!!$ !!$ Parallel Sparse BLAS version 3.4 !!$ (C) Copyright 2006, 2010, 2015 !!$ Salvatore Filippone University of Rome Tor Vergata !!$ Alfredo Buttari CNRS-IRIT, Toulouse !!$ !!$ Redistribution and use in source and binary forms, with or without !!$ modification, are permitted provided that the following conditions !!$ are met: !!$ 1. Redistributions of source code must retain the above copyright !!$ notice, this list of conditions and the following disclaimer. !!$ 2. Redistributions in binary form must reproduce the above copyright !!$ notice, this list of conditions, and the following disclaimer in the !!$ documentation and/or other materials provided with the distribution. !!$ 3. The name of the PSBLAS group or the names of its contributors may !!$ not be used to endorse or promote products derived from this !!$ software without specific written permission. !!$ !!$ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS !!$ ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED !!$ TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR !!$ PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE PSBLAS GROUP OR ITS CONTRIBUTORS !!$ BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR !!$ CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF !!$ SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS !!$ INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN !!$ CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) !!$ ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE !!$ POSSIBILITY OF SUCH DAMAGE. !!$ !!$ ! ! package: psb_s_base_vect_mod ! ! This module contains the definition of the psb_s_base_vect type which ! is a container for dense vectors. ! This is encapsulated instead of being just a simple array to allow for ! more complicated situations, such as GPU programming, where the memory ! area we are interested in is not easily accessible from the host/Fortran ! side. It is also meant to be encapsulated in an outer type, to allow ! runtime switching as per the STATE design pattern, similar to the ! sparse matrix types. ! ! module psb_s_base_vect_mod use psb_const_mod use psb_error_mod use psb_realloc_mod use psb_i_base_vect_mod !> \namespace psb_base_mod \class psb_s_base_vect_type !! The psb_s_base_vect_type !! defines a middle level real(psb_spk_) encapsulated dense vector. !! The encapsulation is needed, in place of a simple array, to allow !! for complicated situations, such as GPU programming, where the memory !! area we are interested in is not easily accessible from the host/Fortran !! side. It is also meant to be encapsulated in an outer type, to allow !! runtime switching as per the STATE design pattern, similar to the !! sparse matrix types. !! type psb_s_base_vect_type !> Values. real(psb_spk_), allocatable :: v(:) real(psb_spk_), allocatable :: combuf(:) integer(psb_ipk_), allocatable :: comid(:,:) contains ! ! Constructors/allocators ! procedure, pass(x) :: bld_x => s_base_bld_x procedure, pass(x) :: bld_n => s_base_bld_n generic, public :: bld => bld_x, bld_n procedure, pass(x) :: all => s_base_all procedure, pass(x) :: mold => s_base_mold ! ! Insert/set. Assembly and free. ! Assembly does almost nothing here, but is important ! in derived classes. ! procedure, pass(x) :: ins_a => s_base_ins_a procedure, pass(x) :: ins_v => s_base_ins_v generic, public :: ins => ins_a, ins_v procedure, pass(x) :: zero => s_base_zero procedure, pass(x) :: asb => s_base_asb procedure, pass(x) :: free => s_base_free ! ! Sync: centerpiece of handling of external storage. ! Any derived class having extra storage upon sync ! will guarantee that both fortran/host side and ! external side contain the same data. The base ! version is only a placeholder. ! procedure, pass(x) :: sync => s_base_sync procedure, pass(x) :: is_host => s_base_is_host procedure, pass(x) :: is_dev => s_base_is_dev procedure, pass(x) :: is_sync => s_base_is_sync procedure, pass(x) :: set_host => s_base_set_host procedure, pass(x) :: set_dev => s_base_set_dev procedure, pass(x) :: set_sync => s_base_set_sync ! ! These are for handling gather/scatter in new ! comm internals implementation. ! procedure, nopass :: use_buffer => s_base_use_buffer procedure, pass(x) :: new_buffer => s_base_new_buffer procedure, nopass :: device_wait => s_base_device_wait procedure, pass(x) :: free_buffer => s_base_free_buffer procedure, pass(x) :: new_comid => s_base_new_comid procedure, pass(x) :: free_comid => s_base_free_comid ! ! Basic info procedure, pass(x) :: get_nrows => s_base_get_nrows procedure, pass(x) :: sizeof => s_base_sizeof procedure, nopass :: get_fmt => s_base_get_fmt ! ! Set/get data from/to an external array; also ! overload assignment. ! procedure, pass(x) :: get_vect => s_base_get_vect procedure, pass(x) :: set_scal => s_base_set_scal procedure, pass(x) :: set_vect => s_base_set_vect generic, public :: set => set_vect, set_scal ! ! Gather/scatter. These are needed for MPI interfacing. ! May have to be reworked. ! procedure, pass(x) :: gthab => s_base_gthab procedure, pass(x) :: gthzv => s_base_gthzv procedure, pass(x) :: gthzv_x => s_base_gthzv_x procedure, pass(x) :: gthzbuf => s_base_gthzbuf generic, public :: gth => gthab, gthzv, gthzv_x, gthzbuf procedure, pass(y) :: sctb => s_base_sctb procedure, pass(y) :: sctb_x => s_base_sctb_x procedure, pass(y) :: sctb_buf => s_base_sctb_buf generic, public :: sct => sctb, sctb_x, sctb_buf ! ! Dot product and AXPBY ! procedure, pass(x) :: dot_v => s_base_dot_v procedure, pass(x) :: dot_a => s_base_dot_a generic, public :: dot => dot_v, dot_a procedure, pass(y) :: axpby_v => s_base_axpby_v procedure, pass(y) :: axpby_a => s_base_axpby_a generic, public :: axpby => axpby_v, axpby_a ! ! Vector by vector multiplication. Need all variants ! to handle multiple requirements from preconditioners ! procedure, pass(y) :: mlt_v => s_base_mlt_v procedure, pass(y) :: mlt_a => s_base_mlt_a procedure, pass(z) :: mlt_a_2 => s_base_mlt_a_2 procedure, pass(z) :: mlt_v_2 => s_base_mlt_v_2 procedure, pass(z) :: mlt_va => s_base_mlt_va procedure, pass(z) :: mlt_av => s_base_mlt_av generic, public :: mlt => mlt_v, mlt_a, mlt_a_2, mlt_v_2, mlt_av, mlt_va ! ! Scaling and norms ! procedure, pass(x) :: scal => s_base_scal procedure, pass(x) :: absval1 => s_base_absval1 procedure, pass(x) :: absval2 => s_base_absval2 generic, public :: absval => absval1, absval2 procedure, pass(x) :: nrm2 => s_base_nrm2 procedure, pass(x) :: amax => s_base_amax procedure, pass(x) :: asum => s_base_asum end type psb_s_base_vect_type public :: psb_s_base_vect private :: constructor, size_const interface psb_s_base_vect module procedure constructor, size_const end interface psb_s_base_vect contains ! ! Constructors. ! !> Function constructor: !! \brief Constructor from an array !! \param x(:) input array to be copied !! function constructor(x) result(this) real(psb_spk_) :: x(:) type(psb_s_base_vect_type) :: this integer(psb_ipk_) :: info this%v = x call this%asb(size(x,kind=psb_ipk_),info) end function constructor !> Function constructor: !! \brief Constructor from size !! \param n Size of vector to be built. !! function size_const(n) result(this) integer(psb_ipk_), intent(in) :: n type(psb_s_base_vect_type) :: this integer(psb_ipk_) :: info call this%asb(n,info) end function size_const ! ! Build from a sample ! !> Function bld_x: !! \memberof psb_s_base_vect_type !! \brief Build method from an array !! \param x(:) input array to be copied !! subroutine s_base_bld_x(x,this) use psb_realloc_mod real(psb_spk_), intent(in) :: this(:) class(psb_s_base_vect_type), intent(inout) :: x integer(psb_ipk_) :: info call psb_realloc(size(this),x%v,info) if (info /= 0) then call psb_errpush(psb_err_alloc_dealloc_,'base_vect_bld') return end if x%v(:) = this(:) end subroutine s_base_bld_x ! ! Create with size, but no initialization ! !