!!$ !!$ Parallel Sparse BLAS version 3.1 !!$ (C) Copyright 2006, 2007, 2008, 2009, 2010, 2012, 2013 !!$ Salvatore Filippone University of Rome Tor Vergata !!$ Alfredo Buttari CNRS-IRIT, Toulouse !!$ !!$ Redistribution and use in source and binary forms, with or without !!$ modification, are permitted provided that the following conditions !!$ are met: !!$ 1. Redistributions of source code must retain the above copyright !!$ notice, this list of conditions and the following disclaimer. !!$ 2. Redistributions in binary form must reproduce the above copyright !!$ notice, this list of conditions, and the following disclaimer in the !!$ documentation and/or other materials provided with the distribution. !!$ 3. The name of the PSBLAS group or the names of its contributors may !!$ not be used to endorse or promote products derived from this !!$ software without specific written permission. !!$ !!$ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS !!$ ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED !!$ TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR !!$ PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE PSBLAS GROUP OR ITS CONTRIBUTORS !!$ BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR !!$ CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF !!$ SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS !!$ INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN !!$ CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) !!$ ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE !!$ POSSIBILITY OF SUCH DAMAGE. !!$ !!$ ! ! package: psb_z_base_vect_mod ! ! This module contains the definition of the psb_z_base_vect type which ! is a container for dense vectors. ! This is encapsulated instead of being just a simple array to allow for ! more complicated situations, such as GPU programming, where the memory ! area we are interested in is not easily accessible from the host/Fortran ! side. It is also meant to be encapsulated in an outer type, to allow ! runtime switching as per the STATE design pattern, similar to the ! sparse matrix types. ! ! module psb_z_base_vect_mod use psb_const_mod use psb_error_mod use psb_i_base_vect_mod !> \namespace psb_base_mod \class psb_z_base_vect_type !! The psb_z_base_vect_type !! defines a middle level complex(psb_dpk_) encapsulated dense vector. !! The encapsulation is needed, in place of a simple array, to allow !! for complicated situations, such as GPU programming, where the memory !! area we are interested in is not easily accessible from the host/Fortran !! side. It is also meant to be encapsulated in an outer type, to allow !! runtime switching as per the STATE design pattern, similar to the !! sparse matrix types. !! type psb_z_base_vect_type !> Values. complex(psb_dpk_), allocatable :: v(:) contains ! ! Constructors/allocators ! procedure, pass(x) :: bld_x => z_base_bld_x procedure, pass(x) :: bld_n => z_base_bld_n generic, public :: bld => bld_x, bld_n procedure, pass(x) :: all => z_base_all procedure, pass(x) :: mold => z_base_mold ! ! Insert/set. Assembly and free. ! Assembly does almost nothing here, but is important ! in derived classes. ! procedure, pass(x) :: ins_a => z_base_ins_a procedure, pass(x) :: ins_v => z_base_ins_v generic, public :: ins => ins_a, ins_v procedure, pass(x) :: zero => z_base_zero procedure, pass(x) :: asb => z_base_asb procedure, pass(x) :: free => z_base_free ! ! Sync: centerpiece of handling of external storage. ! Any derived class having extra storage upon sync ! will guarantee that both fortran/host side and ! external side contain the same data. The base ! version is only a