
PSBLAS-2.1 User’s guide

A reference guide for the Parallel Sparse BLAS library

by Salvatore Filippone

and Alfredo Buttari

“Tor Vergata” University of Rome. January 26, 2007

Contents

1 Introduction 1

2 General overview 2
2.1 Basic Nomenclature . 3
2.2 Library contents . 5
2.3 Application structure . 6
2.4 Programming model . 8

3 Data Structures 9
3.1 Descriptor data structure . 9

3.1.1 Named Constants . 10
3.2 Sparse Matrix data structure . 11

3.2.1 Named Constants . 12
3.3 Preconditioner data structure . 13
3.4 Data structure query routines . 13

psb cd get local rows . 13
psb cd get local cols . 14
psb cd get global rows . 14
psb cd get contex . 15
psb sp get nrows . 15
psb sp get ncols . 15
psb sp get nnzeros . 16

4 Computational routines 17
psb geaxpby . 18
psb gedot . 20
psb gedots . 22
psb geamax . 24
psb geamaxs . 25
psb geasum . 26
psb geasums . 27
psb genrm2 . 28
psb genrm2s . 29
psb spnrmi . 30
psb spmm . 31
psb spsm . 33

5 Communication routines 36
psb halo . 37
psb ovrl . 40
psb gather . 44
psb scatter . 46

6 Data management routines 48
psb cdall . 49
psb cdins . 52
psb cdasb . 53
psb cdcpy . 54

i

psb cdfree . 55
psb cdbldext . 56
psb spall . 57
psb spins . 58
psb spasb . 60
psb spfree . 62
psb sprn . 63
psb geall . 64
psb geins . 65
psb geasb . 67
psb gefree . 68
psb gelp . 69
psb glob to loc . 70
psb loc to glob . 72
psb get boundary . 73
psb get overlap . 74

7 Parallel environment routines 75
psb init . 76
psb info . 77
psb exit . 78
psb get mpicomm . 79
psb get rank . 80
psb wtime . 81
psb barrier . 82
psb abort . 83
psb bcast . 84
psb sum . 85
psb amx . 86
psb amn . 87
psb snd . 88
psb rcv . 89

8 Error handling 90
psb errpush . 92
psb error . 93
psb set errverbosity . 94
psb set erraction . 95
psb errcomm . 96

9 Utilities 97

10 Preconditioner routines 98
psb precset . 99
psb precbld . 100
psb precaply . 101
psb prec descr . 102

11 Iterative Methods 103
psb krylov . 104

ii

1 Introduction

The PSBLAS library, developed with the aim to facilitate the parallelization of
computationally intensive scientific applications, is designed to address parallel
implementation of iterative solvers for sparse linear systems through the dis-
tributed memory paradigm. It includes routines for multiplying sparse matrices
by dense matrices, solving block diagonal systems with triangular diagonal en-
tries, preprocessing sparse matrices, and contains additional routines for dense
matrix operations. The current implementation of PSBLAS addresses a dis-
tributed memory execution model operating with message passing.

The PSBLAS library is internally implemented in a mixture of Fortran 77
and Fortran 95 [21] programming languages. A similar approach has been advo-
cated by a number of authors, e.g. [20]. Moreover, the Fortran 95 facilities for
dynamic memory management and interface overloading greatly enhance the
usability of the PSBLAS subroutines. In this way, the library can take care
of runtime memory requirements that are quite difficult or even impossible to
predict at implementation or compilation time. In the current release we rely
on the availability of the so-called allocatable extensions, specified in TR 15581.
Strictly speaking they are outside the Fortran 95 standard; however they have
been included in the Fortran 2003 language standard, and are available in prc-
tically all Fortran 95 compilers on the market, including the GCC compiler
from the Free Software Foundation (as of version 4.2). The presentation of the
PSBLAS library follows the general structure of the proposal for serial Sparse
BLAS [15, 16], which in its turn is based on the proposal for BLAS on dense
matrices [1, 2, 3].

The applicability of sparse iterative solvers to many different areas causes
some terminology problems because the same concept may be denoted through
different names depending on the application area. The PSBLAS features pre-
sented in this document will be discussed referring to a finite difference dis-
cretization of a Partial Differential Equation (PDE). However, the scope of the
library is wider than that: for example, it can be applied to finite element dis-
cretizations of PDEs, and even to different classes of problems such as nonlinear
optimization, for example in optimal control problems.

The design of a solver for sparse linear systems is driven by many con-
flicting objectives, such as limiting occupation of storage resources, exploiting
regularities in the input data, exploiting hardware characteristics of the par-
allel platform. To achieve an optimal communication to computation ratio on
distributed memory machines it is essential to keep the data locality as high as
possible; this can be done through an appropriate data allocation strategy. The
choice of the preconditioner is another very important factor that affects effi-
ciency of the implemented application. Optimal data distribution requirements
for a given preconditioner may conflict with distribution requirements of the rest
of the solver. Finding the optimal trade-off may be very difficult because it is
application dependent. Possible solution to these problems and other important
inputs to the development of the PSBLAS software package has come from an
established experience in applying the PSBLAS solvers to computational fluid
dynamics applications.

1

2 General overview

The PSBLAS library is designed to handle the implementation of iterative
solvers for sparse linear systems on distributed memory parallel computers.
The system coefficient matrix A must be square; it may be real or complex,
nonsymmetric, and its sparsity pattern needs not to be symmetric. The serial
computation parts are based on the serial sparse BLAS, so that any extension
made to the data structures of the serial kernels is available to the parallel ver-
sion. The overall design and parallelization strategy have been influenced by
the structure of the ScaLAPACK parallel library. The layered structure of the
PSBLAS library is shown in figure 1 ; lower layers of the library indicate an
encapsulation relationship with upper layers. The ongoing discussion focuses
on the Fortran 95 layer immediately below the application layer. The serial
parts of the computation on each process are executed through calls to the
serial sparse BLAS subroutines. In a similar way, the inter-process message
exchanges are implemented through the Basic Linear Algebra Communication
Subroutines (BLACS) library [14] that guarantees a portable and efficient com-
munication layer. The Message Passing Interface code is encapsulated within
the BLACS layer. However, in some cases, MPI routines are directly used ei-
ther to improve efficiency or to implement communication patterns for which
the BLACS package doesn’t provide any method.

In any case we provide wrappers around the BLACS routines so that the
user does not need to delve into their details (see Sec. 7).

The type of linear system matrices that we address typically arise in the
numerical solution of PDEs; in such a context, it is necessary to pay special
attention to the structure of the problem from which the application originates.
The nonzero pattern of a matrix arising from the discretization of a PDE is in-
fluenced by various factors, such as the shape of the domain, the discretization
strategy, and the equation/unknown ordering. The matrix itself can be inter-
preted as the adjacency matrix of the graph associated with the discretization
mesh.

The distribution of the coefficient matrix for the linear system is based on the
“owner computes” rule: the variable associated to each mesh point is assigned to
a process that will own the corresponding row in the coefficient matrix and will
carry out all related computations. This allocation strategy is equivalent to a
partition of the discretization mesh into sub-domains. Our library supports any
distribution that keeps together the coefficients of each matrix row; there are no
other constraints on the variable assignment. This choice is consistent with data
distributions commonly used in ScaLAPACK such as CYCLIC(N) and BLOCK, as
well as completely arbitrary assignments of equation indices to processes. In
particular it is consistent with the usage of graph partitioning tools commonly
available in the literature, e.g. METIS [19]. Dense vectors conform to sparse
matrices, that is, the entries of a vector follow the same distribution of the
matrix rows.

We assume that the sparse matrix is built in parallel, where each process
generates its own portion. We never require that the entire matrix be available
on a single node. However, it is possible to hold the entire matrix in one process
and distribute it explicitly1, even though the resulting bottleneck would make

1In our prototype implementation we provide sample scatter/gather routines.

2

Serial Sparse
BLAS

Fortran90 Interface

Fortran77 Interface

Application

F90_PSBLAS

BLACSPSBLAS

Message Passing
MPI, PVM, ...

Figure 1: PSBLAS library components hierarchy.

this option unattractive in most cases.

2.1 Basic Nomenclature

Our computational model implies that the data allocation on the parallel dis-
tributed memory machine is guided by the structure of the physical model, and
specifically by the discretization mesh of the PDE.

Each point of the discretization mesh will have (at least) one associated
equation/variable, and therefore one index. We say that point i depends on
point j if the equation for a variable associated with i contains a term in j,
or equivalently if aij 6= 0. After the partition of the discretization mesh into
sub-domains assigned to the parallel processes, we classify the points of a given
sub-domain as following.

Internal. An internal point of a given domain depends only on points of the
same domain. If all points of a domain are assigned to one process, then a

3

computational step (e.g., a matrix-vector product) of the equations asso-
ciated with the internal points requires no data items from other domains
and no communications.

Boundary. A point of a given domain is a boundary point if it depends on
points belonging to other domains.

Halo. A halo point for a given domain is a point belonging to another domain
such that there is a boundary point which depends on it. Whenever per-
forming a computational step, such as a matrix-vector product, the values
associated with halo points are requested from other domains. A bound-
ary point of a given domain is a halo point for (at least) another domain;
therefore the cardinality of the boundary points set denotes the amount
of data sent to other domains.

Overlap. An overlap point is a boundary point assigned to multiple domains.
Any operation that involves an overlap point has to be replicated for each
assignment.

Overlap points do not usually exist in the basic data distribution, but they are
a feature of Domain Decomposition Schwarz preconditioners which we are in
the process of including in our distribution [6, 11].

We denote the sets of internal, boundary and halo points for a given subdo-
main by I, B and H. Each subdomain is assigned to one process; each process
usually owns one subdomain, although the user may choose to assign more than
one subdomain to a process. If each process i owns one subdomain, the number
of rows in the local sparse matrix is |Ii|+ |Bi|, and the number of local columns
(i.e. those for which there exists at least one non-zero entry in the local rows)
is |Ii|+ |Bi|+ |Hi|.

Internal

Boundary

Halo

Domain 2

Domain 1

Figure 2: Point classfication.

This classification of mesh points guides the naming scheme that we adopted
in the library internals and in the data structures. We explicitly note that
“Halo” points are also often called “ghost” points in the literature.

4

2.2 Library contents

The PSBLAS library consists of various classes of subroutines:

Computational routines comprising:

• Sparse matrix by dense matrix product;
• Sparse triangular systems solution for block diagonal matrices;
• Vector and matrix norms;
• Dense matrix sums;
• Dot products.

Communication routines handling halo and overlap communications;

Data management and auxiliary routines including:

• Parallel environment management
• Communication descriptors allocation;
• Dense and sparse matrix allocation;
• Dense and sparse matrix build and update;
• Sparse matrix and data distribution preprocessing.

Preconditioner routines

Iterative methods a subset of Krylov subspace iterative methods

The following naming scheme has been adopted for all the symbols internally
defined in the PSBLAS software package:

• all the symbols (i.e. subroutine names, data types...) are prefixed by psb_

• all the data type names are suffixed by _type

• all the constant values are suffixed by _

• all the subroutine names follow the rule psb_xxname where xx can be
either:

– ge: the routine is related to dense data,
– sp: the routine is related to sparse data,
– cd: the routine is related to communication descriptor (see 3).

For example the psb_geins, psb_spins and psb_cdins perform the same
action (see 6) on dense matrices, sparse matrices and communication de-
scriptors respectively. Interface overloading allows the usage of the same
subroutine interfaces for both real and complex data.

In the description of the subroutines, arguments or argument entries are classi-
fied as:

global For input arguments, the value must be the same on all processes partici-
pating in the subroutine call; for output arguments the value is guaranteed
to be the same.

local Each process has its own value(s) independently.

5

2.3 Application structure

The main underlying principle of the PSBLAS library is that the library objects
are created and exist with reference to a discretized space to which there corre-
sponds an index space and a matrix sparsity pattern. As an example, consider
a cell-centered finite-volume discretization of the Navier-Stokes equations on a
simulation domain; the index space 1 . . . n is isomorphic to the set of cell cen-
ters, whereas the pattern of the associated linear system matrix is isomorphic
to the adjacency graph imposed on the discretization mesh by the discretization
stencil.

Thus the first order of business is to establish an index space, and this is
done with a call to psb_cdall in which we specify the size of the index space
n and the allocation of the elements of the index space to the various processes
making up the MPI (virtual) parallel machine.