> Function bld_n: !! \memberof psb_s_base_vect_type !! \brief Build method with size (uninitialized data) !! \param n size to be allocated. !! subroutine s_base_bld_n(x,n) use psb_realloc_mod integer(psb_ipk_), intent(in) :: n class(psb_s_base_vect_type), intent(inout) :: x integer(psb_ipk_) :: info call psb_realloc(n,x%v,info) call x%asb(n,info) end subroutine s_base_bld_n !> Function base_all: !! \memberof psb_s_base_vect_type !! \brief Build method with size (uninitialized data) and !! allocation return code. !! \param n size to be allocated. !! \param info return code !! subroutine s_base_all(n, x, info) use psi_serial_mod use psb_realloc_mod implicit none integer(psb_ipk_), intent(in) :: n class(psb_s_base_vect_type), intent(out) :: x integer(psb_ipk_), intent(out) :: info call psb_realloc(n,x%v,info) end subroutine s_base_all !> Function base_mold: !! \memberof psb_s_base_vect_type !! \brief Mold method: return a variable with the same dynamic type !! \param y returned variable !! \param info return code !! subroutine s_base_mold(x, y, info) use psi_serial_mod use psb_realloc_mod implicit none class(psb_s_base_vect_type), intent(in) :: x class(psb_s_base_vect_type), intent(out), allocatable :: y integer(psb_ipk_), intent(out) :: info allocate(psb_s_base_vect_type :: y, stat=info) end subroutine s_base_mold ! ! Insert a bunch of values at specified positions. ! !> Function base_ins: !! \memberof psb_s_base_vect_type !! \brief Insert coefficients. !! !! !! Given a list of N pairs !! (IRL(i),VAL(i)) !! record a new coefficient in X such that !! X(IRL(1:N)) = VAL(1:N). !! !! - the update operation will perform either !! X(IRL(1:n)) = VAL(1:N) !! or !! X(IRL(1:n)) = X(IRL(1:n))+VAL(1:N) !! according to the value of DUPLICATE. !! !! !! \param n number of pairs in input !! \param irl(:) the input row indices !! \param val(:) the input coefficients !! \param dupl how to treat duplicate entries !! \param info return code !! ! subroutine s_base_ins_a(n,irl,val,dupl,x,info) use psi_serial_mod implicit none class(psb_s_base_vect_type), intent(inout) :: x integer(psb_ipk_), intent(in) :: n, dupl integer(psb_ipk_), intent(in) :: irl(:) real(psb_spk_), intent(in) :: val(:) integer(psb_ipk_), intent(out) :: info integer(psb_ipk_) :: i, isz info = 0 if (psb_errstatus_fatal()) return if (.not.allocated(x%v)) then info = psb_err_invalid_vect_state_ else if (n > min(size(irl),size(val))) then info = psb_err_invalid_input_ else isz = size(x%v) select case(dupl) case(psb_dupl_ovwrt_) do i = 1, n !loop over all val's rows ! row actual block row if ((1 <= irl(i)).and.(irl(i) <= isz)) then ! this row belongs to me ! copy i-th row of block val in x x%v(irl(i)) = val(i) end if enddo case(psb_dupl_add_) do i = 1, n !loop over all val's rows if ((1 <= irl(i)).and.(irl(i) <= isz)) then ! this row belongs to me ! copy i-th row of block val in x x%v(irl(i)) = x%v(irl(i)) + val(i) end if enddo case default info = 321 ! !$ call psb_errpush(info,name) ! !$ goto 9999 end select end if call x%set_host() if (info /= 0) then call psb_errpush(info,'base_vect_ins') return end if end subroutine s_base_ins_a subroutine s_base_ins_v(n,irl,val,dupl,x,info) use psi_serial_mod implicit none class(psb_s_base_vect_type), intent(inout) :: x integer(psb_ipk_), intent(in) :: n, dupl class(psb_i_base_vect_type), intent(inout) :: irl class(psb_s_base_vect_type), intent(inout) :: val integer(psb_ipk_), intent(out) :: info integer(psb_ipk_) :: i, isz info = 0 if (psb_errstatus_fatal()) return if (irl%is_dev()) call irl%sync() if (val%is_dev()) call val%sync() if (x%is_dev()) call x%sync() call x%ins(n,irl%v,val%v,dupl,info) if (info /= 0) then call psb_errpush(info,'base_vect_ins') return end if end subroutine s_base_ins_v ! !> Function base_zero !! \memberof psb_s_base_vect_type !! \brief Zero out contents !! ! subroutine s_base_zero(x) use psi_serial_mod implicit none class(psb_s_base_vect_type), intent(inout) :: x if (allocated(x%v)) x%v=szero call x%set_host() end subroutine s_base_zero ! ! Assembly. ! For derived classes: after this the vector ! storage is supposed to be in sync. ! !> Function base_asb: !! \memberof psb_s_base_vect_type !! \brief Assemble vector: reallocate as necessary. !! !! \param n final size !! \param info return code !! ! subroutine s_base_asb(n, x, info) use psi_serial_mod use psb_realloc_mod implicit none integer(psb_ipk_), intent(in) :: n class(psb_s_base_vect_type), intent(inout) :: x integer(psb_ipk_), intent(out) :: info info = 0 if (x%get_nrows() < n) & & call psb_realloc(n,x%v,info) if (info /= 0) & & call psb_errpush(psb_err_alloc_dealloc_,'vect_asb') call x%sync() end subroutine s_base_asb ! !> Function base_free: !! \memberof psb_s_base_vect_type !! \brief Free vector !! !! \param info return code !! ! subroutine s_base_free(x, info) use psi_serial_mod use psb_realloc_mod implicit none class(psb_s_base_vect_type), intent(inout) :: x integer(psb_ipk_), intent(out) :: info info = 0 if (allocated(x%v)) deallocate(x%v, stat=info) if (info == 0) call x%free_buffer(info) if (info == 0) call x%free_comid(info) if (info /= 0) call & & psb_errpush(psb_err_alloc_dealloc_,'vect_free') end subroutine s_base_free ! ! The base version of SYNC & friends does nothing, it's just ! a placeholder. ! ! !> Function base_sync: !! \memberof psb_s_base_vect_type !! \brief Sync: base version is a no-op. !! ! subroutine s_base_sync(x) implicit none class(psb_s_base_vect_type), intent(inout) :: x end subroutine s_base_sync ! !> Function base_set_host: !! \memberof psb_s_base_vect_type !! \brief Set_host: base version is a no-op. !! ! subroutine s_base_set_host(x) implicit none class(psb_s_base_vect_type), intent(inout) :: x end subroutine s_base_set_host ! !> Function base_set_dev: !! \memberof psb_s_base_vect_type !! \brief Set_dev: base version is a no-op. !! ! subroutine s_base_set_dev(x) implicit none class(psb_s_base_vect_type), intent(inout) :: x end subroutine s_base_set_dev ! !> Function base_set_sync: !! \memberof psb_s_base_vect_type !! \brief Set_sync: base version is a no-op. !! ! subroutine s_base_set_sync(x) implicit none class(psb_s_base_vect_type), intent(inout) :: x end subroutine s_base_set_sync ! !> Function base_is_dev: !! \memberof psb_s_base_vect_type !! \brief Is vector on external device . !! ! function s_base_is_dev(x) result(res) implicit none class(psb_s_base_vect_type), intent(in) :: x logical :: res res = .false. end function s_base_is_dev ! !> Function base_is_host !! \memberof psb_s_base_vect_type !! \brief Is vector on standard memory . !! ! function s_base_is_host(x) result(res) implicit none class(psb_s_base_vect_type), intent(in) :: x logical :: res res = .true. end function s_base_is_host ! !> Function base_is_sync !! \memberof psb_s_base_vect_type !! \brief Is vector on sync . !! ! function s_base_is_sync(x) result(res) implicit none class(psb_s_base_vect_type), intent(in) :: x logical :: res res = .true. end function s_base_is_sync ! ! Size info. ! ! !> Function base_get_nrows !! \memberof psb_s_base_vect_type !! \brief Number of entries !! ! function s_base_get_nrows(x) result(res) implicit none class(psb_s_base_vect_type), intent(in) :: x integer(psb_ipk_) :: res res = 0 if (allocated(x%v)) res = size(x%v) end function s_base_get_nrows ! !