placeholder. ! procedure, pass(x) :: sync => z_base_sync procedure, pass(x) :: is_host => z_base_is_host procedure, pass(x) :: is_dev => z_base_is_dev procedure, pass(x) :: is_sync => z_base_is_sync procedure, pass(x) :: set_host => z_base_set_host procedure, pass(x) :: set_dev => z_base_set_dev procedure, pass(x) :: set_sync => z_base_set_sync ! ! Basic info procedure, pass(x) :: get_nrows => z_base_get_nrows procedure, pass(x) :: sizeof => z_base_sizeof procedure, nopass :: get_fmt => z_base_get_fmt ! ! Set/get data from/to an external array; also ! overload assignment. ! procedure, pass(x) :: get_vect => z_base_get_vect procedure, pass(x) :: set_scal => z_base_set_scal procedure, pass(x) :: set_vect => z_base_set_vect generic, public :: set => set_vect, set_scal ! ! Dot product and AXPBY ! procedure, pass(x) :: dot_v => z_base_dot_v procedure, pass(x) :: dot_a => z_base_dot_a generic, public :: dot => dot_v, dot_a procedure, pass(y) :: axpby_v => z_base_axpby_v procedure, pass(y) :: axpby_a => z_base_axpby_a generic, public :: axpby => axpby_v, axpby_a ! ! Vector by vector multiplication. Need all variants ! to handle multiple requirements from preconditioners ! procedure, pass(y) :: mlt_v => z_base_mlt_v procedure, pass(y) :: mlt_a => z_base_mlt_a procedure, pass(z) :: mlt_a_2 => z_base_mlt_a_2 procedure, pass(z) :: mlt_v_2 => z_base_mlt_v_2 procedure, pass(z) :: mlt_va => z_base_mlt_va procedure, pass(z) :: mlt_av => z_base_mlt_av generic, public :: mlt => mlt_v, mlt_a, mlt_a_2, mlt_v_2, mlt_av, mlt_va ! ! Scaling and norms ! procedure, pass(x) :: scal => z_base_scal procedure, pass(x) :: absval1 => z_base_absval1 procedure, pass(x) :: absval2 => z_base_absval2 generic, public :: absval => absval1, absval2 procedure, pass(x) :: nrm2 => z_base_nrm2 procedure, pass(x) :: amax => z_base_amax procedure, pass(x) :: asum => z_base_asum ! ! Gather/scatter. These are needed for MPI interfacing. ! May have to be reworked. ! procedure, pass(x) :: gthab => z_base_gthab procedure, pass(x) :: gthzv => z_base_gthzv procedure, pass(x) :: gthzv_x => z_base_gthzv_x generic, public :: gth => gthab, gthzv, gthzv_x procedure, pass(y) :: sctb => z_base_sctb procedure, pass(y) :: sctb_x => z_base_sctb_x generic, public :: sct => sctb, sctb_x end type psb_z_base_vect_type public :: psb_z_base_vect private :: constructor, size_const interface psb_z_base_vect module procedure constructor, size_const end interface psb_z_base_vect contains ! ! Constructors. ! !> Function constructor: !! \brief Constructor from an array !! \param x(:) input array to be copied !! function constructor(x) result(this) complex(psb_dpk_) :: x(:) type(psb_z_base_vect_type) :: this integer(psb_ipk_) :: info this%v = x call this%asb(size(x,kind=psb_ipk_),info) end function constructor !> Function constructor: !! \brief Constructor from size !! \param n Size of vector to be built. !! function size_const(n) result(this) integer(psb_ipk_), intent(in) :: n type(psb_z_base_vect_type) :: this integer(psb_ipk_) :: info call this%asb(n,info) end function size_const ! ! Build from a sample ! !> Function bld_x: !! \memberof psb_z_base_vect_type !! \brief Build method from an array !! \param x(:) input array to be copied !! subroutine z_base_bld_x(x,this) use psb_realloc_mod complex(psb_dpk_), intent(in) :: this(:) class(psb_z_base_vect_type), intent(inout) :: x integer(psb_ipk_) :: info call psb_realloc(size(this),x%v,info) if (info /= 0) then call psb_errpush(psb_err_alloc_dealloc_,'base_vect_bld') return end if x%v(:) = this(:) end subroutine z_base_bld_x ! ! Create with size, but no initialization ! !