :: filefmt integer(psb_ipk_), parameter :: iunit=12 integer(psb_ipk_) :: times=0 integer(psb_ipk_) :: iparm(20) ! other variables integer(psb_ipk_) :: i,info,j,m_problem integer(psb_ipk_) :: internal, m,ii,nnzero, dim_H, alloc_stat real(psb_dpk_) :: t1, t2, r_amax, b_amax,& &scale,resmx,resmxp, flops, bdwdth real(psb_dpk_) :: tt1, tt2, tflops real (psb_dpk_) :: norm complex (psb_dpk_) :: dotprod integer(psb_ipk_) :: nrhs, nrow, n_row, nv, ne integer(psb_ipk_), allocatable :: ivg(:), ipv(:) call psb_init(ictxt) call psb_info(ictxt,iam,np) if (iam < 0) then ! This should not happen, but just in case call psb_exit(ictxt) stop endif name='arnoldi_file' if(psb_get_errstatus() /= 0) goto 9999 info=psb_success_ call psb_set_errverbosity(2) ! ! Hello world ! if (iam == psb_root_) then write(*,*) 'Welcome to PSBLAS version: ',psb_version_string_ write(*,*) 'This is the ',trim(name),' sample program' read(psb_inp_unit,*) mtrx_file read(psb_inp_unit,*) filefmt read(psb_inp_unit,*) ipart read(psb_inp_unit,*) dim_H write (psb_out_unit, '("Hessenberg matrix dim is ",i20)') dim_H end if call psb_bcast(ictxt,mtrx_file) call psb_bcast(ictxt,filefmt) call psb_bcast(ictxt,ipart) call psb_bcast(ictxt,dim_H) rhs_file = 'NONE' afmt = 'CSR' call psb_barrier(ictxt) t1 = psb_wtime() ! read the input matrix to be processed and (possibly) the rhs nrhs = 1 if (iam==psb_root_) then select case(psb_toupper(filefmt)) case('MM') ! For Matrix Market we have an input file for the matrix ! and an (optional) second file for the RHS. call mm_mat_read(aux_a,info,iunit=iunit,filename=mtrx_file) if (info == psb_success_) then if (rhs_file /= 'NONE') then call mm_array_read(aux_b,info,iunit=iunit,filename=rhs_file) end if end if case ('HB') ! For Harwell-Boeig we have a single file which may or may not ! contain an RHS. call hb_read(aux_a,info,iunit=iunit,b=aux_b,filename=mtrx_file) case default info = -1 write(psb_err_unit,*) 'Wrong choice for fileformat ', filefmt end select if (info /= psb_success_) then write(psb_err_unit,*) 'Error while reading input matrix ' call psb_abort(ictxt) end if m_problem = aux_a%get_nrows() call psb_bcast(ictxt,m_problem) ! At this point aux_b may still be unallocated if (psb_size(aux_b,dim=1)==m_problem) then ! if any rhs were present, broadcast the first one write(psb_err_unit,'("Ok, got an rhs ")') b_col_glob =>aux_b(:,1) else write(psb_out_unit,'("Generating an rhs...")') write(psb_out_unit,'(" ")') call psb_realloc(m_problem,1,aux_b,ircode) if (ircode /= 0) then call psb_errpush(psb_err_alloc_dealloc_,name) goto 9999 endif b_col_glob => aux_b(:,1) do i=1, m_problem b_col_glob(i) = 1.d0 enddo endif call psb_bcast(ictxt,b_col_glob(1:m_problem)) else call psb_bcast(ictxt,m_problem) call psb_realloc(m_problem,1,aux_b,ircode) if (ircode /= 0) then call psb_errpush(psb_err_alloc_dealloc_,name) goto 9999 endif b_col_glob =>aux_b(:,1) call psb_bcast(ictxt,b_col_glob(1:m_problem)) end if ! switch over different partition types if (ipart == 0) then call psb_barrier(ictxt) if (iam==psb_root_) write(psb_out_unit,'("Partition type: block")') allocate(ivg(m_problem),ipv(np)) do i=1,m_problem call part_block(i,m_problem,np,ipv,nv) ivg(i) = ipv(1) enddo call psb_matdist(aux_a, a,ictxt, & & desc_a,b_col_glob,b_col,info,fmt=afmt,v=ivg) else if (ipart == 2) then if (iam==psb_root_) then write(psb_out_unit,'("Partition type: graph")') write(psb_out_unit,'(" ")') ! write(psb_err_unit,'("Build type: graph")') call build_mtpart(aux_a,np) endif call psb_barrier(ictxt) call