> Function base_get_sizeof !! \memberof psb_s_base_vect_type !! \brief Size in bytes !! ! function s_base_sizeof(x) result(res) implicit none class(psb_s_base_vect_type), intent(in) :: x integer(psb_long_int_k_) :: res ! Force 8-byte integers. res = (1_psb_long_int_k_ * psb_sizeof_sp) * x%get_nrows() end function s_base_sizeof ! !> Function base_get_fmt !! \memberof psb_s_base_vect_type !! \brief Format !! ! function s_base_get_fmt() result(res) implicit none character(len=5) :: res res = 'BASE' end function s_base_get_fmt ! ! ! !> Function base_get_vect !! \memberof psb_s_base_vect_type !! \brief Extract a copy of the contents !! ! function s_base_get_vect(x) result(res) class(psb_s_base_vect_type), intent(inout) :: x real(psb_spk_), allocatable :: res(:) integer(psb_ipk_) :: info if (.not.allocated(x%v)) return if (.not.x%is_host()) call x%sync() allocate(res(x%get_nrows()),stat=info) if (info /= 0) then call psb_errpush(psb_err_alloc_dealloc_,'base_get_vect') return end if res(:) = x%v(:) end function s_base_get_vect ! ! Reset all values ! ! !> Function base_set_scal !! \memberof psb_s_base_vect_type !! \brief Set all entries !! \param val The value to set !! subroutine s_base_set_scal(x,val,first,last) class(psb_s_base_vect_type), intent(inout) :: x real(psb_spk_), intent(in) :: val integer(psb_ipk_), optional :: first, last integer(psb_ipk_) :: info, first_, last_ first_=1 last_=size(x%v) if (present(first)) first_ = max(1,first) if (present(last)) last_ = min(last,last_) if (x%is_dev()) call x%sync() x%v(first_:last_) = val call x%set_host() end subroutine s_base_set_scal ! !> Function base_set_vect !! \memberof psb_s_base_vect_type !! \brief Set all entries !! \param val(:) The vector to be copied in !! subroutine s_base_set_vect(x,val,first,last) class(psb_s_base_vect_type), intent(inout) :: x real(psb_spk_), intent(in) :: val(:) integer(psb_ipk_), optional :: first, last integer(psb_ipk_) :: info, first_, last_, nr first_=1 last_=min(psb_size(x%v),size(val)) if (present(first)) first_ = max(1,first) if (present(last)) last_ = min(last,last_) if (allocated(x%v)) then if (x%is_dev()) call x%sync() x%v(first_:last_) = val(1:last_-first_+1) else x%v = val end if call x%set_host() end subroutine s_base_set_vect ! ! Overwrite with absolute value ! ! !> Function base_absval1 !! \memberof psb_s_base_vect_type !! \brief Set all entries to their respective absolute values. !! subroutine s_base_absval1(x) class(psb_s_base_vect_type), intent(inout) :: x if (allocated(x%v)) then if (x%is_dev()) call x%sync() x%v = abs(x%v) call x%set_host() end if end subroutine s_base_absval1 subroutine s_base_absval2(x,y) class(psb_s_base_vect_type), intent(inout) :: x class(psb_s_base_vect_type), intent(inout) :: y if (.not.x%is_host()) call x%sync() if (allocated(x%v)) then call y%axpby(min(x%get_nrows(),y%get_nrows()),sone,x,szero,info) call y%absval() end if end subroutine s_base_absval2 ! ! Dot products ! ! !> Function base_dot_v !! \memberof psb_s_base_vect_type !! \brief Dot product by another base_vector !! \param n Number of entries to be considered !! \param y The other (base_vect) to be multiplied by !! function s_base_dot_v(n,x,y) result(res) implicit none class(psb_s_base_vect_type), intent(inout) :: x, y integer(psb_ipk_), intent(in) :: n real(psb_spk_) :: res real(psb_spk_), external :: sdot res = szero ! ! Note: this is the base implementation. ! When we get here, we are sure that X is of ! TYPE psb_s_base_vect. ! If Y is not, throw the burden on it, implicitly ! calling dot_a ! select type(yy => y) type is (psb_s_base_vect_type) res = sdot(n,x%v,1,y%v,1) class default res = y%dot(n,x%v) end select end function s_base_dot_v ! ! Base workhorse is good old BLAS1 ! ! !> Function base_dot_a !! \memberof psb_s_base_vect_type !! \brief Dot product by a normal array !! \param n Number of entries to be considered !! \param y(:) The array to be multiplied by !! function s_base_dot_a(n,x,y) result(res) implicit none class(psb_s_base_vect_type), intent(inout) :: x real(psb_spk_), intent(in) :: y(:) integer(psb_ipk_), intent(in) :: n real(psb_spk_) :: res real(psb_spk_), external :: sdot res = sdot(n,y,1,x%v,1) end function s_base_dot_a ! ! AXPBY is invoked via Y, hence the structure below. ! ! ! !> Function base_axpby_v !! \memberof psb_s_base_vect_type !! \brief AXPBY by a (base_vect) y=alpha*x+beta*y !! \param m Number of entries to be considered !! \param alpha scalar alpha !! \param x The class(base_vect) to be added !! \param beta scalar alpha !! \param info return code !! subroutine s_base_axpby_v(m,alpha, x, beta, y, info) use psi_serial_mod implicit none integer(psb_ipk_), intent(in) :: m class(psb_s_base_vect_type), intent(inout) :: x class(psb_s_base_vect_type), intent(inout) :: y real(psb_spk_), intent (in) :: alpha, beta integer(psb_ipk_), intent(out) :: info if (x%is_dev()) call x%sync() call y%axpby(m,alpha,x%v,beta,info) end subroutine s_base_axpby_v ! ! AXPBY is invoked via Y, hence the structure below. ! ! !> Function base_axpby_a !! \memberof psb_s_base_vect_type !! \brief AXPBY by a normal array y=alpha*x+beta*y !! \param m Number of entries to be considered !! \param alpha scalar alpha !! \param x(:) The array to be added !! \param beta scalar alpha !! \param info return code !! subroutine s_base_axpby_a(m,alpha, x, beta, y, info) use psi_serial_mod implicit none integer(psb_ipk_), intent(in) :: m real(psb_spk_), intent(in) :: x(:) class(psb_s_base_vect_type), intent(inout) :: y real(psb_spk_), intent (in) :: alpha, beta integer(psb_ipk_), intent(out) :: info if (y%is_dev()) call y%sync() call psb_geaxpby(m,alpha,x,beta,y%v,info) call y%set_host() end subroutine s_base_axpby_a ! ! Multiple variants of two operations: ! Simple multiplication Y(:) = X(:)*Y(:) ! blas-like: Z(:) = alpha*X(:)*Y(:)+beta*Z(:) ! ! Variants expanded according to the dynamic type ! of the involved entities ! ! !> Function base_mlt_a !! \memberof psb_s_base_vect_type !! \brief Vector entry-by-entry multiply by a base_vect array y=x*y !! \param x The class(base_vect) to be multiplied by !! \param info return code !! subroutine s_base_mlt_v(x, y, info) use psi_serial_mod implicit none class(psb_s_base_vect_type), intent(inout) :: x class(psb_s_base_vect_type), intent(inout) :: y integer(psb_ipk_), intent(out) :: info integer(psb_ipk_) :: i, n info = 0 if (x%is_dev()) call x%sync() call y%mlt(x%v,info) end subroutine s_base_mlt_v ! !> Function base_mlt_a !! \memberof psb_s_base_vect_type !! \brief Vector entry-by-entry multiply by a normal array y=x*y !! \param x(:) The array to be multiplied by !! \param info return code !! subroutine s_base_mlt_a(x, y, info) use psi_serial_mod implicit none real(psb_spk_), intent(in) :: x(:) class(psb_s_base_vect_type), intent(inout) :: y integer(psb_ipk_), intent(out) :: info integer(psb_ipk_) :: i, n info = 0 if (y%is_dev()) call y%sync() n = min(size(y%v), size(x)) do i=1, n y%v(i) = y%v(i)*x(i) end do call y%set_host() end subroutine s_base_mlt_a ! !> Function base_mlt_a_2 !! \memberof psb_s_base_vect_type !! \brief AXPBY-like Vector entry-by-entry multiply by normal arrays !! z=beta*z+alpha*x*y !! \param alpha !! \param beta !! \param x(:) The array to be multiplied b !! \param y(:) The array to be multiplied by !! \param info return code !! subroutine s_base_mlt_a_2(alpha,x,y,beta,z,info) use psi_serial_mod implicit none real(psb_spk_), intent(in) :: alpha,beta real(psb_spk_), intent(in) :: y(:) real(psb_spk_), intent(in) :: x(:) class(psb_s_base_vect_type), intent(inout) :: z integer(psb_ipk_), intent(out) :: info integer(psb_ipk_) :: i, n info = 0 if (z%is_dev()) call z%sync() n = min(size(z%v), size(x), size(y)) !!