The index space is partitioned among processes, and this creates a mapping
from the “global” numbering 1 . . . n to a numbering “local” to each process; each
process i will own a certain subset 1 . . . nrowi

, each element of which corresponds
to a certain element of 1 . . . n. The user does not set explicitly this mapping;
when the application needs to indicate to which element of the index space a
certain item is related, such as the row and column index of a matrix coefficient,
it does so in the “global” numbering, and the library will translate into the
appropriate “local” numbering.

For a given index space 1 . . . n there are many possible associated topologies,
i.e. many different discretization stencils; thus the description of the index space
is not completed until the user has defined a sparsity pattern, either explicitly
through psb_cdins or implicitly through psb_spins. The descriptor is finalized
with a call to psb_cdasb and a sparse matrix with a call to psb_spasb. After
psb_cdasb each process i will have defined a set of “halo” (or “ghost”) indices
nrowi

+ 1 . . . ncoli , denoting elements of the index space that are not assigned
to process i; however the variables associated with them are needed to complete
computations associated with the sparse matrix A, and thus they have to be
fetched from (neighbouring) processes. The descriptor of the index space is
built exactly for the purpose of properly sequencing the communication steps
required to achieve this objective.

A simple application structure will walk through the index space allocation,
matrix/vector creation and linear system solution as follows:

1. Initialize parallel environment with psb_init

2. Initialize index space with psb_cdall

3. Allocate sparse matrix and dense vectors with psb_spall and psb_geall

4. Loop over all local rows, generate matrix and vector entries, and insert
them with psb_spins and psb_geins

5. Assemble the various entities:

(a) psb_cdasb

(b) psb_spasb

(c) psb_geasb

6

6. Choose the preconditioner to be used with psb_precset and build it with
psb_precbld

7. Call the iterative method of choice, e.g. psb_bicgstab

This is the structure of the sample program test/pargen/ppde90.f90.
For a simulation in which the same discretization mesh is used over multiple

time steps, the following structure may be more appropriate:

1. Initialize parallel environment with psb_init

2. Initialize index space with psb_cdall

3. Loop over the topology of the discretization mesh and build the descriptor
with psb_cdins

4. Assemble the descriptor with psb_cdasb

5. Allocate the sparse matrices and dense vectors with psb_spall and psb_geall

6. Loop over the time steps:

(a) If after first time step, reinitialize the sparse matrix with psb_sprn;
also zero out the dense vectors;

(b) Loop over the mesh, generate the coefficients and insert/update them
with psb_spins and psb_geins

(c) Assemble with psb_spasb and psb_geasb

(d) Choose and build preconditioner with psb_precset and psb_precbld

(e) Call the iterative method of choice, e.g. psb_bicgstab

The insertion routines will be called as many times as needed; they only need
to be called on the data that is actually allocated to the current process, i.e.
each process generates its own data.

In principle there is no specific order in the calls to psb_spins, nor is there
a requirement to build a matrix row in its entirety before calling the routine;
this allows the application programmer to walk through the discretization mesh
element by element, generating the main part of a given matrix row but also
contributions to the rows corresponding to neighbouring elements.

From a functional point of view it is even possible to execute one call for
each nonzero coefficient; however this would have a substantial computational
overhead. It is therefore advisable to pack a certain amount of data into each call
to the insertion routine, say touching on a few tens of rows; the best performng
value would depend on both the architecture of the computer being used and
on the problem structure. At the opposite extreme, it would be possible to
generate the entire part of a coefficient matrix residing on a process and pass it
in a single call to psb_spins; this, however, would entail a doubling of memory
occupation, and thus would be almost always far from optimal.

7

2.4 Programming model

The PSBLAS librarary is based on the Single Program Multiple Data (SPMD)
programming model: each process participating in the computation performs
the same actions on a chunk of data. Parallelism is thus data-driven.

Because of this structure, practically all subroutines must be called simul-
taneously by all processes participating in the computation, i.e each subroutine
call acts implicitly as a synchronization point. The exceptions to this rule are:

• The insertion routines psb_cdins, psb_spins and psb_geins;

• The error handling routines.

In particular, as per the discussion in the previous section, the insertion routines
may be called a different number of times on each process, depending on the
data distribution chosen by the user.

8

3 Data Structures

In this chapter we illustrate the data structures used for definition of routines
interfaces. They include data structures for sparse matrices, communication
descriptors and preconditioners.

All the data types and subroutine interfaces are defined in the module
psb_base_mod; this will have to be included by every user subroutine that makes
use of the library.

3.1 Descriptor data structure

All the general matrix informations and elements to be exchanged among pro-
cesses are stored within a data structure of the type psb desc type. Every
structure of this type is associated to a sparse matrix, it contains data about
general matrix informations and elements to be exchanged among processes.

It is not necessary for the user to know the internal structure of psb_desc_type,
it is set in a transparent mode by the tools routines of Sec. 6, and its fields may
be accessed if necessary via the routines of sec. 3.4; nevertheless we include a
description for the curious reader:

matrix data includes general information about matrix and process grid, such
as the communication context, the size of the global matrix, the size of
the portion of matrix stored on the current process, and so on. Specified
as: an allocatable integer array of dimension psb_mdata_size_.

halo index A list of the halo and boundary elements for the current process
to be exchanged with other processes; for each processes with which it is
necessary to communicate:

1. Process identifier;

2. Number of points to be received;

3. Indices of points to be received;

4. Number of points to be sent;

5. Indices of points to be sent;

The list may contain an arbitrary number of groups; its end is marked by
a -1.
Specified as: an allocatable integer array of rank one.

ovrlap index A list of the overlap elements for the current process, organized
in groups like the previous vector:

1. Process identifier;

2. Number of points to be received;

3. Indices of points to be received;

4. Number of points to be sent;

5. Indices of points to be sent;

The list may contain an arbitrary number of groups; its end is marked by
a -1.
Specified as: an allocatable integer array of rank one.

9

ovrlap index For all overlap points belonging to th ecurrent process:

1. Overlap point index;

2. Number of processes sharing that overlap points;

The list may contain an arbitrary number of groups; its end is marked by
a -1.
Specified as: an allocatable integer array of rank one.

loc to glob each element i of this array contains global identifier of the local
variable i.
Specified as: an allocatable integer array of rank one.

glob to loc, glb lc, hashv Contain a mapping from global to local indices.
The mapping may be stored in two different ways depending on the size
of the index space.

The Fortran95 definition for psb_desc_type structures is as follows:

type psb_desc_type
integer, allocatable :: matrix_data(:), halo_index(:), ext_index(:)
integer, allocatable :: overlap_elem(:), overlap_index(:)
integer, allocatable :: loc_to_glob(:), glob_to_loc(:)
integer, allocatable :: hashv(:), glb_lc(:,:)

end type psb_desc_type

Figure 3: The PSBLAS defined data type that contains the communication
descriptor.

A communication descriptor associated with a sparse matrix has a state,
which can take the following values:

Build: State entered after the first allocation, and before the first assembly; in
this state it is possible to add communication requirements among different
processes.

Assembled: State entered after the assembly; computations using the associ-
ated sparse matrix, such as matrix-vector products, are only possible in
this state.

3.1.1 Named Constants

psb none Generic no-op;

psb nohalo Do not fetch halo elements;

psb halo Fetch halo elements from neighbouring processes;

psb sum Sum overlapped elements

psb avg Average overlapped elements

10

3.2 Sparse Matrix data structure

The psb spmat type data structure contains all information about local portion
of the sparse matrix and its storage mode. Most of these fields are set by the
tools routines when inserting a new sparse matrix; the user needs only choose,
if he/she so whishes, a specific matrix storage mode.

aspk Contains values of the local distributed sparse matrix.
Specified as: an allocatable array of rank one of type corresponding to
matrix entries type.

ia1 Holds integer information on distributed sparse matrix. Actual information
will depend on data format used.
Specified as: an allocatable integer array of rank one.

ia2 Holds integer information on distributed sparse matrix. Actual information
will depend on data format used.
Specified as: an allocatable integer array of rank one.

infoa On entry can hold auxiliary information on distributed sparse matrix.
Actual information will depend on data format used.
Specified as: an integer array of length psb_ifasize_.

fida Defines the format of the distributed sparse matrix.
Specified as: a string of length 5

descra Describe the characteristic of the distributed sparse matrix.
Specified as: array of character of length 9.

pl Specifies the local row permutation of distributed sparse matrix. If pl(1) is
equal to 0, then there isn’t row permutation.
Specified as: an allocatable integer array of dimension equal to number of
local row (matrix data[psb n row])

pr Specifies the local column permutation of distributed sparse matrix. If
PR(1) is equal to 0, then there isn’t columnm permutation.
Specified as: an allocatable integer array of dimension equal to number of
local row (matrix data[psb n col])

m Number of rows; if row indices are stored explicitly, as in Coordinate Storage,
should be greater than or equal to the maximum row index actually present
in the sparse matrix. Specified as: integer variable.

k Number of columns; if column indices are stored explicitly, as in Coordinate
Storage or Compressed Sparse Rows, should be greater than or equal to the
maximum column index actually present in the sparse matrix. Specified
as: integer variable.

FORTRAN95 interface for distributed sparse matrices containing double preci-
sion real entries is defined as in figure 4.

The following two cases are among the most commonly used:

fida=“CSR” Compressed storage by rows. In this case the following should
hold:

11

type psb_dspmat_type
integer :: m, k
character :: fida(5)
character :: descra(10)
integer :: infoa(psb_ifa_size_)
real(kind(1.d0)), allocatable :: aspk(:)
integer, allocatable :: ia1(:), ia2(:)
integer, allocatable :: pr(:), pl(:)

end type psb_dspmat_type

Figure 4: The PSBLAS defined data type that contains a sparse matrix.

1. ia2(i) contains the index of the first element of row i; the last
element of the sparse matrix is thus stored at index ia2(m+1)−1. It
should contain m+1 entries in nondecreasing order (strictly increasing,
if there are no empty rows).

2. ia1(j) contains the column index and aspk(j) contains the corre-
sponding coefficient value, for all ia2(1) ≤ j ≤ ia2(m + 1)− 1.

fida=“COO” Coordinate storage. In this case the following should hold:

1. infoa(1) contains the number of nonzero elements in the matrix;

2. For all 1 ≤ j ≤ infoa(1), the coefficient, row index and column index
are stored into apsk(j), ia1(j) and ia2(j) respectively.

A sparse matrix has an associated state, which can take the following values:

Build: State entered after the first allocation, and before the first assembly; in
this state it is possible to add nonzero entries.

Assembled: State entered after the assembly; computations using the sparse
matrix, such as matrix-vector products, are only possible in this state;

Update: State entered after a reinitalization; this is used to handle applications
in which the same sparsity pattern is used multiple times with different
coefficients. In this state it is only possible to enter coefficients for already
existing nonzero entries.

3.2.1 Named Constants

psb dupl ovwrt Duplicate coefficients should be overwritten (i.e. ignore du-
plications)

psb dupl add Duplicate coefficients should be added;

psb dupl err Duplicate coefficients should trigger an error conditino

psb upd dflt Default update strategy for matrix coefficients;

psb upd srch Update strategy based on search into the data structure;

12

psb upd perm Update strategy based on additional permutation data (see
tools routine description).

3.3 Preconditioner data structure

Our base library offers support for simple well known preconditioners like Di-
agonal Scaling or Block Jacobi with incomplete factorization ILU(0).

A preconditioner is held in the psb prec type data structure reported in
figure 5. The psb_prec_type data type may contain a simple preconditioning
matrix with the associated communication descriptor.The values contained in
the iprcparm and dprcparm define tha type of preconditioner along with all the
parameters related to it; thus, iprcparm and dprcparm define how the other
records have to be interpreted. This data structure is the basis of ore complex
preconditioning strategies, which are the subject of further research.

type psb_dprec_type

type(psb_dspmat_type), allocatable :: av(:)

real(kind(1.d0)), allocatable :: d(:)

type(psb_desc_type) :: desc_data

integer, allocatable :: iprcparm(:)

real(kind(1.d0)), allocatable :: dprcparm(:)

integer, allocatable :: perm(:), invperm(:)

integer :: prec, base_prec

end type psb_dprec_type

Figure 5: The PSBLAS defined data type that contains a preconditioner.