distr_mtpart(psb_root_,ictxt) call getv_mtpart(ivg) call psb_matdist(aux_a, a, ictxt, & & desc_a,b_col_glob,b_col,info,fmt=afmt,v=ivg) else if (iam==psb_root_) write(psb_out_unit,'("Partition type: block")') call psb_matdist(aux_a, a, ictxt, & & desc_a,b_col_glob,b_col,info,fmt=afmt,parts=part_block) end if allocate(H(dim_H,dim_H),stat = alloc_stat) do i=1,dim_h do j=1,dim_H H(i,j)=zzero enddo enddo allocate(V(dim_H+1),stat = alloc_stat) do i=1,dim_H+1 call psb_geall(V(i),desc_a,info) call psb_geasb(V(i),desc_a,info) enddo call V(1)%set(zone) t2 = psb_wtime() - t1 call psb_amx(ictxt, t2) if (iam==psb_root_) then write(psb_out_unit,'(" ")') write(psb_out_unit,'("Time to read and partition matrix : ",es12.5)')t2 write(psb_out_unit,'(" ")') end if call psb_barrier(ictxt) t1 = psb_wtime() norm = psb_genrm2(V(1),desc_a,info) if (iam==psb_root_) write(psb_out_unit,'("norma iniziale :"F20.3)')norm ! H(2,1)=dcmplx(norm,0.0) H(2,1)=norm*zone norm = 1/norm !normalisation of V(1) call psb_geaxpby(zzero,V(1),norm*zone,V(1),desc_a, info) do i=2,dim_H+1 call psb_spmm(zone,a,V(i-1),zzero,V(i),desc_a,info,'n') !we do V(i)=a*V(i-1) ! Gram-Schmitt's reorthogonalisation do j=1,i-1 dotprod= psb_gedot(V(i),V(j),desc_a,info) ! dotprod = (V(i) dot V(j)) call psb_geaxpby(-dotprod,V(j),zone,V(i),desc_a, info) !V(i)=V(i)-V(j)*dotprod if(iam==psb_root_) write(*,'("dotprod : "i5, g20.4,g20.4)') i,real(dotprod),aimag(dotprod) H(j,i-1)=dotprod end do norm = psb_genrm2(V(i),desc_a,info) if (iam==psb_root_) then write(psb_out_unit,'("norma finale :"i20,F20.3)')i,norm write(psb_out_unit,'("")') end if if (i .ne. dim_H+1) then H(i,i-1)=cmplx(norm,0.0) !H(i,i-1)=norm*zone endif norm=1/norm call psb_geaxpby(zzero,V(i),norm*zone,V(i),desc_a, info) enddo do i=2,dim_H if (iam==psb_root_) write(*,'("basse diagonale de H : "i5, g20.4,g20.4)') i,real(H(i,i-1)),aimag(H(i,i-1)) enddo write(psb_out_unit,'("")') allocate(eig(dim_H),work(dim_h),stat = info) allocate(Z(dim_H,dim_H),stat = alloc_stat) call ZHSEQR('E','N',dim_H,1,dim_H,H,dim_H,eig,Z,dim_H,work,3*dim_H,info) !sort H's eigenvalues allocate(indexes(1:dim_H)) call psb_qsort(eig,indexes,psb_alsort_up_,psb_sort_ovw_idx_) call psb_barrier(ictxt) t2 = psb_wtime() - t1 call psb_amx(ictxt,t2) nr = desc_a%get_global_rows() annz = a%get_nzeros() amatsize = psb_sizeof(a) descsize = psb_sizeof(desc_a) call psb_sum(ictxt,annz) call psb_sum(ictxt,amatsize) call psb_sum(ictxt,descsize) if (iam==psb_root_) then flops = 2.d0*times*annz tflops=flops write(psb_out_unit,'("Matrix: ",a)') mtrx_file write(psb_out_unit,'("Test on : ",i20," processors")') np write(psb_out_unit,'("Size of matrix : ",i20," ")') nr write(psb_out_unit,'("Number of nonzeros : ",i20," ")') annz write(*,'("valeurs propres de H : ")') OPEN(unit=10, file=mtrx_file(1:3)//'.txt') do i=dim_H/3,dim_H write(psb_out_unit,'(g20.4,g20.4)')real(eig(i)),aimag(eig(i)) write(10,'(g20.4,g20.4)')real(eig(i)),aimag(eig(i)) enddo CLOSE(10) tflops = tflops / (tt2) ! ! This computation is valid for CSR ! nbytes = nr*(2*psb_sizeof_sp + psb_sizeof_int)+ & & annz*(psb_sizeof_sp + psb_sizeof_int) bdwdth = times*nbytes/(t2*1.d6) bdwdth = times*nbytes/(tt2*1.d6) end if call psb_gefree(b_col, desc_a,info) call psb_gefree(x_col, desc_a,info) call psb_spfree(a, desc_a,info) call psb_cdfree(desc_a,info) do i=1,dim_H call psb_gefree(V(i),desc_a,info) end do DEALLOCATE (H) DEALLOCATE (eig,V) DEALLOCATE (work) DEALLOCATE (Z) 9999 continue if(info /= 0) then call psb_error(ictxt) end if call psb_exit(ictxt) stop end program arnoldi_file