$ write(0,*) 'Mlt_a_2: ',n if (alpha == szero) then if (beta == sone) then return else do i=1, n z%v(i) = beta*z%v(i) end do end if else if (alpha == sone) then if (beta == szero) then do i=1, n z%v(i) = y(i)*x(i) end do else if (beta == sone) then do i=1, n z%v(i) = z%v(i) + y(i)*x(i) end do else do i=1, n z%v(i) = beta*z%v(i) + y(i)*x(i) end do end if else if (alpha == -sone) then if (beta == szero) then do i=1, n z%v(i) = -y(i)*x(i) end do else if (beta == sone) then do i=1, n z%v(i) = z%v(i) - y(i)*x(i) end do else do i=1, n z%v(i) = beta*z%v(i) - y(i)*x(i) end do end if else if (beta == szero) then do i=1, n z%v(i) = alpha*y(i)*x(i) end do else if (beta == sone) then do i=1, n z%v(i) = z%v(i) + alpha*y(i)*x(i) end do else do i=1, n z%v(i) = beta*z%v(i) + alpha*y(i)*x(i) end do end if end if end if call z%set_host() end subroutine s_base_mlt_a_2 ! !> Function base_mlt_v_2 !! \memberof psb_s_base_vect_type !! \brief AXPBY-like Vector entry-by-entry multiply by class(base_vect) !! z=beta*z+alpha*x*y !! \param alpha !! \param beta !! \param x The class(base_vect) to be multiplied b !! \param y The class(base_vect) to be multiplied by !! \param info return code !! subroutine s_base_mlt_v_2(alpha,x,y,beta,z,info,conjgx,conjgy) use psi_serial_mod use psb_string_mod implicit none real(psb_spk_), intent(in) :: alpha,beta class(psb_s_base_vect_type), intent(inout) :: x class(psb_s_base_vect_type), intent(inout) :: y class(psb_s_base_vect_type), intent(inout) :: z integer(psb_ipk_), intent(out) :: info character(len=1), intent(in), optional :: conjgx, conjgy integer(psb_ipk_) :: i, n logical :: conjgx_, conjgy_ info = 0 if (y%is_dev()) call y%sync() if (x%is_dev()) call x%sync() if (.not.psb_s_is_complex_) then call z%mlt(alpha,x%v,y%v,beta,info) else conjgx_=.false. if (present(conjgx)) conjgx_ = (psb_toupper(conjgx)=='C') conjgy_=.false. if (present(conjgy)) conjgy_ = (psb_toupper(conjgy)=='C') if (conjgx_) x%v=(x%v) if (conjgy_) y%v=(y%v) call z%mlt(alpha,x%v,y%v,beta,info) if (conjgx_) x%v=(x%v) if (conjgy_) y%v=(y%v) end if end subroutine s_base_mlt_v_2 subroutine s_base_mlt_av(alpha,x,y,beta,z,info) use psi_serial_mod implicit none real(psb_spk_), intent(in) :: alpha,beta real(psb_spk_), intent(in) :: x(:) class(psb_s_base_vect_type), intent(inout) :: y class(psb_s_base_vect_type), intent(inout) :: z integer(psb_ipk_), intent(out) :: info integer(psb_ipk_) :: i, n info = 0 if (y%is_dev()) call y%sync() call z%mlt(alpha,x,y%v,beta,info) end subroutine s_base_mlt_av subroutine s_base_mlt_va(alpha,x,y,beta,z,info) use psi_serial_mod implicit none real(psb_spk_), intent(in) :: alpha,beta real(psb_spk_), intent(in) :: y(:) class(psb_s_base_vect_type), intent(inout) :: x class(psb_s_base_vect_type), intent(inout) :: z integer(psb_ipk_), intent(out) :: info integer(psb_ipk_) :: i, n info = 0 if (x%is_dev()) call x%sync() call z%mlt(alpha,y,x,beta,info) end subroutine s_base_mlt_va ! ! Simple scaling ! !> Function base_scal !! \memberof psb_s_base_vect_type !! \brief Scale all entries x = alpha*x !! \param alpha The multiplier !! subroutine s_base_scal(alpha, x) use psi_serial_mod implicit none class(psb_s_base_vect_type), intent(inout) :: x real(psb_spk_), intent (in) :: alpha if (allocated(x%v)) then x%v = alpha*x%v call x%set_host() end if end subroutine s_base_scal ! ! Norms 1, 2 and infinity ! !> Function base_nrm2 !! \memberof psb_s_base_vect_type !! \brief 2-norm |x(1:n)|_2 !! \param n how many entries to consider function s_base_nrm2(n,x) result(res) implicit none class(psb_s_base_vect_type), intent(inout) :: x integer(psb_ipk_), intent(in) :: n real(psb_spk_) :: res real(psb_spk_), external :: snrm2 if (x%is_dev()) call x%sync() res = snrm2(n,x%v,1) end function s_base_nrm2 ! !> Function base_amax !! \memberof psb_s_base_vect_type !! \brief infinity-norm |x(1:n)|_\infty !! \param n how many entries to consider function s_base_amax(n,x) result(res) implicit none class(psb_s_base_vect_type), intent(inout) :: x integer(psb_ipk_), intent(in) :: n real(psb_spk_) :: res if (x%is_dev()) call x%sync() res = maxval(abs(x%v(1:n))) end function s_base_amax ! !> Function base_asum !! \memberof psb_s_base_vect_type !! \brief 1-norm |x(1:n)|_1 !! \param n how many entries to consider function s_base_asum(n,x) result(res) implicit none class(psb_s_base_vect_type), intent(inout) :: x integer(psb_ipk_), intent(in) :: n real(psb_spk_) :: res if (x%is_dev()) call x%sync() res = sum(abs(x%v(1:n))) end function s_base_asum ! ! Gather: Y = beta * Y + alpha * X(IDX(:)) ! ! !> Function base_gthab !! \memberof psb_s_base_vect_type !! \brief gather into an array !! Y = beta * Y + alpha * X(IDX(:)) !! \param n how many entries to consider !! \param idx(:) indices !! \param alpha !! \param beta subroutine s_base_gthab(n,idx,alpha,x,beta,y) use psi_serial_mod integer(psb_ipk_) :: n, idx(:) real(psb_spk_) :: alpha, beta, y(:) class(psb_s_base_vect_type) :: x if (x%is_dev()) call x%sync() call psi_gth(n,idx,alpha,x%v,beta,y) end subroutine s_base_gthab ! ! shortcut alpha=1 beta=0 ! !> Function base_gthzv !! \memberof psb_s_base_vect_type !! \brief gather into an array special alpha=1 beta=0 !! Y = X(IDX(:)) !! \param n how many entries to consider !! \param idx(:) indices subroutine s_base_gthzv_x(i,n,idx,x,y) use psi_serial_mod integer(psb_ipk_) :: i,n class(psb_i_base_vect_type) :: idx real(psb_spk_) :: y(:) class(psb_s_base_vect_type) :: x if (idx%is_dev()) call idx%sync() call x%gth(n,idx%v(i:),y) end subroutine s_base_gthzv_x ! ! New comm internals impl. ! subroutine s_base_gthzbuf(i,n,idx,x) use psi_serial_mod integer(psb_ipk_) :: i,n class(psb_i_base_vect_type) :: idx class(psb_s_base_vect_type) :: x if (.not.allocated(x%combuf)) then call psb_errpush(psb_err_alloc_dealloc_,'gthzbuf') return end if if (idx%is_dev()) call idx%sync() if (x%is_dev()) call x%sync() call x%gth(n,idx%v(i:),x%combuf(i:)) end subroutine s_base_gthzbuf subroutine s_base_sctb_buf(i,n,idx,beta,y) use psi_serial_mod integer(psb_ipk_) :: i, n class(psb_i_base_vect_type) :: idx real(psb_spk_) :: beta class(psb_s_base_vect_type) :: y if (.not.allocated(y%combuf)) then call psb_errpush(psb_err_alloc_dealloc_,'sctb_buf') return end if if (y%is_dev()) call y%sync() if (idx%is_dev()) call idx%sync() call y%sct(n,idx%v(i:),y%combuf(i:),beta) call y%set_host() end subroutine s_base_sctb_buf ! !> Function base_device_wait: !! \memberof psb_s_base_vect_type !! \brief device_wait: base version is a no-op. !! ! subroutine s_base_device_wait() implicit none end subroutine s_base_device_wait function s_base_use_buffer() result(res) logical :: res res = .true. end function s_base_use_buffer subroutine s_base_new_buffer(n,x,info) use psb_realloc_mod implicit none class(psb_s_base_vect_type), intent(inout) :: x integer(psb_ipk_), intent(in) :: n integer(psb_ipk_), intent(out) :: info call psb_realloc(n,x%combuf,info) end subroutine s_base_new_buffer subroutine s_base_new_comid(n,x,info) use psb_realloc_mod implicit none class(psb_s_base_vect_type), intent(inout) :: x integer(psb_ipk_), intent(in) :: n integer(psb_ipk_), intent(out) :: info call psb_realloc(n,2,x%comid,info) end subroutine s_base_new_comid subroutine s_base_free_buffer(x,info) use psb_realloc_mod implicit none class(psb_s_base_vect_type), intent(inout) :: x integer(psb_ipk_), intent(out) :: info if (allocated(x%combuf)) & & deallocate(x%combuf,stat=info) end subroutine s_base_free_buffer subroutine s_base_free_comid(x,info) use psb_realloc_mod implicit none class(psb_s_base_vect_type), intent(inout) :: x integer(psb_ipk_), intent(out) :: info if (allocated(x%comid)) & & deallocate(x%comid,stat=info) end subroutine s_base_free_comid ! ! shortcut alpha=1 beta=0 ! !