3.4 Data structure query routines

psb cd get local rows—Get number of local rows

Syntax

nr = psb cd get local rows (desc)

On Entry

desc the communication descriptor.
Scope:local.
Type:required.
Specified as: a structured data of type psb desc type.

On Return

13

Function value The number of local rows, i.e. the number of rows owned
by the current process; as explained in 1, it is equal to |Ii| + |Bi|. The
returned value is specific to the calling process.

psb cd get local cols—Get number of local cols

Syntax

nc = psb cd get local cols (desc)

On Entry

desc the communication descriptor.
Scope:local.
Type:required.
Specified as: a structured data of type psb desc type.

On Return

Function value The number of local cols, i.e. the number of indices used by
the current process, including both local and halo indices; as explained
in 1, it is equal to |Ii|+ |Bi|+ |Hi|. The returned value is specific to the
calling process.

psb cd get global rows—Get number of global rows

Syntax

nr = psb cd get global rows (desc)

On Entry

desc the communication descriptor.
Scope:local.
Type:required.
Specified as: a structured data of type psb desc type.

On Return

Function value The number of global rows in the mesh

psb cd get contex—Get communication context

14

Syntax

ictxt = psb cd get context (desc)

On Entry

desc the communication descriptor.
Scope:local.
Type:required.
Specified as: a structured data of type psb desc type.

On Return

Function value The communication context.

psb sp get nrows—Get number of rows in a sparse matrix

Syntax

nr = psb sp get nrows (a)

On Entry

a the sparse matrix
Scope:local
Type:required
Specified as: a structured data of type psb spmat type.

On Return

Function value The number of rows of sparse matrix a.

psb sp get ncols—Get number of columns in a sparse
matrix

Syntax

nr = psb sp get ncols (a)

On Entry

a the sparse matrix
Scope:local
Type:required
Specified as: a structured data of type psb spmat type.

On Return

Function value The number of columns of sparse matrix a.

15

psb sp get nnzeros—Get number of nonzero elements in a
sparse matrix

Syntax

nr = psb sp get nnzeros (a)

On Entry

a the sparse matrix
Scope:local
Type:required
Specified as: a structured data of type psb spmat type.

On Return

Function value The number of nonzero elements stored in sparse matrix a.

Notes

1. The function value is specific to the storage format of matrix a; some
storage formats employ padding, thus the returned value for the same
matrix may be different for different storage choices.

16

4 Computational routines

17

psb geaxpby—General Dense Matrix Sum

This subroutine is an interface to the computational kernel for dense matrix
sum:

y ← α x + βy

Syntax

call psb geaxpby (alpha, x, beta, y, desc a, info)

x, y, α, β Subroutine
Long Precision Real psb geaxpby
Long Precision Complex psb geaxpby

Table 1: Data types

On Entry

alpha the scalar α.
Scope: global
Type: required
Specified as: a number of the data type indicated in Table 1.

x the local portion of global dense matrix x.
Scope: local
Type: required
Specified as: a rank one or two array containing numbers of type specified
in Table 1. The rank of x must be the same of y.

beta the scalar β.
Scope: global
Type: required
Specified as: a number of the data type indicated in Table 1.

y the local portion of the global dense matrix y.
Scope: local
Type: required
Specified as: a rank one or two array containing numbers of the type
indicated in Table 1. The rank of y must be the same of x.

desc a contains data structures for communications.
Scope: local
Type: required
Specified as: a structured data of type psb desc type.

On Return

18

y the local portion of result submatrix y.
Scope: local
Type: required
Specified as: a rank one or two array containing numbers of the type
indicated in Table 1.

info Error code.
Scope: local
Type: required
An integer value; 0 means no error has been detected.

19

psb gedot—Dot Product

This function computes dot product between two vectors x and y.
If x and y are double precision real vectors computes dot-product as:

dot← xT y

Else if x and y are double precision complex vectors then computes dot-product
as:

dot← xHy

Syntax

psb gedot (x, y, desc a, info)

dot, x, y Function
Long Precision Real psb gedot
Long Precision Complex psb gedot

Table 2: Data types

On Entry

x the local portion of global dense matrix x.
Scope: local
Type: required
Specified as: an array of rank one or two containing numbers of type
specified in Table 2. The rank of x must be the same of y.

y the local portion of global dense matrix y.
Scope: local
Type: required
Specified as: an array of rank one or two containing numbers of type
specified in Table 2. The rank of y must be the same of x.

desc a contains data structures for communications.
Scope: local
Type: required
Specified as: a structured data of type psb desc type.

On Return

Function value is the dot product of subvectors x and y.
Scope: global
Specified as: a number of the data type indicated in Table 2.

20

info Error code.
Scope: local
Type: required
An integer value; 0 means no error has been detected.

21

psb gedots—Generalized Dot Product

This subroutine computes a series of dot products among the columns of two
dense matrices x and y:

res(i)← x(:, i)T y(:, i)

If the matrices are complex, then the usual convention applies, i.e. the conjugate
transpose of x is used. If x and y are of rank one, then res is a scalar, else it is
a rank one array.

Syntax

call psb gedots (res, x, y, desc a, info)

res, x, y Subroutine
Long Precision Real psb gedots
Long Precision Complex psb gedots

Table 3: Data types

On Entry

x the local portion of global dense matrix x.
Scope: local
Type: required
Specified as: an array of rank one or two containing numbers of type
specified in Table 3. The rank of x must be the same of y.

y the local portion of global dense matrix y.
Scope: local
Type: required
Specified as: an array of rank one or two containing numbers of type
specified in Table 3. The rank of y must be the same of x.

desc a contains data structures for communications.
Scope: local
Type: required
Specified as: a structured data of type psb desc type.

On Return

res is the dot product of subvectors x and y.
Scope: global
Specified as: a number or a rank-one array of the data type indicated in
Table 2.

22

info Error code.
Scope: local
Type: required
An integer value; 0 means no error has been detected.

23

psb geamax—Infinity-Norm of Vector

This function computes the infinity-norm of a vector x.
If x is a double precision real vector computes infinity norm as:

amax← max
i
|xi|

else if x is a double precision complex vector then computes infinity-norm as:

amax← max
i

(|re(xi)|+ |im(xi)|)

Syntax

psb geamax (x, desc a, info)

amax x Function
Long Precision Real Long Precision Real psb geamax
Long Precision Real Long Precision Complex psb geamax

Table 4: Data types

On Entry

x the local portion of global dense matrix x.
Scope: local
Type: required
Specified as: a rank one or two array containing numbers of type specified
in Table 4.

desc a contains data structures for communications.
Scope: local
Type: required
Specified as: a structured data of type psb desc type.

On Return

Function value is the infinity norm of subvector x.
Scope: global
Specified as: a long precision real number.

info Error code.
Scope: local
Type: required
An integer value; 0 means no error has been detected.

24

psb geamaxs—Generalized Infinity Norm

This subroutine computes a series of infinity norms on the columns of a dense
matrix x:

res(i)← max
k
|x(k, i)|

Syntax

call psb geamaxs (res, x, desc a, info)

res x Subroutine
Long Precision Real Long Precision Real psb geamaxs
Long Precision Real Long Precision Complex psb geamaxs

Table 5: Data types

On Entry

x the local portion of global dense matrix x.
Scope: local
Type: required
Specified as: a rank one or two array containing numbers of type specified
in Table 5.

desc a contains data structures for communications.
Scope: local
Type: required
Specified as: a structured data of type psb desc type.

On Return

res is the infinity norm of the columns of x.
Scope: global
Specified as: a number or a rank-one array of long precision real numbers.

info Error code.
Scope: local
Type: required
An integer value; 0 means no error has been detected.

25

psb geasum—1-Norm of Vector

This function computes the 1-norm of a vector x.
If x is a double precision real vector computes 1-norm as:

asum← ‖xi‖

else if x is double precision complex vector then computes 1-norm as:

asum← ‖re(x)‖1 + ‖im(x)‖1

Syntax

psb geasum (x, desc a, info)

asum x Function
Long Precision Real Long Precision Real psb geasum
Long Precision Real Long Precision Complex psb geasum

Table 6: Data types

On Entry

x the local portion of global dense matrix x.
Scope: local
Type: required
Specified as: a rank one or two array containing numbers of type specified
in Table 6.

desc a contains data structures for communications.
Scope: local
Type: required
Specified as: a structured data of type psb desc type.

On Return

Function value is the 1-norm of vector x.
Scope: global
Specified as: a long precision real number.

info Error code.
Scope: local
Type: required
An integer value; 0 means no error has been detected.

26

psb geasums—Generalized 1-Norm of Vector

This subroutine computes a series of 1-norms on the columns of a dense matrix
x:

res(i)← max
k
|x(k, i)|

This function computes the 1-norm of a vector x.
If x is a double precision real vector computes 1-norm as:

res(i)← ‖xi‖

else if x is double precision complex vector then computes 1-norm as:

res(i)← ‖re(x)‖1 + ‖im(x)‖1

Syntax

call psb geasums (res, x, desc a, info)

res x Subroutine
Long Precision Real Long Precision Real psb geasums
Long Precision Real Long Precision Complex psb geasums

Table 7: Data types

On Entry

x the local portion of global dense matrix x.
Scope: local
Type: required
Specified as: a rank one or two array containing numbers of type specified
in Table 7.

desc a contains data structures for communications.
Scope: local
Type: required
Specified as: a structured data of type psb desc type.

On Return

res contains the 1-norm of (the columns of) x.
Scope: global
Specified as: a long precision real number.

info Error code.
Scope: local
Type: required
An integer value; 0 means no error has been detected.

27

psb genrm2—2-Norm of Vector

This function computes the 2-norm of a vector x.
If x is a double precision real vector computes 2-norm as:

nrm2←
√

xT x

else if x is double precision complex vector then computes 2-norm as:

nrm2←
√

xHx

nrm2 x Function
Long Precision Real Long Precision Real psb genrm2
Long Precision Real Long Precision Complex psb genrm2

Table 8: Data types

Syntax

psb genrm2 (x, desc a, info)

On Entry

x the local portion of global dense matrix x.
Scope: local
Type: required
Specified as: a rank one or two array containing numbers of type specified
in Table 8.

desc a contains data structures for communications.
Scope: local
Type: required
Specified as: a structured data of type psb desc type.

On Return

Function Value is the 2-norm of subvector x.
Scope: global
Type: required
Specified as: a long precision real number.

info Error code.
Scope: local
Type: required
An integer value; 0 means no error has been detected.

28

psb genrm2s—Generalized 1-Norm of Vector

This subroutine computes a series of 1-norms on the columns of a dense matrix
x:

res(i)← max
k
|x(k, i)|

This function computes the 1-norm of a vector x.
If x is a double precision real vector computes 1-norm as:

res(i)←
√

xT x

else if x is double precision complex vector then computes 1-norm as:

res(i)←
√

xHx

Syntax

call psb genrm2s (res, x, desc a, info)

res x Subroutine
Long Precision Real Long Precision Real psb genrm2s
Long Precision Real Long Precision Complex psb genrm2s

Table 9: Data types

On Entry

x the local portion of global dense matrix x.
Scope: local
Type: required
Specified as: a rank one or two array containing numbers of type specified
in Table 9.

desc a contains data structures for communications.
Scope: local
Type: required
Specified as: a structured data of type psb desc type.

On Return

res contains the 1-norm of (the columns of) x.
Scope: global
Specified as: a long precision real number.

info Error code.
Scope: local
Type: required
An integer value; 0 means no error has been detected.

29

psb spnrmi—Infinity Norm of Sparse Matrix

This function computes the infinity-norm of a matrix A:

nrmi← ‖A‖∞

where:

A represents the global matrix A

A Function
Long Precision Real psb spnrmi
Long Precision Complex psb spnrmi

Table 10: Data types

Syntax

psb spnrmi (A, desc a, info)

On Entry

a the local portion of the global sparse matrix A.
Scope: local
Type: required
Specified as: a structured data of type psb spmat type.

desc a contains data structures for communications.
Scope: local
Type: required
Specified as: a structured data of type psb desc type.

On Return

Function value is the infinity-norm of sparse submatrix A.
Scope: global
Specified as: a long precision real number.

info Error code.
Scope: local
Type: required
An integer value; 0 means no error has been detected.