> Function bld_n: !! \memberof psb_z_base_vect_type !! \brief Build method with size (uninitialized data) !! \param n size to be allocated. !! subroutine z_base_bld_n(x,n) use psb_realloc_mod integer(psb_ipk_), intent(in) :: n class(psb_z_base_vect_type), intent(inout) :: x integer(psb_ipk_) :: info call psb_realloc(n,x%v,info) call x%asb(n,info) end subroutine z_base_bld_n !> Function base_all: !! \memberof psb_z_base_vect_type !! \brief Build method with size (uninitialized data) and !! allocation return code. !! \param n size to be allocated. !! \param info return code !! subroutine z_base_all(n, x, info) use psi_serial_mod use psb_realloc_mod implicit none integer(psb_ipk_), intent(in) :: n class(psb_z_base_vect_type), intent(out) :: x integer(psb_ipk_), intent(out) :: info call psb_realloc(n,x%v,info) end subroutine z_base_all !> Function base_mold: !! \memberof psb_z_base_vect_type !! \brief Mold method: return a variable with the same dynamic type !! \param y returned variable !! \param info return code !! subroutine z_base_mold(x, y, info) use psi_serial_mod use psb_realloc_mod implicit none class(psb_z_base_vect_type), intent(in) :: x class(psb_z_base_vect_type), intent(out), allocatable :: y integer(psb_ipk_), intent(out) :: info allocate(psb_z_base_vect_type :: y, stat=info) end subroutine z_base_mold ! ! Insert a bunch of values at specified positions. ! !> Function base_ins: !! \memberof psb_z_base_vect_type !! \brief Insert coefficients. !! !! !! Given a list of N pairs !! (IRL(i),VAL(i)) !! record a new coefficient in X such that !! X(IRL(1:N)) = VAL(1:N). !! !! - the update operation will perform either !! X(IRL(1:n)) = VAL(1:N) !! or !! X(IRL(1:n)) = X(IRL(1:n))+VAL(1:N) !! according to the value of DUPLICATE. !! !! !! \param n number of pairs in input !! \param irl(:) the input row indices !! \param val(:) the input coefficients !! \param dupl how to treat duplicate entries !! \param info return code !! ! subroutine z_base_ins_a(n,irl,val,dupl,x,info) use psi_serial_mod implicit none class(psb_z_base_vect_type), intent(inout) :: x integer(psb_ipk_), intent(in) :: n, dupl integer(psb_ipk_), intent(in) :: irl(:) complex(psb_dpk_), intent(in) :: val(:) integer(psb_ipk_), intent(out) :: info integer(psb_ipk_) :: i, isz info = 0 if (psb_errstatus_fatal()) return if (.not.allocated(x%v)) then info = psb_err_invalid_vect_state_ else if (n > min(size(irl),size(val))) then info = psb_err_invalid_input_ else isz = size(x%v) select case(dupl) case(psb_dupl_ovwrt_) do i = 1, n !loop over all val's rows ! row actual block row if ((1 <= irl(i)).and.(irl(i) <= isz)) then ! this row belongs to me ! copy i-th row of block val in x x%v(irl(i)) = val(i) end if enddo case(psb_dupl_add_) do i = 1, n !loop over all val's rows if ((1 <= irl(i)).and.(irl(i) <= isz)) then ! this row belongs to me ! copy i-th row of block val in x x%v(irl(i)) = x%v(irl(i)) + val(i) end if enddo case default info = 321 ! !$ call psb_errpush(info,name) ! !$ goto 9999 end select end if call x%set_host() if (info /= 0) then call psb_errpush(info,'base_vect_ins') return end if end subroutine z_base_ins_a subroutine z_base_ins_v(n,irl,val,dupl,x,info) use psi_serial_mod implicit none class(psb_z_base_vect_type), intent(inout) :: x integer(psb_ipk_), intent(in) :: n, dupl class(psb_i_base_vect_type), intent(inout) :: irl class(psb_z_base_vect_type), intent(inout) :: val integer(psb_ipk_), intent(out) :: info integer(psb_ipk_) :: i, isz info = 0 if (psb_errstatus_fatal()) return if (irl%is_dev()) call irl%sync() if (val%is_dev()) call val%sync() if (x%is_dev()) call x%sync() call x%ins(n,irl%v,val%v,dupl,info) if (info /= 0) then call psb_errpush(info,'base_vect_ins') return end if end subroutine z_base_ins_v ! !