> Function base_gthzv !! \memberof psb_s_base_vect_type !! \brief gather into an array special alpha=1 beta=0 !! Y = X(IDX(:)) !! \param n how many entries to consider !! \param idx(:) indices subroutine s_base_gthzv(n,idx,x,y) use psi_serial_mod integer(psb_ipk_) :: n, idx(:) real(psb_spk_) :: y(:) class(psb_s_base_vect_type) :: x if (x%is_dev()) call x%sync() call psi_gth(n,idx,x%v,y) end subroutine s_base_gthzv ! ! Scatter: ! Y(IDX(:)) = beta*Y(IDX(:)) + X(:) ! ! !> Function base_sctb !! \memberof psb_s_base_vect_type !! \brief scatter into a class(base_vect) !! Y(IDX(:)) = beta * Y(IDX(:)) + X(:) !! \param n how many entries to consider !! \param idx(:) indices !! \param beta !! \param x(:) subroutine s_base_sctb(n,idx,x,beta,y) use psi_serial_mod integer(psb_ipk_) :: n, idx(:) real(psb_spk_) :: beta, x(:) class(psb_s_base_vect_type) :: y if (y%is_dev()) call y%sync() call psi_sct(n,idx,x,beta,y%v) call y%set_host() end subroutine s_base_sctb subroutine s_base_sctb_x(i,n,idx,x,beta,y) use psi_serial_mod integer(psb_ipk_) :: i, n class(psb_i_base_vect_type) :: idx real(psb_spk_) :: beta, x(:) class(psb_s_base_vect_type) :: y if (idx%is_dev()) call idx%sync() call y%sct(n,idx%v(i:),x,beta) call y%set_host() end subroutine s_base_sctb_x end module psb_s_base_vect_mod module psb_s_base_multivect_mod use psb_const_mod use psb_error_mod use psb_realloc_mod use psb_s_base_vect_mod !> \namespace psb_base_mod \class psb_s_base_vect_type !! The psb_s_base_vect_type !! defines a middle level integer(psb_ipk_) encapsulated dense vector. !! The encapsulation is needed, in place of a simple array, to allow !! for complicated situations, such as GPU programming, where the memory !! area we are interested in is not easily accessible from the host/Fortran !! side. It is also meant to be encapsulated in an outer type, to allow !! runtime switching as per the STATE design pattern, similar to the !! sparse matrix types. !! private public :: psb_s_base_multivect, psb_s_base_multivect_type type psb_s_base_multivect_type !> Values. real(psb_spk_), allocatable :: v(:,:) contains ! ! Constructors/allocators ! procedure, pass(x) :: bld_x => s_base_mlv_bld_x procedure, pass(x) :: bld_n => s_base_mlv_bld_n generic, public :: bld => bld_x, bld_n procedure, pass(x) :: all => s_base_mlv_all procedure, pass(x) :: mold => s_base_mlv_mold ! ! Insert/set. Assembly and free. ! Assembly does almost nothing here, but is important ! in derived classes. ! procedure, pass(x) :: ins => s_base_mlv_ins procedure, pass(x) :: zero => s_base_mlv_zero procedure, pass(x) :: asb => s_base_mlv_asb procedure, pass(x) :: free => s_base_mlv_free ! ! Sync: centerpiece of handling of external storage. ! Any derived class having extra storage upon sync ! will guarantee that both fortran/host side and ! external side contain the same data. The base ! version is only a placeholder. ! procedure, pass(x) :: sync => s_base_mlv_sync procedure, pass(x) :: is_host => s_base_mlv_is_host procedure, pass(x) :: is_dev => s_base_mlv_is_dev procedure, pass(x) :: is_sync => s_base_mlv_is_sync procedure, pass(x) :: set_host => s_base_mlv_set_host procedure, pass(x) :: set_dev => s_base_mlv_set_dev procedure, pass(x) :: set_sync => s_base_mlv_set_sync ! ! Basic info procedure, pass(x) :: get_nrows => s_base_mlv_get_nrows procedure, pass(x) :: get_ncols => s_base_mlv_get_ncols procedure, pass(x) :: sizeof => s_base_mlv_sizeof procedure, nopass :: get_fmt => s_base_mlv_get_fmt ! ! Set/get data from/to an external array; also ! overload assignment. ! procedure, pass(x) :: get_vect => s_base_mlv_get_vect procedure, pass(x) :: set_scal => s_base_mlv_set_scal procedure, pass(x) :: set_vect => s_base_mlv_set_vect generic, public :: set => set_vect, set_scal ! ! Dot product and AXPBY ! procedure, pass(x) :: dot_v => s_base_mlv_dot_v procedure, pass(x) :: dot_a => s_base_mlv_dot_a generic, public :: dot => dot_v, dot_a procedure, pass(y) :: axpby_v => s_base_mlv_axpby_v procedure, pass(y) :: axpby_a => s_base_mlv_axpby_a generic, public :: axpby => axpby_v, axpby_a !!$ ! !!$ ! Vector by vector multiplication. Need all variants !!$ ! to handle multiple requirements from preconditioners !!$ ! !!$ procedure, pass(y) :: mlt_v => s_base_mlv_mlt_v !!$ procedure, pass(y) :: mlt_a => s_base_mlv_mlt_a !!$ procedure, pass(z) :: mlt_a_2 => s_base_mlv_mlt_a_2 !!$ procedure, pass(z) :: mlt_v_2 => s_base_mlv_mlt_v_2 !!$ procedure, pass(z) :: mlt_va => s_base_mlv_mlt_va !!$ procedure, pass(z) :: mlt_av => s_base_mlv_mlt_av !!$ generic, public :: mlt => mlt_v, mlt_a, mlt_a_2, mlt_v_2, mlt_av, mlt_va !!$ ! !!$ ! Scaling and norms !!$ ! procedure, pass(x) :: scal => s_base_mlv_scal procedure, pass(x) :: nrm2 => s_base_mlv_nrm2 procedure, pass(x) :: amax => s_base_mlv_amax procedure, pass(x) :: asum => s_base_mlv_asum procedure, pass(x) :: absval1 => s_base_mlv_absval1 procedure, pass(x) :: absval2 => s_base_mlv_absval2 generic, public :: absval => absval1, absval2 !!$ ! !!$ ! Gather/scatter. These are needed for MPI interfacing. !!$ ! May have to be reworked. !!$ ! procedure, pass(x) :: gthab => s_base_mlv_gthab procedure, pass(x) :: gthzv => s_base_mlv_gthzv procedure, pass(x) :: gthzv_x => s_base_mlv_gthzv_x generic, public :: gth => gthab, gthzv, gthzv_x !!$ procedure, pass(y) :: sctb => s_base_mlv_sctb !!$ procedure, pass(y) :: sctb_x => s_base_mlv_sctb_x !!$ generic, public :: sct => sctb, sctb_x end type psb_s_base_multivect_type interface psb_s_base_multivect module procedure constructor, size_const end interface contains ! ! Constructors. ! !> Function constructor: !! \brief Constructor from an array !! \param x(:) input array to be copied !! function constructor(x) result(this) real(psb_spk_) :: x(:,:) type(psb_s_base_multivect_type) :: this integer(psb_ipk_) :: info this%v = x call this%asb(size(x,dim=1,kind=psb_ipk_),size(x,dim=2,kind=psb_ipk_),info) end function constructor !> Function constructor: !! \brief Constructor from size !! \param n Size of vector to be built. !! function size_const(m,n) result(this) integer(psb_ipk_), intent(in) :: m,n type(psb_s_base_multivect_type) :: this integer(psb_ipk_) :: info call this%asb(m,n,info) end function size_const ! ! Build from a sample ! !> Function bld_x: !! \memberof psb_s_base_multivect_type !! \brief Build method from an array !! \param x(:) input array to be copied !! subroutine s_base_mlv_bld_x(x,this) use psb_realloc_mod real(psb_spk_), intent(in) :: this(:,:) class(psb_s_base_multivect_type), intent(inout) :: x integer(psb_ipk_) :: info call psb_realloc(size(this,1),size(this,2),x%v,info) if (info /= 0) then call psb_errpush(psb_err_alloc_dealloc_,'base_mlv_vect_bld') return end if x%v(:,:) = this(:,:) end subroutine s_base_mlv_bld_x ! ! Create with size, but no initialization ! !> Function bld_n: !! \memberof psb_s_base_multivect_type !! \brief Build method with size (uninitialized data) !! \param n size to be allocated. !! subroutine s_base_mlv_bld_n(x,m,n) use psb_realloc_mod integer(psb_ipk_), intent(in) :: m,n class(psb_s_base_multivect_type), intent(inout) :: x integer(psb_ipk_) :: info call psb_realloc(m,n,x%v,info) call x%asb(m,n,info) end subroutine s_base_mlv_bld_n !> Function base_mlv_all: !! \memberof psb_s_base_multivect_type !! \brief Build method with size (uninitialized data) and !! allocation return code. !! \param n size to be allocated. !! \param info return code !! subroutine s_base_mlv_all(m,n, x, info) use psi_serial_mod use psb_realloc_mod implicit none integer(psb_ipk_), intent(in) :: m,n class(psb_s_base_multivect_type), intent(out) :: x integer(psb_ipk_), intent(out) :: info call psb_realloc(m,n,x%v,info) end subroutine s_base_mlv_all !