30

psb spmm—Sparse Matrix by Dense Matrix
Product

This subroutine computes the Sparse Matrix by Dense Matrix Product:

y ← αPrAPcx + βy (1)

y ← αPrA
T Pcx + βy (2)

y ← αPrA
HPcx + βy (3)

where:

x is the global dense submatrix x:,:

y is the global dense submatrix y:,:

A is the global sparse submatrix A

Pr, Pc are the permutation matrices.

A, x, y, α, β Subroutine
Long Precision Real psb spmm
Long Precision Complex psb spmm

Table 11: Data types

Syntax

call psb spmm (alpha, a, x, beta, y, desc a, info)

call psb spmm (alpha, a, x, beta, y,desc a, info, trans, work)

On Entry

alpha the scalar α.
Scope: global
Type: required
Specified as: a number of the data type indicated in Table 11.

a the local portion of the sparse matrix A.
Scope: local
Type: required
Specified as: a structured data of type psb spmat type.

x the local portion of global dense matrix x.
Scope: local
Type: required
Specified as: a rank one or two array containing numbers of type specified
in Table 11. The rank of x must be the same of y.

31

beta the scalar β.
Scope: global
Type: required
Specified as: a number of the data type indicated in Table 11.

y the local portion of global dense matrix y.
Scope: local
Type: required
Specified as: a rank one or two array containing numbers of type specified
in Table 11. The rank of y must be the same of x.

desc a contains data structures for communications.
Scope: local
Type: required
Specified as: a structured data of type psb desc type.

trans indicate what kind of operation to perform.

trans = N the operation is specified by equation 1

trans = T the operation is specified by equation 2

trans = C the operation is specified by equation 3

Scope: global
Type: optional
Default: trans = N
Specified as: a character variable.

work work array.
Scope: local
Type: optional
Specified as: a rank one array of the same type of x and y with the
TARGET attribute.

On Return

y the local portion of result submatrix y.
Scope: local
Type: required
Specified as: an array of rank one or two containing numbers of type
specified in Table 11.

info Error code.
Scope: local
Type: required
An integer value; 0 means no error has been detected.

32

psb spsm—Triangular System Solve

This subroutine computes the Triangular System Solve:

y ← αPrT
−1Pcx + βy

y ← αDPrT
−1Pcx + βy

y ← αPrT
−1PcDx + βy

y ← αPrT
−T Pcx + βy

y ← αDPrT
−T Pcx + βy

y ← αPrT
−T PcDx + βy

y ← αPrT
−HPcx + βy

y ← αDPrT
−HPcx + βy

y ← αPrT
−HPcDx + βy

where:

x is the global dense submatrix x:,:

y is the global dense submatrix y:,:

T is the global sparse block triangular submatrix T

D is the scaling diagonal matrix.

Pr, Pc are the permutation matrices.

Syntax

call psb spsm (alpha, t, x, beta, y, desc a, info)

call psb spsm (alpha, t, x, beta, y, desc a, info, trans, unit, choice, diag, work)

T , x, y, D, α, β Subroutine
Long Precision Real psb spsm
Long Precision Complex psb spsm

Table 12: Data types

On Entry

alpha the scalar α.
Scope: global
Type: required
Specified as: a number of the data type indicated in Table 12.

33

t the global portion of the sparse matrix T .
Scope: local
Type: required
Specified as: a structured data type specified in § 3.

x the local portion of global dense matrix x.
Scope: local
Type: required
Specified as: a rank one or two array containing numbers of type specified
in Table 12. The rank of x must be the same of y.

beta the scalar β.
Scope: global
Type: required
Specified as: a number of the data type indicated in Table 12.

y the local portion of global dense matrix y.
Scope: local
Type: required
Specified as: a rank one or two array containing numbers of type specified
in Table 12. The rank of y must be the same of x.

desc a contains data structures for communications.
Scope: local
Type: required
Specified as: a structured data of type psb desc type.

trans specify with unitd the operation to perform.

trans = ’N’ the operation is with no transposed matrix

trans = ’T’ the operation is with transposed matrix.

trans = ’C’ the operation is with conjugate transposed matrix.

Scope: global
Type: optional
Default: trans = N
Specified as: a character variable.

unitd specify with trans the operation to perform.

unitd = ’U’ the operation is with no scaling

unitd = ’L’ the operation is with left scaling

unitd = ’R’ the operation is with right scaling.

Scope: global
Type: optional
Default: unitd = U
Specified as: a character variable.

choice specifies the update of overlap elements to be performed on exit:

psb_none_

34

psb_sum_

psb_avg_

psb_square_root_

Scope: global
Type: optional
Default: psb_avg_
Specified as: an integer variable.

diag the diagonal scaling matrix.
Scope: local
Type: optional
Default: diag(1) = 1(noscaling)
Specified as: a rank one array containing numbers of the type indicated
in Table 12.

work a work array.
Scope: local
Type: optional
Specified as: a rank one array of the same type of x with the TARGET
attribute.

On Return

y the local portion of global dense matrix y.
Scope: local
Type: required
Specified as: an array of rank one or two containing numbers of type
specified in Table 12.

info Error code.
Scope: local
Type: required
An integer value; 0 means no error has been detected.

35

5 Communication routines

The routines in this chapter implement various global communication operators
on vectors associated with a discretization mesh. For auxiliary communication
routines not tied to a discretization space see 6.

36

psb halo—Halo Data Communication

These subroutines gathers the values of the halo elements, and (optionally) scale
the result:

x← αx

where:

x is a global dense submatrix.

α, x Subroutine
Long Precision Real psb halo
Long Precision Complex psb halo

Table 13: Data types

Syntax

call psb halo (x, desc a, info)

call psb halo (x, desc a, info, alpha, work, data)

On Entry

x global dense matrix x.
Scope: local
Type: required
Specified as: a rank one or two array with the TARGET attribute con-
taining numbers of type specified in Table 13.

desc a contains data structures for communications.
Scope: local
Type: required
Specified as: a structured data of type psb desc type.

alpha the scalar α.
Scope: global
Type: optional
Default: alpha = 1
Specified as: a number of the data type indicated in Table 13.

work the work array.
Scope: local
Type: optional
Specified as: a rank one array of the same type of x with the POINTER
attribute.

37

data index list selector.
Scope: global
Type: optional
Specified as: an integer. Values:psb_comm_halo_, psb_comm_ext_, de-
fault: psb_comm_halo_. Chooses the index list on which to base the data
exchange.

On Return

x global dense result matrix x.
Scope: local
Type: required
Returned as: a rank one or two array containing numbers of type specified
in Table 13.

info the local portion of result submatrix y.
Scope: local
Type: required
An integer value that contains an error code.

1 2 3 4 5 6 7 8

6463626160595857

3225

27 40

P1

P0

Figure 6: Sample discretization mesh.

Example of use

Consider the discretization mesh depicted in fig. 6, partitioned among two pro-
cesses as shown by the dashed line; the data distribution is such that each
process will own 32 entries in the index space, with a halo made of 8 entries
placed at local indices 33 through 40. If process 0 assigns an initial value of 1
to its entries in the x vector, and process 1 assigns a value of 2, then after a call
to psb_halo the contents of the local vectors will be the following:

38

Process 0 Process 1
I GLOB(I) X(I) I GLOB(I) X(I)
1 1 1.0 1 33 2.0
2 2 1.0 2 34 2.0
3 3 1.0 3 35 2.0
4 4 1.0 4 36 2.0
5 5 1.0 5 37 2.0
6 6 1.0 6 38 2.0
7 7 1.0 7 39 2.0
8 8 1.0 8 40 2.0
9 9 1.0 9 41 2.0

10 10 1.0 10 42 2.0
11 11 1.0 11 43 2.0
12 12 1.0 12 44 2.0
13 13 1.0 13 45 2.0
14 14 1.0 14 46 2.0
15 15 1.0 15 47 2.0
16 16 1.0 16 48 2.0
17 17 1.0 17 49 2.0
18 18 1.0 18 50 2.0
19 19 1.0 19 51 2.0
20 20 1.0 20 52 2.0
21 21 1.0 21 53 2.0
22 22 1.0 22 54 2.0
23 23 1.0 23 55 2.0
24 24 1.0 24 56 2.0
25 25 1.0 25 57 2.0
26 26 1.0 26 58 2.0
27 27 1.0 27 59 2.0
28 28 1.0 28 60 2.0
29 29 1.0 29 61 2.0
30 30 1.0 30 62 2.0
31 31 1.0 31 63 2.0
32 32 1.0 32 64 2.0
33 33 2.0 33 25 1.0
34 34 2.0 34 26 1.0
35 35 2.0 35 27 1.0
36 36 2.0 36 28 1.0
37 37 2.0 37 29 1.0
38 38 2.0 38 30 1.0
39 39 2.0 39 31 1.0
40 40 2.0 40 32 1.0

39

psb ovrl—Overlap Update

These subroutines applies an overlap operator to the input vector:

x← Qx

where:

x is the global dense submatrix x

Q is the overlap operator; it is the composition of two operators Pa and PT .

x Subroutine
Long Precision Real psb ovrl
Long Precision Complex psb ovrl

Table 14: Data types

Syntax

call psb ovrl (x, desc a, info)

call psb ovrl (x, desc a, info, update=update type, work=work)

On Entry

x global dense matrix x.
Scope: local
Type: required
Specified as: a rank one or two array containing numbers of type specified
in Table 14.

desc a contains data structures for communications.
Scope: local
Type: required
Specified as: a structured data of type psb desc type.

update Update operator.

update = psb none Do nothing;
update = psb add Sum overlap entries, i.e. apply PT ;
update = psb avg Average overlap entries, i.e. apply PaPT ;

Scope: global
Default: update type = psb avg
Scope: global
Specified as: a integer variable.

40

work the work array.
Scope: local
Type: optional
Specified as: a one dimensional array of the same type of x.

On Return

x global dense result matrix x.
Scope: local
Type: required
Specified as: an array of rank one or two containing numbers of type
specified in Table 14.

info Error code.
Scope: local
Type: required
An integer value; 0 means no error has been detected.

Usage notes

1. If there is no overlap in the data distribution associated with the descrip-
tor, no operations are performed;

2. The operator PT performs the reduction sum of overlap elements; it is a
“prolongation” operator PT that replicates overlap elements, accounting
for the physical replication of data;

3. The operator Pa performs a scaling on the overlap elements by the amount
of replication; thus, when combined with the reduction operator, it imple-
ments the average of replicated elements over all of their instances.

Example of use

Consider the discretization mesh depicted in fig. 7, partitioned among two pro-
cesses as shown by the dashed lines, with an overlap of 1 extra layer with respect
to the partition of fig. 6; the data distribution is such that each process will own
40 entries in the index space, with an overlap of 16 entries placed at local indices
25 through 40; the halo will run from local index 41 through local index 48.. If
process 0 assigns an initial value of 1 to its entries in the x vector, and process
1 assigns a value of 2, then after a call to psb_ovrl with psb_avg_ and a call
to psb_halo_ the contents of the local vectors will be the following (showing a
transition among the two subdomains)

41

Process 0 Process 1
I GLOB(I) X(I) I GLOB(I) X(I)
1 1 1.0 1 33 1.5
2 2 1.0 2 34 1.5
3 3 1.0 3 35 1.5
4 4 1.0 4 36 1.5
5 5 1.0 5 37 1.5
6 6 1.0 6 38 1.5
7 7 1.0 7 39 1.5
8 8 1.0 8 40 1.5
9 9 1.0 9 41 2.0

10 10 1.0 10 42 2.0
11 11 1.0 11 43 2.0
12 12 1.0 12 44 2.0
13 13 1.0 13 45 2.0
14 14 1.0 14 46 2.0
15 15 1.0 15 47 2.0
16 16 1.0 16 48 2.0
17 17 1.0 17 49 2.0
18 18 1.0 18 50 2.0
19 19 1.0 19 51 2.0
20 20 1.0 20 52 2.0
21 21 1.0 21 53 2.0
22 22 1.0 22 54 2.0
23 23 1.0 23 55 2.0
24 24 1.0 24 56 2.0
25 25 1.5 25 57 2.0
26 26 1.5 26 58 2.0
27 27 1.5 27 59 2.0
28 28 1.5 28 60 2.0
29 29 1.5 29 61 2.0
30 30 1.5 30 62 2.0
31 31 1.5 31 63 2.0
32 32 1.5 32 64 2.0
33 33 1.5 33 25 1.5
34 34 1.5 34 26 1.5
35 35 1.5 35 27 1.5
36 36 1.5 36 28 1.5
37 37 1.5 37 29 1.5
38 38 1.5 38 30 1.5
39 39 1.5 39 31 1.5
40 40 1.5 40 32 1.5
41 41 2.0 41 17 1.0
42 42 2.0 42 18 1.0
43 43 2.0 43 19 1.0
44 44 2.0 44 20 1.0
45 45 2.0 45 21 1.0
46 46 2.0 46 22 1.0
47 47 2.0 47 23 1.0
48 48 2.0 48 24 1.0

42

1 2 3 4 5 6 7 8

6463626160595857

3225

27 40

P1

P0

Figure 7: Sample discretization mesh.