> Function base_zero !! \memberof psb_z_base_vect_type !! \brief Zero out contents !! ! subroutine z_base_zero(x) use psi_serial_mod implicit none class(psb_z_base_vect_type), intent(inout) :: x if (allocated(x%v)) x%v=zzero call x%set_host() end subroutine z_base_zero ! ! Assembly. ! For derived classes: after this the vector ! storage is supposed to be in sync. ! !> Function base_asb: !! \memberof psb_z_base_vect_type !! \brief Assemble vector: reallocate as necessary. !! !! \param n final size !! \param info return code !! ! subroutine z_base_asb(n, x, info) use psi_serial_mod use psb_realloc_mod implicit none integer(psb_ipk_), intent(in) :: n class(psb_z_base_vect_type), intent(inout) :: x integer(psb_ipk_), intent(out) :: info info = 0 if (x%get_nrows() < n) & & call psb_realloc(n,x%v,info) if (info /= 0) & & call psb_errpush(psb_err_alloc_dealloc_,'vect_asb') call x%sync() end subroutine z_base_asb ! !> Function base_free: !! \memberof psb_z_base_vect_type !! \brief Free vector !! !! \param info return code !! ! subroutine z_base_free(x, info) use psi_serial_mod use psb_realloc_mod implicit none class(psb_z_base_vect_type), intent(inout) :: x integer(psb_ipk_), intent(out) :: info info = 0 if (allocated(x%v)) deallocate(x%v, stat=info) if (info /= 0) call & & psb_errpush(psb_err_alloc_dealloc_,'vect_free') end subroutine z_base_free ! ! The base version of SYNC & friends does nothing, it's just ! a placeholder. ! ! !> Function base_sync: !! \memberof psb_z_base_vect_type !! \brief Sync: base version is a no-op. !! ! subroutine z_base_sync(x) implicit none class(psb_z_base_vect_type), intent(inout) :: x end subroutine z_base_sync ! !> Function base_set_host: !! \memberof psb_z_base_vect_type !! \brief Set_host: base version is a no-op. !! ! subroutine z_base_set_host(x) implicit none class(psb_z_base_vect_type), intent(inout) :: x end subroutine z_base_set_host ! !> Function base_set_dev: !! \memberof psb_z_base_vect_type !! \brief Set_dev: base version is a no-op. !! ! subroutine z_base_set_dev(x) implicit none class(psb_z_base_vect_type), intent(inout) :: x end subroutine z_base_set_dev ! !> Function base_set_sync: !! \memberof psb_z_base_vect_type !! \brief Set_sync: base version is a no-op. !! ! subroutine z_base_set_sync(x) implicit none class(psb_z_base_vect_type), intent(inout) :: x end subroutine z_base_set_sync ! !> Function base_is_dev: !! \memberof psb_z_base_vect_type !! \brief Is vector on external device . !! ! function z_base_is_dev(x) result(res) implicit none class(psb_z_base_vect_type), intent(in) :: x logical :: res res = .false. end function z_base_is_dev ! !> Function base_is_host !! \memberof psb_z_base_vect_type !! \brief Is vector on standard memory . !! ! function z_base_is_host(x) result(res) implicit none class(psb_z_base_vect_type), intent(in) :: x logical :: res res = .true. end function z_base_is_host ! !> Function base_is_sync !! \memberof psb_z_base_vect_type !! \brief Is vector on sync . !! ! function z_base_is_sync(x) result(res) implicit none class(psb_z_base_vect_type), intent(in) :: x logical :: res res = .true. end function z_base_is_sync ! ! Size info. ! ! !> Function base_get_nrows !! \memberof psb_z_base_vect_type !! \brief Number of entries !! ! function z_base_get_nrows(x) result(res) implicit none class(psb_z_base_vect_type), intent(in) :: x integer(psb_ipk_) :: res res = 0 if (allocated(x%v)) res = size(x%v) end function z_base_get_nrows ! !