> Function base_mlv_mold: !! \memberof psb_s_base_multivect_type !! \brief Mold method: return a variable with the same dynamic type !! \param y returned variable !! \param info return code !! subroutine s_base_mlv_mold(x, y, info) use psi_serial_mod use psb_realloc_mod implicit none class(psb_s_base_multivect_type), intent(in) :: x class(psb_s_base_multivect_type), intent(out), allocatable :: y integer(psb_ipk_), intent(out) :: info allocate(psb_s_base_multivect_type :: y, stat=info) end subroutine s_base_mlv_mold ! ! Insert a bunch of values at specified positions. ! !> Function base_mlv_ins: !! \memberof psb_s_base_multivect_type !! \brief Insert coefficients. !! !! !! Given a list of N pairs !! (IRL(i),VAL(i)) !! record a new coefficient in X such that !! X(IRL(1:N)) = VAL(1:N). !! !! - the update operation will perform either !! X(IRL(1:n)) = VAL(1:N) !! or !! X(IRL(1:n)) = X(IRL(1:n))+VAL(1:N) !! according to the value of DUPLICATE. !! !! !! \param n number of pairs in input !! \param irl(:) the input row indices !! \param val(:) the input coefficients !! \param dupl how to treat duplicate entries !! \param info return code !! ! subroutine s_base_mlv_ins(n,irl,val,dupl,x,info) use psi_serial_mod implicit none class(psb_s_base_multivect_type), intent(inout) :: x integer(psb_ipk_), intent(in) :: n, dupl integer(psb_ipk_), intent(in) :: irl(:) real(psb_spk_), intent(in) :: val(:,:) integer(psb_ipk_), intent(out) :: info integer(psb_ipk_) :: i, isz info = 0 if (psb_errstatus_fatal()) return if (.not.allocated(x%v)) then info = psb_err_invalid_vect_state_ else if (n > min(size(irl),size(val))) then info = psb_err_invalid_input_ else isz = size(x%v,1) select case(dupl) case(psb_dupl_ovwrt_) do i = 1, n !loop over all val's rows ! row actual block row if ((1 <= irl(i)).and.(irl(i) <= isz)) then ! this row belongs to me ! copy i-th row of block val in x x%v(irl(i),:) = val(i,:) end if enddo case(psb_dupl_add_) do i = 1, n !loop over all val's rows if ((1 <= irl(i)).and.(irl(i) <= isz)) then ! this row belongs to me ! copy i-th row of block val in x x%v(irl(i),:) = x%v(irl(i),:) + val(i,:) end if enddo case default info = 321 ! !$ call psb_errpush(info,name) ! !$ goto 9999 end select end if if (info /= 0) then call psb_errpush(info,'base_mlv_vect_ins') return end if end subroutine s_base_mlv_ins ! !> Function base_mlv_zero !! \memberof psb_s_base_multivect_type !! \brief Zero out contents !! ! subroutine s_base_mlv_zero(x) use psi_serial_mod implicit none class(psb_s_base_multivect_type), intent(inout) :: x if (allocated(x%v)) x%v=szero end subroutine s_base_mlv_zero ! ! Assembly. ! For derived classes: after this the vector ! storage is supposed to be in sync. ! !> Function base_mlv_asb: !! \memberof psb_s_base_multivect_type !! \brief Assemble vector: reallocate as necessary. !! !! \param n final size !! \param info return code !! ! subroutine s_base_mlv_asb(m,n, x, info) use psi_serial_mod use psb_realloc_mod implicit none integer(psb_ipk_), intent(in) :: m,n class(psb_s_base_multivect_type), intent(inout) :: x integer(psb_ipk_), intent(out) :: info if ((x%get_nrows() < m).or.(x%get_ncols() Function base_mlv_free: !! \memberof psb_s_base_multivect_type !! \brief Free vector !! !! \param info return code !! ! subroutine s_base_mlv_free(x, info) use psi_serial_mod use psb_realloc_mod implicit none class(psb_s_base_multivect_type), intent(inout) :: x integer(psb_ipk_), intent(out) :: info info = 0 if (allocated(x%v)) deallocate(x%v, stat=info) if (info /= 0) call & & psb_errpush(psb_err_alloc_dealloc_,'vect_free') end subroutine s_base_mlv_free ! ! The base version of SYNC & friends does nothing, it's just ! a placeholder. ! ! !> Function base_mlv_sync: !! \memberof psb_s_base_multivect_type !! \brief Sync: base version is a no-op. !! ! subroutine s_base_mlv_sync(x) implicit none class(psb_s_base_multivect_type), intent(inout) :: x end subroutine s_base_mlv_sync ! !> Function base_mlv_set_host: !! \memberof psb_s_base_multivect_type !! \brief Set_host: base version is a no-op. !! ! subroutine s_base_mlv_set_host(x) implicit none class(psb_s_base_multivect_type), intent(inout) :: x end subroutine s_base_mlv_set_host ! !> Function base_mlv_set_dev: !! \memberof psb_s_base_multivect_type !! \brief Set_dev: base version is a no-op. !! ! subroutine s_base_mlv_set_dev(x) implicit none class(psb_s_base_multivect_type), intent(inout) :: x end subroutine s_base_mlv_set_dev ! !> Function base_mlv_set_sync: !! \memberof psb_s_base_multivect_type !! \brief Set_sync: base version is a no-op. !! ! subroutine s_base_mlv_set_sync(x) implicit none class(psb_s_base_multivect_type), intent(inout) :: x end subroutine s_base_mlv_set_sync ! !> Function base_mlv_is_dev: !! \memberof psb_s_base_multivect_type !! \brief Is vector on external device . !! ! function s_base_mlv_is_dev(x) result(res) implicit none class(psb_s_base_multivect_type), intent(in) :: x logical :: res res = .false. end function s_base_mlv_is_dev ! !> Function base_mlv_is_host !! \memberof psb_s_base_multivect_type !! \brief Is vector on standard memory . !! ! function s_base_mlv_is_host(x) result(res) implicit none class(psb_s_base_multivect_type), intent(in) :: x logical :: res res = .true. end function s_base_mlv_is_host ! !> Function base_mlv_is_sync !! \memberof psb_s_base_multivect_type !! \brief Is vector on sync . !! ! function s_base_mlv_is_sync(x) result(res) implicit none class(psb_s_base_multivect_type), intent(in) :: x logical :: res res = .true. end function s_base_mlv_is_sync ! ! Size info. ! ! !> Function base_mlv_get_nrows !! \memberof psb_s_base_multivect_type !! \brief Number of entries !! ! function s_base_mlv_get_nrows(x) result(res) implicit none class(psb_s_base_multivect_type), intent(in) :: x integer(psb_ipk_) :: res res = 0 if (allocated(x%v)) res = size(x%v,1) end function s_base_mlv_get_nrows function s_base_mlv_get_ncols(x) result(res) implicit none class(psb_s_base_multivect_type), intent(in) :: x integer(psb_ipk_) :: res res = 0 if (allocated(x%v)) res = size(x%v,2) end function s_base_mlv_get_ncols ! !> Function base_mlv_get_sizeof !! \memberof psb_s_base_multivect_type !! \brief Size in bytesa !! ! function s_base_mlv_sizeof(x) result(res) implicit none class(psb_s_base_multivect_type), intent(in) :: x integer(psb_long_int_k_) :: res ! Force 8-byte integers. res = (1_psb_long_int_k_ * psb_sizeof_int) * x%get_nrows() * x%get_ncols() end function s_base_mlv_sizeof ! !> Function base_mlv_get_fmt !! \memberof psb_s_base_multivect_type !! \brief Format !! ! function s_base_mlv_get_fmt() result(res) implicit none character(len=5) :: res res = 'BASE' end function s_base_mlv_get_fmt ! ! ! !> Function base_mlv_get_vect !! \memberof psb_s_base_multivect_type !! \brief Extract a copy of the contents !! ! function s_base_mlv_get_vect(x) result(res) class(psb_s_base_multivect_type), intent(inout) :: x real(psb_spk_), allocatable :: res(:,:) integer(psb_ipk_) :: info,m,n m = x%get_nrows() n = x%get_ncols() if (.not.allocated(x%v)) return call x%sync() allocate(res(m,n),stat=info) if (info /= 0) then call psb_errpush(psb_err_alloc_dealloc_,'base_mlv_get_vect') return end if res(1:m,1:n) = x%v(1:m,1:n) end function s_base_mlv_get_vect ! ! Reset all values ! ! !> Function base_mlv_set_scal !! \memberof psb_s_base_multivect_type !! \brief Set all entries !! \param val The value to set !! subroutine s_base_mlv_set_scal(x,val) class(psb_s_base_multivect_type), intent(inout) :: x real(psb_spk_), intent(in) :: val integer(psb_ipk_) :: info x%v = val end subroutine s_base_mlv_set_scal ! !