43

psb gather—Gather Global Dense Matrix

These subroutines collect the portions of global dense matrix distributed over
all process into one single array stored on one process.

glob x← collect(loc xi)

where:

glob x is the global submatrix glob xiy:iy+m−1,jy:jy+n−1

loc xi is the local portion of global dense matrix on process i.

collect is the collect function.

xi, y Subroutine
Long Precision Real psb gather
Long Precision Complex psb gather

Table 15: Data types

Syntax

call psb gather (glob x, loc x, desc a, info, root, iglobx, jglobx, ilocx, jlocx, k)

Syntax

call psb gather (glob x, loc x, desc a, info, root, iglobx, ilocx)

On Entry

loc x the local portion of global dense matrix glob x.
Scope: local
Type: required
Specified as: a rank one or two array containing numbers of the type
indicated in Table 15.

desc a contains data structures for communications.
Scope: local
Type: required
Specified as: a structured data of type psb desc type.

root The process that holds the global copy. If root = −1 all the processes will
have a copy of the global vector.
Scope: global
Type: optional
Specified as: an integer variable −1 ≤ ix ≤ np− 1, default −1.

44

iglobx Row index to define a submatrix in glob x into which gather the local
pieces.
Scope: global
Type: optional
Specified as: an integer variable 1 ≤ ix ≤ matrix data(psb m).

jglobx Column index to define a submatrix in glob x into which gather the
local pieces.
Scope: global
Type: optional
Specified as: an integer variable.

ilocx Row index to define a submatrix in loc x that has to be gathered into
glob x.
Scope: local
Type: optional
Specified as: an integer variable.

jlocx Columns index to define a submatrix in loc x that has to be gathered
into glob x.
Scope: global
Type: optional
Specified as: an integer variable.

k The number of columns to gather.
Scope: global
Type: optional
Specified as: an integer variable.

On Return

glob x The array where the local parts must be gathered.
Scope: global
Type: required
Specified as: a rank one or two array.

info Error code.
Scope: local
Type: required
An integer value; 0 means no error has been detected.

45

psb scatter—Scatter Global Dense Matrix

These subroutines scatters the portions of global dense matrix owned by a pro-
cess to all the processes in the processes grid.

loc xi ← scatter(glob xi)

where:

glob x is the global submatrix glob xiy:iy+m−1,jy:jy+n−1

loc xi is the local portion of global dense matrix on process i.

scatter is the scatter function.

xi, y Subroutine
Long Precision Real psb scatter
Long Precision Complex psb scatter

Table 16: Data types

Syntax

call psb scatter (glob x, loc x, desc a, info, root, iglobx, jglobx, ilocx, jlocx, k)

Syntax

call psb scatter (glob x, loc x, desc a, info, root, iglobx, ilocx)

On Entry

glob x The array that must be scattered into local pieces.
Scope: global
Type: required
Specified as: a rank one or two array.

desc a contains data structures for communications.
Scope: local
Type: required
Specified as: a structured data of type psb desc type.

root The process that holds the global copy. If root = −1 all the processes
have a copy of the global vector.
Scope: global
Type: optional
Specified as: an integer variable −1 ≤ ix ≤ np− 1, default −1.

46

iglobx Row index to define a submatrix in glob x that has to be scattered into
local pieces.
Scope: global
Type: optional
Specified as: an integer variable 1 ≤ ix ≤ matrix data(psb m).

jglobx Column index to define a submatrix in glob x that has to be scattered
into local pieces.
Scope: global
Type: optional
Specified as: an integer variable.

ilocx Row index to define a submatrix in loc x into which scatter the local
piece of glob x.
Scope: local
Type: optional
Specified as: an integer variable.

jlocx Columns index to define a submatrix in loc x into which scatter the local
piece of glob x.
Scope: global
Type: optional
Specified as: an integer variable.

k The number of columns to scatter.
Scope: global
Type: optional
Specified as: an integer variable.

On Return

loc x the local portion of global dense matrix glob x.
Scope: local
Type: required
Specified as: a rank one or two array containing numbers of the type
indicated in Table 16.

info Error code.
Scope: local
Type: required
An integer value; 0 means no error has been detected.

47

6 Data management routines

48

psb cdall—Allocates a communication
descriptor

Syntax

call psb cdall (icontxt, desc a, info,mg=mg,parts=parts)

call psb cdall (icontxt, desc a, info,vg=vg,flag=flag)

call psb cdall (icontxt, desc a, info,vl=vl)

call psb cdall (icontxt, desc a, info,nl=nl)

This subroutine initializes the communication descriptor associated with an in-
dex space. Exactly one of the optional arguments parts, vg, vl must be speci-
fied, thereby choosing the specific initialization strategy:

On Entry

icontxt the communication context.
Scope:global.
Type:required.
Specified as: an integer value.

vg Data allocation: each index i ∈ {1 . . .mg} is allocated to process vg(i).
Scope:global.
Type:optional.
Specified as: an integer array.

flag Specifies whether entries in vg are zero- or one-based. Scope:global.
Type:optional.
Specified as: an integer value 0, 1, default 0.

mg the (global) number of rows of the problem.
Scope:global.
Type:optional.
Specified as: an integer value. It is required if parts is specified.

parts the subroutine that defines the partitioning scheme.
Scope:global.
Type:required.
Specified as: a subroutine.

vl Data allocation: the set of global indices belonging to the calling process.
Scope:local.
Type:optional.
Specified as: an integer array.

49

nl Data allocation: in a generalized block-row distribution the number of indices
belonging to the current process. Scope:local.
Type:optional.
Specified as: an integer value.

On Return

desc a the communication descriptor.
Scope:local.
Type:required.
Specified as: a structured data of type psb desc type.

info Error code.
Scope: local
Type: required
An integer value; 0 means no error has been detected.

Notes

1. Exactly one of the optional arguments parts, vg, vl, nl must be specified,
thereby choosing the initialization strategy as follows:

parts In this case we have a subroutine specifying the mapping between
global indices and process/local index pairs. If this optional argument
is specified, then it is mandatory to specify the argument mg as well.
The subroutine must conform to the following interface:

interface
subroutine psb_parts(glob_index,mg,np,pv,nv)
integer, intent (in) :: glob_index,np,mg
integer, intent (out) :: nv, pv(*)

end subroutine psb_parts
end interface

The input arguments are:

glob index The global index to be mapped;
np The number of processes in the mapping;
mg The total number of global rows in the mapping;

The output arguments are:

nv The number of entries in pv;
pv A vector containint the indices of the processes to which the

global index should be assigend; each entry must satisfy 0 ≤
pv(i) < np; if nv > 1 we have an index assigned to multiple
processes, i.e. we have an overlap among the subdomains.

vg In this case the association between an index and a process is specified
via an integer vector; the size of the index space is equal to the size
of vg, and each index i is assigned to the process vg(i). The vector
vg must be identical on all calling processes; its entries may have the
ranges (0 . . . np− 1) or (1 . . . np) according to the value of flag.

50

vl In this case we are specifying the list of indices assigned to the current
process; thus, the global problem size mg is given by the sum of the
sizes of the individual vectors vl specified on the calling processes.
The subroutine will check that each entry in the global index space
(1 . . .mg) is specified exactly once.

nl In this case we are implying a generalize row-block distribution in which
each process I gets assigned a consecutive chunk of NI = nl global
indices.

2. On exit from this routine the descriptor is in the build state

51

psb cdins—Communication descriptor insert
routine

Syntax

call psb cdins (nz, ia, ja, desc a, info)

On Entry

nz the number of points being inserted.
Scope: local.
Type: required.
Specified as: an integer value.

ia the row indices of the points being inserted.
Scope: local.
Type: required.
Specified as: an integer array of length nz.

ja the column indices of the points being inserted.
Scope: local.
Type: required.
Specified as: an integer array of length nz.

On Return

desc a the updated communication descriptor.
Scope:local.
Type:required.
Specified as: a structured data of type psb desc type.

info Error code.
Scope: local
Type: required
An integer value; 0 means no error has been detected.

Notes

1. This routine may only be called if the descriptor is in the build state

52

psb cdasb—Communication descriptor assembly
routine

Syntax

call psb cdasb (desc a, info)

On Entry

desc a the communication descriptor.
Scope:local.
Type:required.
Specified as: a structured data of type psb desc type.

On Return

info Error code.
Scope: local
Type: required
An integer value; 0 means no error has been detected.

Notes

1. On exit from this routine the descriptor is in the assembled state.

53

psb cdcpy—Copies a communication descriptor

Syntax

call psb cdcpy (desc out, desc a, info)

On Entry

desc a the communication descriptor.
Scope:local.
Type:required.
Specified as: a structured data of type psb desc type.

On Return

desc out the communication descriptor copy.
Scope:local.
Type:required.
Specified as: a structured data of type psb desc type.

info Error code.
Scope: local
Type: required
An integer value; 0 means no error has been detected.

54

psb cdfree—Frees a communication descriptor

Syntax

call psb cdfree (desc a, info)

On Entry

desc a the communication descriptor to be freed.
Scope:local.
Type:required.
Specified as: a structured data of type psb desc type.

On Return

info Error code.
Scope: local
Type: required
An integer value; 0 means no error has been detected.

55

psb cdbldext—Build an extended
communication descriptor

Syntax

call psb cdbldext (a,desc a,nl,desc out, info, extype)

This subroutine builds an extended communication descriptor, based on the
input descriptor desc_a and on the stencil specified through the input sparse
matrix a.

On Entry

a A sparse matrix Scope:local.
Type:required.
Specified as: a structured data type.

desc a the communication descriptor.
Scope:local.
Type:required.
Specified as: a structured data of type psb spmat type.

nl the number of layers desired.
Scope:global.
Type:required.
Specified as: an integer value nl ≥ 0.

extype the kind of estension required.
Scope:global.
Type:optional .
Specified as: an integer value psb_ovt_xhal_, psb_ovt_asov_, default:
psb_ovt_xhal_

On Return

desc out the extended communication descriptor.
Scope:local.
Type:required.
Specified as: a structured data of type psb desc type.

info Error code.
Scope: local
Type: required
An integer value; 0 means no error has been detected.

56

psb spall—Allocates a sparse matrix

Syntax

call psb spall (a, desc a, info, nnz)

On Entry

desc a the communication descriptor.
Scope:local.
Type:required.
Specified as: a structured data of type psb desc type.

nnz An estimate of the number of nonzeroes in the local part of the assembled
matrix.
Scope: global.
Type: optional.
Specified as: an integer value.

On Return

a the matrix to be allocated.
Scope:local
Type:required
Specified as: a structured data of type psb spmat type.

info Error code.
Scope: local
Type: required
An integer value; 0 means no error has been detected.

Notes

1. On exit from this routine the sparse matrix is in the build state.

2. The descriptor may be in either the build or assembled state.

3. Providing a good estimate for the number of nonzeroes nnz in the assem-
bled matrix may substantially improve performance in the matrix build
phase, as it will reduce or eliminate the need for (potentially multiple)
data reallocations.

57

psb spins—Insert a cloud of elements into a
sparse matrix

Syntax

call psb spins (nz, ia, ja, val, a, desc a, info)

On Entry

nz the number of elements to be inserted.
Scope:local.
Type:required.
Specified as: an integer scalar.

ia the row indices of the elements to be inserted.
Scope:local.
Type:required.
Specified as: an integer array of size nz.

ja the column indices of the elements to be inserted.
Scope:local.
Type:required.
Specified as: an integer array of size nz.

val the elements to be inserted.
Scope:local.
Type:required.
Specified as: an array of size nz.

desc a The communication descriptor.
Scope: local.
Type: required.
Specified as: a variable of type psb desc type.

On Return

a the matrix into which elements will be inserted.
Scope:local
Type:required
Specified as: a structured data of type psb spmat type.

desc a The communication descriptor.
Scope: local.
Type: required.
Specified as: a variable of type psb desc type.