> Function base_get_sizeof !! \memberof psb_z_base_vect_type !! \brief Size in bytes !! ! function z_base_sizeof(x) result(res) implicit none class(psb_z_base_vect_type), intent(in) :: x integer(psb_long_int_k_) :: res ! Force 8-byte integers. res = (1_psb_long_int_k_ * (2*psb_sizeof_dp)) * x%get_nrows() end function z_base_sizeof ! !> Function base_get_fmt !! \memberof psb_z_base_vect_type !! \brief Format !! ! function z_base_get_fmt() result(res) implicit none character(len=5) :: res res = 'BASE' end function z_base_get_fmt ! ! ! !> Function base_get_vect !! \memberof psb_z_base_vect_type !! \brief Extract a copy of the contents !! ! function z_base_get_vect(x) result(res) class(psb_z_base_vect_type), intent(inout) :: x complex(psb_dpk_), allocatable :: res(:) integer(psb_ipk_) :: info if (.not.allocated(x%v)) return if (.not.x%is_host()) call x%sync() allocate(res(x%get_nrows()),stat=info) if (info /= 0) then call psb_errpush(psb_err_alloc_dealloc_,'base_get_vect') return end if res(:) = x%v(:) end function z_base_get_vect ! ! Reset all values ! ! !> Function base_set_scal !! \memberof psb_z_base_vect_type !! \brief Set all entries !! \param val The value to set !! subroutine z_base_set_scal(x,val) class(psb_z_base_vect_type), intent(inout) :: x complex(psb_dpk_), intent(in) :: val integer(psb_ipk_) :: info x%v = val call x%set_host() end subroutine z_base_set_scal ! ! Overwrite with absolute value ! ! !> Function base_set_scal !! \memberof psb_z_base_vect_type !! \brief Set all entries to their respective absolute values. !! subroutine z_base_absval1(x) class(psb_z_base_vect_type), intent(inout) :: x if (allocated(x%v)) then if (.not.x%is_host()) call x%sync() x%v = abs(x%v) call x%set_host() end if end subroutine z_base_absval1 subroutine z_base_absval2(x,y) class(psb_z_base_vect_type), intent(inout) :: x class(psb_z_base_vect_type), intent(inout) :: y if (.not.x%is_host()) call x%sync() if (allocated(x%v)) then call y%bld(x%v) call y%absval() call y%set_host() end if end subroutine z_base_absval2 ! !> Function base_set_vect !! \memberof psb_z_base_vect_type !! \brief Set all entries !! \param val(:) The vector to be copied in !! subroutine z_base_set_vect(x,val) class(psb_z_base_vect_type), intent(inout) :: x complex(psb_dpk_), intent(in) :: val(:) integer(psb_ipk_) :: nr integer(psb_ipk_) :: info if (allocated(x%v)) then nr = min(size(x%v),size(val)) x%v(1:nr) = val(1:nr) else x%v = val end if call x%set_host() end subroutine z_base_set_vect ! ! Dot products ! ! !> Function base_dot_v !! \memberof psb_z_base_vect_type !! \brief Dot product by another base_vector !! \param n Number of entries to be considere !! \param y The other (base_vect) to be multiplied by !! function z_base_dot_v(n,x,y) result(res) implicit none class(psb_z_base_vect_type), intent(inout) :: x, y integer(psb_ipk_), intent(in) :: n complex(psb_dpk_) :: res complex(psb_dpk_), external :: zdotc res = zzero ! ! Note: this is the base implementation. ! When we get here, we are sure that X is of ! TYPE psb_z_base_vect. ! If Y is not, throw the burden on it, implicitly ! calling dot_a ! select type(yy => y) type is (psb_z_base_vect_type) res = zdotc(n,x%v,1,y%v,1) class default res = y%dot(n,x%v) end select end function z_base_dot_v ! ! Base workhorse is good old BLAS1 ! ! !> Function base_dot_a !! \memberof psb_z_base_vect_type !! \brief Dot product by a normal array !! \param n Number of entries to be considere !! \param y(:) The array to be multiplied by !! function z_base_dot_a(n,x,y) result(res) implicit none class(psb_z_base_vect_type), intent(inout) :: x complex(psb_dpk_), intent(in) :: y(:) integer(psb_ipk_), intent(in) :: n complex(psb_dpk_) :: res complex(psb_dpk_), external :: zdotc res = zdotc(n,y,1,x%v,1) end function z_base_dot_a ! ! AXPBY is invoked via Y, hence the structure below. ! ! ! !