> Function base_mlv_set_vect !! \memberof psb_s_base_multivect_type !! \brief Set all entries !! \param val(:) The vector to be copied in !! subroutine s_base_mlv_set_vect(x,val) class(psb_s_base_multivect_type), intent(inout) :: x real(psb_spk_), intent(in) :: val(:,:) integer(psb_ipk_) :: nr integer(psb_ipk_) :: info if (allocated(x%v)) then nr = min(size(x%v,1),size(val,1)) nc = min(size(x%v,2),size(val,2)) x%v(1:nr,1:nc) = val(1:nr,1:nc) else x%v = val end if end subroutine s_base_mlv_set_vect ! ! Dot products ! ! !> Function base_mlv_dot_v !! \memberof psb_s_base_multivect_type !! \brief Dot product by another base_mlv_vector !! \param n Number of entries to be considered !! \param y The other (base_mlv_vect) to be multiplied by !! function s_base_mlv_dot_v(n,x,y) result(res) implicit none class(psb_s_base_multivect_type), intent(inout) :: x, y integer(psb_ipk_), intent(in) :: n real(psb_spk_), allocatable :: res(:) real(psb_spk_), external :: sdot integer(psb_ipk_) :: j,nc if (x%is_dev()) call x%sync() res = szero ! ! Note: this is the base implementation. ! When we get here, we are sure that X is of ! TYPE psb_s_base_mlv_vect (or its class does not care). ! If Y is not, throw the burden on it, implicitly ! calling dot_a ! select type(yy => y) type is (psb_s_base_multivect_type) if (y%is_dev()) call y%sync() nc = min(psb_size(x%v,2),psb_size(y%v,2)) allocate(res(nc)) do j=1,nc res(j) = sdot(n,x%v(:,j),1,y%v(:,j),1) end do class default res = y%dot(n,x%v) end select end function s_base_mlv_dot_v ! ! Base workhorse is good old BLAS1 ! ! !> Function base_mlv_dot_a !! \memberof psb_s_base_multivect_type !! \brief Dot product by a normal array !! \param n Number of entries to be considered !! \param y(:) The array to be multiplied by !! function s_base_mlv_dot_a(n,x,y) result(res) implicit none class(psb_s_base_multivect_type), intent(inout) :: x real(psb_spk_), intent(in) :: y(:,:) integer(psb_ipk_), intent(in) :: n real(psb_spk_), allocatable :: res(:) integer(psb_ipk_), external :: sdot integer(psb_ipk_) :: j,nc if (x%is_dev()) call x%sync() nc = min(psb_size(x%v,2),size(y,2)) allocate(res(nc)) do j=1,nc res(j) = sdot(n,x%v(:,j),1,y(:,j),1) end do end function s_base_mlv_dot_a ! ! AXPBY is invoked via Y, hence the structure below. ! ! ! !> Function base_mlv_axpby_v !! \memberof psb_s_base_multivect_type !! \brief AXPBY by a (base_mlv_vect) y=alpha*x+beta*y !! \param m Number of entries to be considered !! \param alpha scalar alpha !! \param x The class(base_mlv_vect) to be added !! \param beta scalar alpha !! \param info return code !! subroutine s_base_mlv_axpby_v(m,alpha, x, beta, y, info, n) use psi_serial_mod implicit none integer(psb_ipk_), intent(in) :: m class(psb_s_base_multivect_type), intent(inout) :: x class(psb_s_base_multivect_type), intent(inout) :: y real(psb_spk_), intent (in) :: alpha, beta integer(psb_ipk_), intent(out) :: info integer(psb_ipk_), intent(in), optional :: n integer(psb_ipk_) :: nc if (present(n)) then nc = n else nc = min(psb_size(x%v,2),psb_size(y%v,2)) end if select type(xx => x) type is (psb_s_base_multivect_type) call psb_geaxpby(m,nc,alpha,x%v,beta,y%v,info) class default call y%axpby(m,alpha,x%v,beta,info,n=n) end select end subroutine s_base_mlv_axpby_v ! ! AXPBY is invoked via Y, hence the structure below. ! ! !> Function base_mlv_axpby_a !! \memberof psb_s_base_multivect_type !! \brief AXPBY by a normal array y=alpha*x+beta*y !! \param m Number of entries to be considered !! \param alpha scalar alpha !! \param x(:) The array to be added !! \param beta scalar alpha !! \param info return code !! subroutine s_base_mlv_axpby_a(m,alpha, x, beta, y, info,n) use psi_serial_mod implicit none integer(psb_ipk_), intent(in) :: m real(psb_spk_), intent(in) :: x(:,:) class(psb_s_base_multivect_type), intent(inout) :: y real(psb_spk_), intent (in) :: alpha, beta integer(psb_ipk_), intent(out) :: info integer(psb_ipk_), intent(in), optional :: n integer(psb_ipk_) :: nc if (present(n)) then nc = n else nc = min(size(x,2),psb_size(y%v,2)) end if call psb_geaxpby(m,nc,alpha,x,beta,y%v,info) end subroutine s_base_mlv_axpby_a !!$ ! !!$ ! Multiple variants of two operations: !!$ ! Simple multiplication Y(:) = X(:)*Y(:) !!$ ! blas-like: Z(:) = alpha*X(:)*Y(:)+beta*Z(:) !!$ ! !!$ ! Variants expanded according to the dynamic type !!$ ! of the involved entities !!$ ! !!$ ! !!$ !> Function base_mlv_mlt_a !!$ !! \memberof psb_s_base_multivect_type !!$ !! \brief Vector entry-by-entry multiply by a base_mlv_vect array y=x*y !!$ !! \param x The class(base_mlv_vect) to be multiplied by !!$ !! \param info return code !!$ !! !!$ subroutine s_base_mlv_mlt_v(x, y, info) !!$ use psi_serial_mod !!$ implicit none !!$ class(psb_s_base_multivect_type), intent(inout) :: x !!$ class(psb_s_base_multivect_type), intent(inout) :: y !!$ integer(psb_ipk_), intent(out) :: info !!$ integer(psb_ipk_) :: i, n !!$ !!$ info = 0 !!$ select type(xx => x) !!$ type is (psb_s_base_multivect_type) !!$ n = min(size(y%v), size(xx%v)) !!$ do i=1, n !!$ y%v(i) = y%v(i)*xx%v(i) !!$ end do !!$ class default !!$ call y%mlt(x%v,info) !!$ end select !!$ !!$ end subroutine s_base_mlv_mlt_v !!$ !!$ ! !!$ !> Function base_mlv_mlt_a !!$ !! \memberof psb_s_base_multivect_type !!$ !! \brief Vector entry-by-entry multiply by a normal array y=x*y !!$ !! \param x(:) The array to be multiplied by !!$ !! \param info return code !!$ !! !!$ subroutine s_base_mlv_mlt_a(x, y, info) !!$ use psi_serial_mod !!$ implicit none !!$ real(psb_spk_), intent(in) :: x(:) !!$ class(psb_s_base_multivect_type), intent(inout) :: y !!$ integer(psb_ipk_), intent(out) :: info !!$ integer(psb_ipk_) :: i, n !!$ !!$ info = 0 !!$ n = min(size(y%v), size(x)) !!$ do i=1, n !!$ y%v(i) = y%v(i)*x(i) !!$ end do !!$ !!$ end subroutine s_base_mlv_mlt_a !!$ !!$ !!$ ! !!$ !> Function base_mlv_mlt_a_2 !!$ !! \memberof psb_s_base_multivect_type !!$ !! \brief AXPBY-like Vector entry-by-entry multiply by normal arrays !!$ !! z=beta*z+alpha*x*y !!$ !! \param alpha !!$ !! \param beta !!$ !! \param x(:) The array to be multiplied b !!$ !! \param y(:) The array to be multiplied by !!$ !! \param info return code !!$ !! !!$ subroutine s_base_mlv_mlt_a_2(alpha,x,y,beta,z,info) !!$ use psi_serial_mod !!$ implicit none !!$ real(psb_spk_), intent(in) :: alpha,beta !!$ real(psb_spk_), intent(in) :: y(:) !!$ real(psb_spk_), intent(in) :: x(:) !!$ class(psb_s_base_multivect_type), intent(inout) :: z !!$ integer(psb_ipk_), intent(out) :: info !!$ integer(psb_ipk_) :: i, n !!$ !!$ info = 0 !!$ n = min(size(z%v), size(x), size(y)) !!$ if (alpha == izero) then !!$ if (beta == ione) then !!$ return !!$ else !!$ do i=1, n !!$ z%v(i) = beta*z%v(i) !!$ end do !!$ end if !!$ else !!$ if (alpha == ione) then !!$ if (beta == izero) then !!$ do i=1, n !!$ z%v(i) = y(i)*x(i) !!$ end do !!$ else if (beta == ione) then !!$ do i=1, n !!$ z%v(i) = z%v(i) + y(i)*x(i) !!$ end do !!$ else !!$ do i=1, n !!$ z%v(i) = beta*z%v(i) + y(i)*x(i) !!$ end do !!$ end if !!$ else if (alpha == -ione) then !!$ if (beta == izero) then !!$ do i=1, n !!$ z%v(i) = -y(i)*x(i) !!$ end do !!$ else if (beta == ione) then !!$ do i=1, n !!$ z%v(i) = z%v(i) - y(i)*x(i) !!$ end do !!$ else !!$ do i=1, n !!$ z%v(i) = beta*z%v(i) - y(i)*x(i) !!$ end do !!$ end if !!$ else !!$ if (beta == izero) then !!$ do i=1, n !!$ z%v(i) = alpha*y(i)*x(i) !!$ end do !!$ else if (beta == ione) then !!$ do i=1, n !!$ z%v(i) = z%v(i) + alpha*y(i)*x(i) !!$ end do !!$ else !!$ do i=1, n !!$ z%v(i) = beta*z%v(i) + alpha*y(i)*x(i) !!$ end do !!$ end if !!$ end if !!$ end if !!$ end subroutine s_base_mlv_mlt_a_2 !!$ !!$ ! !!$ !