58

info Error code.
Scope: local
Type: required
An integer value; 0 means no error has been detected.

Notes

1. On entry to this routine the descriptor may be in either the build or
assembled state.

2. On entry to this routine the sparse matrix may be in either the build or
update state.

3. If the descriptor is in the build state, then the sparse matrix must also be
in the build state; the action of the routine is to (implicitly) call psb_cdins
to add entries to the sparsity pattern;

4. If the descriptor is in the assembled state, then any entries in the sparse
matrix that would generate additional communication requirements will
be ignored;

5. If the matrix is in the update state, any entries in positions that were not
present in the original matrix will be ignored.

59

psb spasb—Sparse matrix assembly routine

Syntax

call psb spasb (a, desc a, info, afmt, upd, dupl)

On Entry

desc a the communication descriptor.
Scope:local.
Type:required.
Specified as: a structured data of type psb desc type.

afmt the storage format for the sparse matrix.
Scope: global.
Type: optional.
Specified as: an array of characters. Defalt: ’CSR’.

upd Provide for updates to the matrix coefficients.
Scope: global.
Type: optional.
Specified as: integer, possible values: psb_upd_srch_, psb_upd_perm_

dupl How to handle duplicate coefficients.
Scope: global.
Type: optional.
Specified as: integer, possible values: psb_dupl_ovwrt_, psb_dupl_add_,
psb_dupl_err_.

On Return

a the matrix to be assembled.
Scope:local
Type:required
Specified as: a structured data of type psb spmat type.

info Error code.
Scope: local
Type: required
An integer value; 0 means no error has been detected.

Notes

1. On entry to this routine the descriptor must be in the assembled state,
i.e. psb_cdasb must already have been called.

2. The sparse matrix may be in either the build or update state;

60

3. Duplicate entries are detected and handled in both build and update state,
with the exception of the error action that is only taken in the build state,
i.e. on the first assembly;

4. If the update choice is psb_upd_perm_, then subsequent calls to psb_spins
to update the matrix must be arranged in such a way as to produce exactly
the same sequence of coefficient values as encountered at the first assembly;

5. On exit from this routine the matrix is in the assembled state, and thus
is suitable for the computational routines.

61

psb spfree—Frees a sparse matrix

Syntax

call psb spfree (a, desc a, info)

On Entry

a the matrix to be freed.
Scope:local
Type:required
Specified as: a structured data of type psb spmat type.

desc a the communication descriptor.
Scope:local.
Type:required.
Specified as: a structured data of type psb desc type.

On Return

info Error code.
Scope: local
Type: required
An integer value; 0 means no error has been detected.

62

psb sprn—Reinit sparse matrix structure for
psblas routines.

Syntax

call psb sprn (a, decsc a, info, clear)

On Entry

a the matrix to be reinitialized.
Scope:local
Type:required
Specified as: a structured data of type psb spmat type.

desc a the communication descriptor.
Scope:local.
Type:required.
Specified as: a structured data of type psb desc type.

clear Choose whether to zero out matrix coefficients
Scope:local.
Type:optional.
Default: true.

On Return

info Error code.
Scope: local
Type: required
An integer value; 0 means no error has been detected.

Notes

1. On exit from this routine the sparse matrix is in the update state.

63

psb geall—Allocates a dense matrix

Syntax

call psb geall (x, desc a, info, n)

On Entry

desc a The communication descriptor.
Scope: local
Type: required
Specified as: a variable of type psb desc type.

n The number of columns of the dense matrix to be allocated.
Scope: local
Type: optional
Specified as: Integer scalar, default 1. It is ignored if x is a rank-1 array.

On Return

x The dense matrix to be allocated.
Scope: local
Type: required
Specified as: a rank one or two array with the ALLOCATABLE attribute,
of type real, complex or integer.

info Error code.
Scope: local
Type: required
An integer value; 0 means no error has been detected.

64

psb geins—Dense matrix insertion routine

Syntax

call psb geins (m, irw, val, x, desc a, info,dupl)

On Entry

m Number of rows in val to be inserted.
Scope:local.
Type:required.
Specified as: an integer value.

irw Indices of the rows to be inserted. Specifically, row i of val will be in-
serted into the local row corresponding to the global row index irw(i).
Scope:local.
Type:required.
Specified as: an integer array.

val the dense submatrix to be inserted.
Scope:local.
Type:required.
Specified as: a rank 1 or 2 array. Specified as: an integer value.

desc a the communication descriptor.
Scope:local.
Type:required.
Specified as: a structured data of type psb desc type.

dupl How to handle duplicate coefficients.
Scope: global.
Type: optional.
Specified as: integer, possible values: psb_dupl_ovwrt_, psb_dupl_add_.

On Return

x the output dense matrix.
Scope: local
Type: required
Specified as: a rank one or two array with the ALLOCATABLE attribute,
of type real, complex or integer.

info Error code.
Scope: local
Type: required
An integer value; 0 means no error has been detected.

65

Notes

1. Dense vectors/matrices do not have an associated state;

2. Duplicate entries are either overwritten or added, there is no provision for
raising an error condition.

66

psb geasb—Assembly a dense matrix

Syntax

call psb geasb (x, desc a, info)

On Entry

desc a The communication descriptor.
Scope: local
Type: required
Specified as: a variable of type psb desc type.

On Return

x The dense matrix to be assembled.
Scope: local
Type: required
Specified as: a rank one or two array with the ALLOCATABLE attribute,
of type real, complex or integer.

info Error code.
Scope: local
Type: required
An integer value; 0 means no error has been detected.

67

psb gefree—Frees a dense matrix

Syntax

call psb gefree (x, desc a, info)

On Entry

x The dense matrix to be freed.
Scope: local
Type: required
Specified as: a rank one or two array with the ALLOCATABLE attribute,
of type real, complex or integer.

desc a The communication descriptor.
Scope: local
Type: required
Specified as: a variable of type psb desc type.

On Return

info Error code.
Scope: local
Type: required
An integer value; 0 means no error has been detected.

68

psb gelp—Applies a left permutation to a dense
matrix

Syntax

call psb gelp (trans, iperm, x, desc a, info)

On Entry

trans A character that specifies whether to permute A or AT .
Scope: local
Type: required
Specified as: a single character with value ’N’ for A or ’T’ for AT .

iperm An integer array containing permutation information.
Scope: local
Type: required
Specified as: an integer one-dimensional array.

x The dense matrix to be permuted.
Scope: local
Type: required
Specified as: a one or two dimensional array.

desc a The communication descriptor.
Scope: local
Type: required
Specified as: a variable of type psb desc type.

On Return

info Error code.
Scope: local
Type: required
An integer value; 0 means no error has been detected.

69

psb glob to loc—Global to local indices
convertion

Syntax

call psb glob to loc (x, y, desc a, info, iact,owned)

call psb glob to loc (x, desc a, info, iact,owned)

On Entry

x An integer vector of indices to be converted.
Scope: local
Type: required
Specified as: a rank one integer array.

desc a the communication descriptor.
Scope:local.
Type:required.
Specified as: a structured data of type psb desc type.

iact specifies action to be taken in case of range errors. Scope: global
Type: optional
Specified as: a character variable Ignore, Warning or Abort, default Ignore.

owned Specfies valid range of input Scope: global
Type: optional
If true, then only indices strictly owned by the current process are consid-
ered valid, if false then halo indices are also accepted. Default: false.

On Return

x If y is not present, then x is overwritten with the translated integer indices.
Scope: global
Type: required
Specified as: a rank one integer array.

y If y is present, then y is overwritten with the translated integer indices, and
x is left unchanged. Scope: global
Type: optional
Specified as: a rank one integer array.

info Error code.
Scope: local
Type: required
An integer value; 0 means no error has been detected.

70

Notes

1. If an input index is out of range, then the corresponding output index is
set to a negative number;

2. The default Ignore means that the negative output is the only action
taken on an out-of-range input.

71

psb loc to glob—Local to global indices
conversion

Syntax

call psb loc to glob (x, y, desc a, info, iact)

call psb loc to glob (x, desc a, info, iact)

On Entry

x An integer vector of indices to be converted.
Scope: local
Type: required
Specified as: a rank one integer array.

desc a the communication descriptor.
Scope:local.
Type:required.
Specified as: a structured data of type psb desc type.

iact specifies action to be taken in case of range errors. Scope: global
Type: optional
Specified as: a character variable E, W or A.

On Return

x If y is not present, then x is overwritten with the translated integer indices.
Scope: global
Type: required
Specified as: a rank one integer array.

y If y is not present, then y is overwritten with the translated integer indices,
and x is left unchanged. Scope: global
Type: optional
Specified as: a rank one integer array.

info Error code.
Scope: local
Type: required
An integer value; 0 means no error has been detected.

72

psb get boundary—Extract list of boundary
elements

Syntax

call psb get boundary (bndel, desc, info)

On Entry

desc the communication descriptor.
Scope:local.
Type:required.
Specified as: a structured data of type psb desc type.

On Return

bndel The list of boundary elements on the calling process, in local numbering.
Scope: local
Type: required
Specified as: a rank one array with the ALLOCATABLE attribute, of
type integer.

info Error code.
Scope: local
Type: required
An integer value; 0 means no error has been detected.

Notes

1. If there are no boundary elements (i.e., if the local part of the connectivity
graph is self-contained) the output vector is set to the “not allocated”
state.

2. Otherwise the size of bndel will be exactly equal to the number of bound-
ary elements.

73

psb get overlap—Extract list of overlap elements

Syntax

call psb get overlap (ovrel, desc, info)

On Entry

desc the communication descriptor.
Scope:local.
Type:required.
Specified as: a structured data of type psb desc type.

On Return

ovrel The list of overlap elements on the calling process, in local numbering.
Scope: local
Type: required
Specified as: a rank one array with the ALLOCATABLE attribute, of
type integer.

info Error code.
Scope: local
Type: required
An integer value; 0 means no error has been detected.

Notes

1. If there are no overlap elements the output vector is set to the “not allo-
cated” state.

2. Otherwise the size of ovrel will be exactly equal to the number of overlap
elements.

74

7 Parallel environment routines

75

psb init—Initializes PSBLAS parallel
environment

Syntax

call psb init (icontxt, np)

This subroutine initializes the PSBLAS parallel environment, defining a virtual
parallel machine.

On Entry

np Number of processes in the PSBLAS virtual parallel machine.
Scope:global.
Type:optional.
Specified as: an integer value. Default: use all available processes pro-
vided by the underlying parallel environment.

On Return

icontxt the communication context identifying the virtual parallel machine.
Scope:global.
Type:required.
Specified as: an integer variable.

Notes

1. A call to this routine must precede any other PSBLAS call.

2. It is an error to specify a value for np greater than the number of processes
available in the underlying parallel execution environment.

76

psb info—Return information about PSBLAS
parallel environment

Syntax

call psb info (icontxt, iam, np)

This subroutine returns informantion about the PSBLAS parallel environment,
defining a virtual parallel machine.

On Entry

icontxt the communication context identifying the virtual parallel machine.
Scope:global.
Type:required.
Specified as: an integer variable.

On Return

iam Identifier of current process in the PSBLAS virtual parallel machine.
Scope:local.
Type:required.
Specified as: an integer value. −1 ≤ iam ≤ np− 1

np Number of processes in the PSBLAS virtual parallel machine.
Scope:global.
Type:required.
Specified as: an integer variable.

Notes

1. For processes in the virtual parallel machine the identifier will satisfy
0 ≤ iam ≤ np− 1;

2. If the user has requested on psb_init a number of processes less than
the total available in the parallel execution environment, the remaining
processes will have on return iam = −1; the only call involving icontxt
that any such process may execute is to psb_exit.

77

psb exit—Exit from PSBLAS parallel
environment

Syntax

call psb exit (icontxt)

call psb exit (icontxt,close)

This subroutine exits from the PSBLAS parallel virtual machine.

On Entry

icontxt the communication context identifying the virtual parallel machine.
Scope:global.
Type:required.
Specified as: an integer variable.

close Whether to close all data structures related to the virtual parallel ma-
chine, besides those associated with icontxt.
Scope:global.
Type:optional.
Specified as: a logical variable, default value: true.

Notes

1. This routine may be called even if a previous call to psb_info has returned
with iam = −1; indeed, it it is the only routine that may be called with
argument icontxt in this situation.