> Function base_mlv_mlt_v_2 !!$ !! \memberof psb_s_base_multivect_type !!$ !! \brief AXPBY-like Vector entry-by-entry multiply by class(base_mlv_vect) !!$ !! z=beta*z+alpha*x*y !!$ !! \param alpha !!$ !! \param beta !!$ !! \param x The class(base_mlv_vect) to be multiplied b !!$ !! \param y The class(base_mlv_vect) to be multiplied by !!$ !! \param info return code !!$ !! !!$ subroutine s_base_mlv_mlt_v_2(alpha,x,y,beta,z,info,conjgx,conjgy) !!$ use psi_serial_mod !!$ use psb_string_mod !!$ implicit none !!$ real(psb_spk_), intent(in) :: alpha,beta !!$ class(psb_s_base_multivect_type), intent(inout) :: x !!$ class(psb_s_base_multivect_type), intent(inout) :: y !!$ class(psb_s_base_multivect_type), intent(inout) :: z !!$ integer(psb_ipk_), intent(out) :: info !!$ character(len=1), intent(in), optional :: conjgx, conjgy !!$ integer(psb_ipk_) :: i, n !!$ logical :: conjgx_, conjgy_ !!$ !!$ info = 0 !!$ if (.not.psb_i_is_complex_) then !!$ call z%mlt(alpha,x%v,y%v,beta,info) !!$ else !!$ conjgx_=.false. !!$ if (present(conjgx)) conjgx_ = (psb_toupper(conjgx)=='C') !!$ conjgy_=.false. !!$ if (present(conjgy)) conjgy_ = (psb_toupper(conjgy)=='C') !!$ if (conjgx_) x%v=(x%v) !!$ if (conjgy_) y%v=(y%v) !!$ call z%mlt(alpha,x%v,y%v,beta,info) !!$ if (conjgx_) x%v=(x%v) !!$ if (conjgy_) y%v=(y%v) !!$ end if !!$ end subroutine s_base_mlv_mlt_v_2 !!$ !!$ subroutine s_base_mlv_mlt_av(alpha,x,y,beta,z,info) !!$ use psi_serial_mod !!$ implicit none !!$ real(psb_spk_), intent(in) :: alpha,beta !!$ real(psb_spk_), intent(in) :: x(:) !!$ class(psb_s_base_multivect_type), intent(inout) :: y !!$ class(psb_s_base_multivect_type), intent(inout) :: z !!$ integer(psb_ipk_), intent(out) :: info !!$ integer(psb_ipk_) :: i, n !!$ !!$ info = 0 !!$ !!$ call z%mlt(alpha,x,y%v,beta,info) !!$ !!$ end subroutine s_base_mlv_mlt_av !!$ !!$ subroutine s_base_mlv_mlt_va(alpha,x,y,beta,z,info) !!$ use psi_serial_mod !!$ implicit none !!$ real(psb_spk_), intent(in) :: alpha,beta !!$ real(psb_spk_), intent(in) :: y(:) !!$ class(psb_s_base_multivect_type), intent(inout) :: x !!$ class(psb_s_base_multivect_type), intent(inout) :: z !!$ integer(psb_ipk_), intent(out) :: info !!$ integer(psb_ipk_) :: i, n !!$ !!$ info = 0 !!$ !!$ call z%mlt(alpha,y,x,beta,info) !!$ !!$ end subroutine s_base_mlv_mlt_va !!$ !!$ ! ! Simple scaling ! !> Function base_mlv_scal !! \memberof psb_s_base_multivect_type !! \brief Scale all entries x = alpha*x !! \param alpha The multiplier !! subroutine s_base_mlv_scal(alpha, x) use psi_serial_mod implicit none class(psb_s_base_multivect_type), intent(inout) :: x real(psb_spk_), intent (in) :: alpha if (x%is_dev()) call x%sync() if (allocated(x%v)) x%v = alpha*x%v end subroutine s_base_mlv_scal ! ! Norms 1, 2 and infinity ! !> Function base_mlv_nrm2 !! \memberof psb_s_base_multivect_type !! \brief 2-norm |x(1:n)|_2 !! \param n how many entries to consider function s_base_mlv_nrm2(n,x) result(res) implicit none class(psb_s_base_multivect_type), intent(inout) :: x integer(psb_ipk_), intent(in) :: n real(psb_spk_), allocatable :: res(:) integer(psb_ipk_), external :: snrm2 integer(psb_ipk_) :: j, nc if (x%is_dev()) call x%sync() nc = psb_size(x%v,2) allocate(res(nc)) do j=1,nc res(j) = snrm2(n,x%v(:,j),1) end do end function s_base_mlv_nrm2 ! !> Function base_mlv_amax !! \memberof psb_s_base_multivect_type !! \brief infinity-norm |x(1:n)|_\infty !! \param n how many entries to consider function s_base_mlv_amax(n,x) result(res) implicit none class(psb_s_base_multivect_type), intent(inout) :: x integer(psb_ipk_), intent(in) :: n real(psb_spk_), allocatable :: res(:) integer(psb_ipk_) :: j, nc if (x%is_dev()) call x%sync() nc = psb_size(x%v,2) allocate(res(nc)) do j=1,nc res(j) = maxval(abs(x%v(1:n,j))) end do end function s_base_mlv_amax ! !> Function base_mlv_asum !! \memberof psb_s_base_multivect_type !! \brief 1-norm |x(1:n)|_1 !! \param n how many entries to consider function s_base_mlv_asum(n,x) result(res) implicit none class(psb_s_base_multivect_type), intent(inout) :: x integer(psb_ipk_), intent(in) :: n real(psb_spk_), allocatable :: res(:) integer(psb_ipk_) :: j, nc if (x%is_dev()) call x%sync() nc = psb_size(x%v,2) allocate(res(nc)) do j=1,nc res(j) = sum(abs(x%v(1:n,j))) end do end function s_base_mlv_asum ! ! Overwrite with absolute value ! ! !> Function base_absval1 !! \memberof psb_s_base_vect_type !! \brief Set all entries to their respective absolute values. !! subroutine s_base_mlv_absval1(x) class(psb_s_base_multivect_type), intent(inout) :: x if (allocated(x%v)) then if (x%is_dev()) call x%sync() x%v = abs(x%v) call x%set_host() end if end subroutine s_base_mlv_absval1 subroutine s_base_mlv_absval2(x,y) class(psb_s_base_multivect_type), intent(inout) :: x class(psb_s_base_multivect_type), intent(inout) :: y if (.not.x%is_host()) call x%sync() if (allocated(x%v)) then call y%axpby(min(x%get_nrows(),y%get_nrows()),sone,x,szero,info) call y%absval() end if end subroutine s_base_mlv_absval2 ! ! Gather: Y = beta * Y + alpha * X(IDX(:)) ! ! !> Function base_mlv_gthab !! \memberof psb_s_base_multivect_type !! \brief gather into an array !! Y = beta * Y + alpha * X(IDX(:)) !! \param n how many entries to consider !! \param idx(:) indices !! \param alpha !! \param beta subroutine s_base_mlv_gthab(n,idx,alpha,x,beta,y) use psi_serial_mod integer(psb_ipk_) :: n, idx(:) real(psb_spk_) :: alpha, beta, y(:) class(psb_s_base_multivect_type) :: x integer(psb_ipk_) :: nc call x%sync() if (.not.allocated(x%v)) then return end if nc = psb_size(x%v,2) call psi_gth(n,nc,idx,alpha,x%v,beta,y) end subroutine s_base_mlv_gthab ! ! shortcut alpha=1 beta=0 ! !> Function base_mlv_gthzv !! \memberof psb_s_base_multivect_type !! \brief gather into an array special alpha=1 beta=0 !! Y = X(IDX(:)) !! \param n how many entries to consider !! \param idx(:) indices subroutine s_base_mlv_gthzv_x(i,n,idx,x,y) use psi_serial_mod integer(psb_ipk_) :: i,n class(psb_i_base_vect_type) :: idx real(psb_spk_) :: y(:) class(psb_s_base_multivect_type) :: x call x%sync() call x%gth(n,idx%v(i:),y) end subroutine s_base_mlv_gthzv_x ! ! shortcut alpha=1 beta=0 ! !> Function base_mlv_gthzv !! \memberof psb_s_base_multivect_type !! \brief gather into an array special alpha=1 beta=0 !! Y = X(IDX(:)) !! \param n how many entries to consider !! \param idx(:) indices subroutine s_base_mlv_gthzv(n,idx,x,y) use psi_serial_mod integer(psb_ipk_) :: n, idx(:) real(psb_spk_) :: y(:) class(psb_s_base_multivect_type) :: x integer(psb_ipk_) :: nc call x%sync() if (.not.allocated(x%v)) then return end if nc = psb_size(x%v,2) call psi_gth(n,nc,idx,x%v,y) end subroutine s_base_mlv_gthzv !!$ ! !!$ ! Scatter: !!$ ! Y(IDX(:)) = beta*Y(IDX(:)) + X(:) !!$ ! !!$ ! !!$ !> Function base_mlv_sctb !!$ !! \memberof psb_s_base_multivect_type !!$ !! \brief scatter into a class(base_mlv_vect) !!$ !! Y(IDX(:)) = beta * Y(IDX(:)) + X(:) !!$ !! \param n how many entries to consider !!$ !! \param idx(:) indices !!$ !! \param beta !!$ !! \param x(:) !!$ subroutine s_base_mlv_sctb(n,idx,x,beta,y) !!$ use psi_serial_mod !!$ integer(psb_ipk_) :: n, idx(:) !!$ real(psb_spk_) :: beta, x(:) !!$ class(psb_s_base_multivect_type) :: y !!$ !!$ call y%sync() !!$ call psi_sct(n,idx,x,beta,y%v) !!$ call y%set_host() !!$ !!$ end subroutine s_base_mlv_sctb !!$ !!$ subroutine s_base_mlv_sctb_x(i,n,idx,x,beta,y) !!$ use psi_serial_mod !!$ integer(psb_ipk_) :: i, n !!$ class(psb_s_base_multivect_type) :: idx !!$ real( psb_spk_) :: beta, x(:) !!$ class(psb_s_base_multivect_type) :: y !!$ !!$ call y%sct(n,idx%v(i:),x,beta) !!$ !!$ end subroutine s_base_mlv_sctb_x end module psb_s_base_multivect_mod