2. If the user wants to use multiple communication contexts in the same pro-
gram, this routine may be called multiple times to selectively close the
contexts with close=.false., while on the last call it should be called
with close=.true. to shutdown in a clean way the entire parallel envi-
ronment.

78

psb get mpicomm—Get the MPI communicator

Syntax

call psb get mpicomm (icontxt, icomm)

This subroutine returns the MPI communicator associated with a PSBLAS con-
text

On Entry

icontxt the communication context identifying the virtual parallel machine.
Scope:global.
Type:required.
Specified as: an integer variable.

On Return

icomm The MPI communicator associated with the PSBLAS virtual parallel
machine.
Scope:global.
Type:required.

79

psb get rank—Get the MPI rank

Syntax

call psb get rank (rank, icontxt, id)

This subroutine returns the MPI rank of the PSBLAS process id

On Entry

icontxt the communication context identifying the virtual parallel machine.
Scope:global.
Type:required.
Specified as: an integer variable.

id Identifier of a process in the PSBLAS virtual parallel machine.
Scope:local.
Type:required.
Specified as: an integer value. 0 ≤ id ≤ np− 1

On Return

rank The MPI rank associated with the PSBLAS process id.
Scope:local.
Type:required.

80

psb wtime—Wall clock timing

Syntax

time = psb wtime ()

This function returns a wall clock timer. The resolution of the timer is dependent
on the underlying parallel environment implementation.

On Exit

Function value the elapsed time in seconds.
Returned as: a real(kind(1.d0)) integer variable.

81

psb barrier—Sinchronization point parallel
environment

Syntax

call psb barrier (icontxt)

This subroutine acts as a synchronization point for the PSBLAS parallel virtual
machine. As such, it must be called by all participating processes.

On Entry

icontxt the communication context identifying the virtual parallel machine.
Scope:global.
Type:required.
Specified as: an integer variable.

82

psb abort—Abort a computation

Syntax

call psb abort (icontxt)

This subroutine aborts computation on the parallel virtual machine.

On Entry

icontxt the communication context identifying the virtual parallel machine.
Scope:global.
Type:required.
Specified as: an integer variable.

83

psb bcast—Broadcast data

Syntax

call psb bcast (icontxt, dat, root)

This subroutine implements a broadcast operation based on the underlying com-
munication library.

On Entry

icontxt the communication context identifying the virtual parallel machine.
Scope:global.
Type:required.
Specified as: an integer variable.

dat On the root process, the data to be broadcast.
Scope:global.
Type:required.
Specified as: an integer, real or complex variable, which may be a scalar,
or a rank 1 or 2 array, or a character or logical scalar. Type, rank and
size must agree on all processes.

root Root process holding data to be broadcast.
Scope:global.
Type:optional.
Specified as: an integer value 0 <= root <= np− 1, default 0

On Return

dat On processes other than root, the data to be broadcast.
Scope:global.
Type:required.
Specified as: an integer, real or complex variable, which may be a scalar,
or a rank 1 or 2 array, or a character or logical scalar. Type, rank and
size must agree on all processes.

84

psb sum—Global sum

Syntax

call psb sum (icontxt, dat, root)

This subroutine implements a sum reduction operation based on the underlying
communication library.

On Entry

icontxt the communication context identifying the virtual parallel machine.
Scope:global.
Type:required.
Specified as: an integer variable.

dat The local contribution to the global sum.
Scope:global.
Type:required.
Specified as: an integer, real or complex variable, which may be a scalar,
or a rank 1 or 2 array. Type, rank and size must agree on all processes.

root Process to hold the final sum, or −1 to make it available on all processes.
Scope:global.
Type:optional.
Specified as: an integer value −1 <= root <= np− 1, default -1.

On Return

dat On destination process(es), the result of the sum operation.
Scope:global.
Type:required.
Specified as: an integer, real or complex variable, which may be a scalar,
or a rank 1 or 2 array.
Type, rank and size must agree on all processes.

Notes

1. The dat argument is both input and output, and its value may be changed
even on processes different from the final result destination.

85

psb amx—Global maximum absolute value

Syntax

call psb amx (icontxt, dat, root)

This subroutine implements a maximum absolute value reduction operation
based on the underlying communication library.

On Entry

icontxt the communication context identifying the virtual parallel machine.
Scope:global.
Type:required.
Specified as: an integer variable.

dat The local contribution to the global maximum.
Scope:local.
Type:required.
Specified as: an integer, real or complex variable, which may be a scalar,
or a rank 1 or 2 array. Type, rank and size must agree on all processes.

root Process to hold the final sum, or −1 to make it available on all processes.
Scope:global.
Type:optional.
Specified as: an integer value −1 <= root <= np− 1, default -1.

On Return

dat On destination process(es), the result of the maximum operation.
Scope:global.
Type:required.
Specified as: an integer, real or complex variable, which may be a scalar,
or a rank 1 or 2 array. Type, rank and size must agree on all processes.

Notes

1. The dat argument is both input and output, and its value may be changed
even on processes different from the final result destination.

86

psb amn—Global minimum absolute value

Syntax

call psb amn (icontxt, dat, root)

This subroutine implements a minimum absolute value reduction operation
based on the underlying communication library.

On Entry

icontxt the communication context identifying the virtual parallel machine.
Scope:global.
Type:required.
Specified as: an integer variable.

dat The local contribution to the global minimum.
Scope:local.
Type:required.
Specified as: an integer, real or complex variable, which may be a scalar,
or a rank 1 or 2 array. Type, rank and size must agree on all processes.

root Process to hold the final sum, or −1 to make it available on all processes.
Scope:global.
Type:optional.
Specified as: an integer value −1 <= root <= np− 1, default -1.

On Return

dat On destination process(es), the result of the minimum operation.
Scope:global.
Type:required.
Specified as: an integer, real or complex variable, which may be a scalar,
or a rank 1 or 2 array.
Type, rank and size must agree on all processes.

Notes

1. The dat argument is both input and output, and its value may be changed
even on processes different from the final result destination.

87

psb snd—Send data

Syntax

call psb snd (icontxt, dat, dst, m)

This subroutine sends a packet of data to a destination.

On Entry

icontxt the communication context identifying the virtual parallel machine.
Scope:global.
Type:required.
Specified as: an integer variable.

dat The data to be sent.
Scope:local.
Type:required.
Specified as: an integer, real or complex variable, which may be a scalar,
or a rank 1 or 2 array, or a character or logical scalar. Type and rank
must agree on sender and receiver process; if m is not specified, size must
agree as well.

dst Destination process.
Scope:global.
Type:required.
Specified as: an integer value 0 <= dst <= np− 1.

m Number of rows.
Scope:global.
Type:Optional.
Specified as: an integer value 0 <= m <= size(dat, 1).
When dat is a rank 2 array, specifies the number of rows to be sent inde-
pendently of the leading dimension size(dat, 1); must have the same value
on sending and receiving processes.

On Return

88

psb rcv—Receive data

Syntax

call psb rcv (icontxt, dat, src, m)

This subroutine receives a packet of data to a destination.

On Entry

icontxt the communication context identifying the virtual parallel machine.
Scope:global.
Type:required.
Specified as: an integer variable.

src Source process.
Scope:global.
Type:required.
Specified as: an integer value 0 <= src <= np− 1.

m Number of rows.
Scope:global.
Type:Optional.
Specified as: an integer value 0 <= m <= size(dat, 1).
When dat is a rank 2 array, specifies the number of rows to be sent inde-
pendently of the leading dimension size(dat, 1); must have the same value
on sending and receiving processes.

On Return

dat The data to be received.
Scope:local.
Type:required.
Specified as: an integer, real or complex variable, which may be a scalar,
or a rank 1 or 2 array, or a character or logical scalar. Type and rank
must agree on sender and receiver process; if m is not specified, size must
agree as well.

89

8 Error handling

The PSBLAS library error handling policy has been completely rewritten in
version 2.0. The idea behind the design of this new error handling strategy
is to keep error messages on a stack allowing the user to trace back up to
the point where the first error message has been generated. Every routine in
the PSBLAS-2.0 library has, as last non-optional argument, an integer info
variable; whenever, inside the routine, en error is detected, this variable is set
to a value corresponding to a specific error code. Then this error code is also
pushed on the error stack and then either control is returned to the caller routine
or the execution is aborted, depending on the users choice. At the time when
the execution is aborted, an error message is printed on standard output with
a level of verbosity than can be chosen by the user. If the execution is not
aborted, then, the caller routine checks the value returned in the info variable
and, if not zero, an error condition is raised. This process continues on all the
levels of nested calls until the level where the user decides to abort the program
execution.

Figure 8 shows the layout of a generic psb_foo routine with respect to the
PSBLAS-2.0 error handling policy. It is possible to see how, whenever an error
condition is detected, the info variable is set to the corresponding error code
which is, then, pushed on top of the stack by means of the psb_errpush. An
error condition may be directly detected inside a routine or indirectly checking
the error code returned returned by a called routine. Whenever an error is
encountered, after it has been pushed on stack, the program execution skips
to a point where the error condition is handled; the error condition is handled
either by returning control to the caller routine or by calling the psb_error
routine which prints the content of the error stack and aborts the program
execution.

Figure 9 reports a sample error message generated by the PSBLAS-2.0 li-
brary. This error has been generated by the fact that the user has chosen the
invalid “FOO” storage format to represent the sparse matrix. From this error
message it is possible to see that the error has been detected inside the psb_cest
subroutine called by psb_spasb ... by process 0 (i.e. the root process).

90

subroutine psb_foo(some args, info)

...

if(error detected) then

info=errcode1

call psb_errpush(’psb_foo’, errcode1)

goto 9999

end if

...

call psb_bar(some args, info)

if(info .ne. zero) then

info=errcode2

call psb_errpush(’psb_foo’, errcode2)

goto 9999

end if

...

9999 continue

if (err_act .eq. act_abort) then

call psb_error(icontxt)

return

else

return

end if

end subroutine psb_foo

Figure 8: The layout of a generic psb foo routine with respect to PSBLAS-2.0
error handling policy.

==
Process: 0. PSBLAS Error (4010) in subroutine: df_sample
Error from call to subroutine mat dist
==
Process: 0. PSBLAS Error (4010) in subroutine: mat_distv
Error from call to subroutine psb_spasb
==
Process: 0. PSBLAS Error (4010) in subroutine: psb_spasb
Error from call to subroutine psb_cest
==
Process: 0. PSBLAS Error (136) in subroutine: psb_cest
Format FOO is unknown
==
Aborting...

Figure 9: A sample PSBLAS-2.0 error message. Process 0 detected an error
condition inside the psb cest subroutine

91

psb errpush—Pushes an error code onto the
error stack

Syntax

call psb errpush (err c, r name, i err, a err)

On Entry

err c the error code
Scope: local
Type: required
Specified as: an integer.

r name the soutine where the error has been caught.
Scope: local
Type: required
Specified as: a string.

i err addional info for error code
Scope: local
Type: optional
Specified as: an integer array

a err addional info for error code
Scope: local
Type: optional
Specified as: a string.

92

psb error—Prints the error stack content and
aborts execution

Syntax

call psb error (icontxt)

On Entry

icontxt the communication context.
Scope: global
Type: optional
Specified as: an integer.

93

psb set errverbosity—Sets the verbosity of error
messages.

Syntax

call psb set errverbosity (v)

On Entry

v the verbosity level
Scope: global
Type: required
Specified as: an integer.

94

psb set erraction—Set the type of action to be
taken upon error condition.

Syntax

call psb set erraction (err act)

On Entry

err act the type of action.
Scope: global
Type: required
Specified as: an integer.

95

psb errcomm—Error communication routine

Syntax

call psb errcomm (icontxt, err)

On Entry

icontxt the communication context.
Scope: global
Type: required
Specified as: an integer.

err the error code to be communicated
Scope: global
Type: required
Specified as: an integer.

96

9 Utilities

97

10 Preconditioner routines

The base PSBLAS library contains the implementation of two simple precondi-
tioning techniques:

• Diagonal Scaling

• Block Jacobi with ILU(0) factorization

The supporting data type and subroutine interfaces are defined in the module
psb_prec_mod.

98

psb precset—Sets the preconditioner type

Syntax

call psb precset (prec, ptype, info)

On Entry

prec Scope: local
Type: required
Specified as: a pronditioner data structure psb prec type.

ptype the type of preconditioner. Scope: global
Type: required
Specified as: a character string, see usage notes.

On Exit

info Scope: global
Type: required
Error code: if no error, 0 is returned.

Usage Notes

Legal inputs to this subroutine are interpreted depending on the ptype string as
follows2:

NONE No preconditioning, i.e. the preconditioner is just a copy operator.

DIAG Diagonal scaling; each entry of the input vector is multiplied by the
reciprocal of the sum of the absolute values of the coefficients in the cor-
responding row of matrix A;

ILU, BJA Precondition by the incomplete LU factorization of the block-diagonal
of matrix A, where block boundaries are determined by the data allocation
boundaries for each process; requires no communication. Only ILU(0) is
currently implemented.

2The string is case-insensitive

99

psb precbld—Builds a preconditioner

Syntax

call psb precbld (a, desc a, prec, info, upd)

On Entry

a the system sparse matrix. Scope: local
Type: required
Specified as: a sparse matrix data structure psb spmat type.

desc a the problem communication descriptor. Scope: local
Type: required
Specified as: a communication descriptor data structure psb desc type.

upd Scope: global
Type: optional
Specified as: a character.

On Return

prec the preconditioner.
Scope: local
Type: required
Specified as: a precondtioner data structure psb prec type

info Error code.
Scope: local
Type: required
An integer value; 0 means no error has been detected.

100

psb precaply—Preconditioner application
routine

Syntax

call psb precaply (prec,x,y,desc a,info,trans,work)

call psb precaply (prec,x,desc a,info,trans)

On Entry

prec the preconditioner. Scope: local
Type: required
Specified as: a preconditioner data structure psb prec type.

x the source vector. Scope: local
Type: require
Specified as: a double precision array.

desc a the problem communication descriptor. Scope: local
Type: required
Specified as: a communication data structure psb desc type.

trans Scope:
Type: optional
Specified as: a character.

work an optional work space Scope: local
Type: optional
Specified as: a double precision array.

On Return

y the destination vector. Scope: local
Type: required
Specified as: a double precision array.

info Error code.
Scope: local
Type: required
An integer value; 0 means no error has been detected.

101

psb prec descr—Prints a description of current
preconditioner

Syntax

call psb prec descr (prec)

On Entry

prec the preconditioner. Scope: local
Type: required
Specified as: a preconditioner data structure psb prec type.

102

11 Iterative Methods

In this chapter we provide routines for preconditioners and iterative methods.

103

psb krylov —Krylov Methods Driver Routine

This subroutine is a driver that provides a general interface for all the Krylov-
Subspace family methods implemented in PSBLAS-2.0.

The stopping criterion is the normwise backward error, in the infinity norm,
i.e. the iteration is stopped when

‖r‖
(‖A‖‖x‖+ ‖b‖)

< eps

or
‖ri‖
‖b‖2

< eps

according to the value passed through the istop argument (see later).

Syntax

call psb krylov (method,a,prec,b,x,eps,desc a,info,itmax,iter,err,itrace,istop)

On Entry

method a string that defines the iterative method to be used. Valid values in
PSBLAS-2.0 are:

CG : the Conjugate gradient method;

CGS :the Conjugate Gradient Stabilized method;

BICG : the Bi-Conjugate Gradient method;

BICGSTAB : the Bi-Conjugate Gradient Stabilized method;

BICGSTABL : the Bi-Conjugate Gradient Stabilized method with restart-
ing;

RGMRES : the Generalized Minimal Residual method with restarting.

a the local portion of global sparse matrix A.
Scope: local
Type: required
Specified as: a structured data of type psb spmat type.

prec The data structure containing the preconditioner.
Scope: local
Type: required
Specified as: a structured data of type psb prec type.

b The RHS vector.
Scope: local
Type: required
Specified as: a rank one array.

104

x The initial guess.
Scope: local
Type: required
Specified as: a rank one array.

eps The stopping tolerance.
Scope: global
Type: required
Specified as: a real number.

desc a contains data structures for communications.
Scope: local
Type: required
Specified as: a structured data of type psb desc type.

itmax The maximum number of iterations to perform.
Scope: global
Type: optional
Default: itmax = 1000.
Specified as: an integer variable itmax ≥ 1.

itrace If > 0 print out an informational message about convergence every itrace
iterations.
Scope: global
Type: optional

istop An integer specifying the stopping criterion.
Scope: global
Type: optional

On Return

x The computed solution.
Scope: local
Type: required
Specified as: a rank one array.

iter The number of iterations performed.
Scope: global
Type: optional
Returned as: an integer variable.

err The convergence estimate on exit.
Scope: global
Type: optional
Returned as: a real number.

info Error code.
Scope: local
Type: required
An integer value; 0 means no error has been detected.

105

References

[1] Lawson, C., Hanson, R., Kincaid, D. and Krogh, F., Basic Linear Algebra
Subprograms for Fortran usage, ACM Trans. Math. Softw. vol. 5, 38–329,
1979.

[2] Dongarra, J. J., DuCroz, J., Hammarling, S. and Hanson, R., An Ex-
tended Set of Fortran Basic Linear Algebra Subprograms, ACM Trans.
Math. Softw. vol. 14, 1–17, 1988.

[3] Dongarra, J., DuCroz, J., Hammarling, S. and Duff, I., A Set of level 3
Basic Linear Algebra Subprograms, ACM Trans. Math. Softw. vol. 16, 1–
17, 1990.

[4] R.E. Bank and C.C. Douglas, SMMP: Sparse Matrix Multiplication Pack-
age, Advances in Computational Mathematics, 1993, 1, 127-137. (See also
http://www.mgnet.org/ douglas/ccd-codes.html)

[5] G. Bella, S. Filippone, A. De Maio and M. Testa, A Simulation Model for
Forest Fires, in J. Dongarra, K. Madsen, J. Wasniewski, editors, Proceed-
ings of PARA 04 Workshop on State of the Art in Scientific Computing,
pp. 546–553, Lecture Notes in Computer Science, Springer, 2005.

[6] A. Buttari, P. D’Ambra, D. di Serafino and S. Filippone, Extending PS-
BLAS to Build Parallel Schwarz Preconditioners, in , J. Dongarra, K. Mad-
sen, J. Wasniewski, editors, Proceedings of PARA 04 Workshop on State of
the Art in Scientific Computing, pp. 593–602, Lecture Notes in Computer
Science, Springer, 2005.

[7] X. C. Cai and Y. Saad, Overlapping Domain Decomposition Algorithms
for General Sparse Matrices, Numerical Linear Algebra with Applications,
3(3), pp. 221–237, 1996.

[8] X.C. Cai and M. Sarkis, A Restricted Additive Schwarz Preconditioner for
General Sparse Linear Systems, SIAM Journal on Scientific Computing,
21(2), pp. 792–797, 1999.

[9] X.C. Cai and O. B. Widlund, Domain Decomposition Algorithms for In-
definite Elliptic Problems, SIAM Journal on Scientific and Statistical Com-
puting, 13(1), pp. 243–258, 1992.

[10] T. Chan and T. Mathew, Domain Decomposition Algorithms, in A. Iserles,
editor, Acta Numerica 1994, pp. 61–143, 1994. Cambridge University Press.

[11] P. D’Ambra, D. di Serafino and S. Filippone, On the Development of
PSBLAS-based Parallel Two-level Schwarz Preconditioners, Applied Nu-
merical Mathematics, to appear, 2007.

[12] T.A. Davis, Algorithm 832: UMFPACK - an Unsymmetric-pattern Mul-
tifrontal Method with a Column Pre-ordering Strategy, ACM Trans-
actions on Mathematical Software, 30, pp. 196–199, 2004. (See also
http://www.cise.ufl.edu/ davis/)

106

[13] J.W. Demmel, S.C. Eisenstat, J.R. Gilbert, X.S. Li and J.W.H. Liu, A
supernodal approach to sparse partial pivoting, SIAM Journal on Matrix
Analysis and Applications, 20(3), pp. 720–755, 1999.

[14] J. J. Dongarra and R. C. Whaley, A User’s Guide to the BLACS v. 1.1, La-
pack Working Note 94, Tech. Rep. UT-CS-95-281, University of Tennessee,
March 1995 (updated May 1997).

[15] I. Duff, M. Marrone, G. Radicati and C. Vittoli, Level 3 Basic Linear
Algebra Subprograms for Sparse Matrices: a User Level Interface, ACM
Transactions on Mathematical Software, 23(3), pp. 379–401, 1997.

[16] I. Duff, M. Heroux and R. Pozo, An Overview of the Sparse Basic Linear
Algebra Subprograms: the New Standard from the BLAS Technical Forum,
ACM Transactions on Mathematical Software, 28(2), pp. 239–267, 2002.

[17] S. Filippone and M. Colajanni, PSBLAS: A Library for Parallel Linear
Algebra Computation on Sparse Matrices, ACM Transactions on Mathe-
matical Software, 26(4), pp. 527–550, 2000.

[18] S. Filippone, P. D’Ambra, M. Colajanni, Using a Parallel Library of Sparse
Linear Algebra in a Fluid Dynamics Applications Code on Linux Clusters,
in G. Joubert, A. Murli, F. Peters, M. Vanneschi, editors, Parallel Com-
puting - Advances & Current Issues, pp. 441–448, Imperial College Press,
2002.

[19] Karypis, G. and Kumar, V., METIS: Unstructured Graph Partitioning
and Sparse Matrix Ordering System. Minneapolis, MN 55455: University
of Minnesota, Department of Computer Science, 1995. Internet Address:
http://www.cs.umn.edu/~karypis.

[20] Machiels, L. and Deville, M. Fortran 90: An entry to object-oriented pro-
gramming for the solution of partial differential equations. ACM Trans.
Math. Softw. vol. 23, 32–49.

[21] Metcalf, M., Reid, J. and Cohen, M. Fortran 95/2003 explained. Oxford
University Press, 2004.

[22] B. Smith, P. Bjorstad and W. Gropp, Domain Decomposition: Parallel
Multilevel Methods for Elliptic Partial Differential Equations, Cambridge
University Press, 1996.

[23] M. Snir, S. Otto, S. Huss-Lederman, D. Walker and J. Dongarra, MPI:
The Complete Reference. Volume 1 - The MPI Core, second edition, MIT
Press, 1998.

107

	PSBLAS-v2.1 User's Guide
	1 Introduction
	2 General overview
	2.1 Basic Nomenclature
	2.2 Library contents
	2.3 Application structure
	2.4 Programming model

	3 Data Structures
	3.1 Descriptor data structure
	3.1.1 Named Constants

	3.2 Sparse Matrix data structure
	3.2.1 Named Constants

	3.3 Preconditioner data structure
	3.4 Data structure query routines
	psb_cd_get_local_rows
	psb_cd_get_local_cols
	psb_cd_get_global_rows
	psb_cd_get_contex
	psb_sp_get_nrows
	psb_sp_get_ncols
	psb_sp_get_nnzeros

	4 Computational routines
	psb_geaxpby
	psb_gedot
	psb_gedots
	psb_geamax
	psb_geamaxs
	psb_geasum
	psb_geasums
	psb_genrm2
	psb_genrm2s
	psb_spnrmi
	psb_spmm
	psb_spsm

	5 Communication routines
	psb_halo
	psb_ovrl
	psb_gather
	psb_scatter

	6 Data management routines
	psb_cdall
	psb_cdins
	psb_cdasb
	psb_cdcpy
	psb_cdfree
	psb_cdbldext
	psb_spall
	psb_spins
	psb_spasb
	psb_spfree
	psb_sprn
	psb_geall
	psb_geins
	psb_geasb
	psb_gefree
	psb_gelp
	psb_glob_to_loc
	psb_loc_to_glob
	psb_get_boundary
	psb_get_overlap

	7 Parallel environment routines
	psb_init
	psb_info
	psb_exit
	psb_get_mpicomm
	psb_get_rank
	psb_wtime
	psb_barrier
	psb_abort
	psb_bcast
	psb_sum
	psb_amx
	psb_amn
	psb_snd
	psb_rcv

	8 Error handling
	psb_errpush
	psb_error
	psb_set_errverbosity
	psb_set_erraction
	psb_errcomm

	9 Utilities
	10 Preconditioner routines
	psb_precset
	psb_precbld
	psb_precaply
	psb_prec_descr

	11 Iterative Methods
	psb_krylov