> Function base_axpby_v !! \memberof psb_z_base_vect_type !! \brief AXPBY by a (base_vect) y=alpha*x+beta*y !! \param m Number of entries to be considere !! \param alpha scalar alpha !! \param x The class(base_vect) to be added !! \param beta scalar alpha !! \param info return code !! subroutine z_base_axpby_v(m,alpha, x, beta, y, info) use psi_serial_mod implicit none integer(psb_ipk_), intent(in) :: m class(psb_z_base_vect_type), intent(inout) :: x class(psb_z_base_vect_type), intent(inout) :: y complex(psb_dpk_), intent (in) :: alpha, beta integer(psb_ipk_), intent(out) :: info select type(xx => x) type is (psb_z_base_vect_type) call psb_geaxpby(m,alpha,x%v,beta,y%v,info) class default call y%axpby(m,alpha,x%v,beta,info) end select end subroutine z_base_axpby_v ! ! AXPBY is invoked via Y, hence the structure below. ! ! !> Function base_axpby_a !! \memberof psb_z_base_vect_type !! \brief AXPBY by a normal array y=alpha*x+beta*y !! \param m Number of entries to be considere !! \param alpha scalar alpha !! \param x(:) The array to be added !! \param beta scalar alpha !! \param info return code !! subroutine z_base_axpby_a(m,alpha, x, beta, y, info) use psi_serial_mod implicit none integer(psb_ipk_), intent(in) :: m complex(psb_dpk_), intent(in) :: x(:) class(psb_z_base_vect_type), intent(inout) :: y complex(psb_dpk_), intent (in) :: alpha, beta integer(psb_ipk_), intent(out) :: info call psb_geaxpby(m,alpha,x,beta,y%v,info) end subroutine z_base_axpby_a ! ! Multiple variants of two operations: ! Simple multiplication Y(:) = X(:)*Y(:) ! blas-like: Z(:) = alpha*X(:)*Y(:)+beta*Z(:) ! ! Variants expanded according to the dynamic type ! of the involved entities ! ! !> Function base_mlt_a !! \memberof psb_z_base_vect_type !! \brief Vector entry-by-entry multiply by a base_vect array y=x*y !! \param x The class(base_vect) to be multiplied by !! \param info return code !! subroutine z_base_mlt_v(x, y, info) use psi_serial_mod implicit none class(psb_z_base_vect_type), intent(inout) :: x class(psb_z_base_vect_type), intent(inout) :: y integer(psb_ipk_), intent(out) :: info integer(psb_ipk_) :: i, n info = 0 select type(xx => x) type is (psb_z_base_vect_type) n = min(size(y%v), size(xx%v)) do i=1, n y%v(i) = y%v(i)*xx%v(i) end do class default call y%mlt(x%v,info) end select end subroutine z_base_mlt_v ! !> Function base_mlt_a !! \memberof psb_z_base_vect_type !! \brief Vector entry-by-entry multiply by a normal array y=x*y !! \param x(:) The array to be multiplied by !! \param info return code !! subroutine z_base_mlt_a(x, y, info) use psi_serial_mod implicit none complex(psb_dpk_), intent(in) :: x(:) class(psb_z_base_vect_type), intent(inout) :: y integer(psb_ipk_), intent(out) :: info integer(psb_ipk_) :: i, n info = 0 n = min(size(y%v), size(x)) do i=1, n y%v(i) = y%v(i)*x(i) end do end subroutine z_base_mlt_a ! !> Function base_mlt_a_2 !! \memberof psb_z_base_vect_type !! \brief AXPBY-like Vector entry-by-entry multiply by normal arrays !! z=beta*z+alpha*x*y !! \param alpha !! \param beta !! \param x(:) The array to be multiplied b !! \param y(:) The array to be multiplied by !! \param info return code !! subroutine z_base_mlt_a_2(alpha,x,y,beta,z,info) use psi_serial_mod implicit none complex(psb_dpk_), intent(in) :: alpha,beta complex(psb_dpk_), intent(in) :: y(:) complex(psb_dpk_), intent(in) :: x(:) class(psb_z_base_vect_type), intent(inout) :: z integer(psb_ipk_), intent(out) :: info integer(psb_ipk_) :: i, n info = 0 n = min(size(z%v), size(x), size(y)) !!$ write(0,*) 'Mlt_a_2: ',n if (alpha == zzero) then if (beta == zone) then return else do i=1, n z%v(i) = beta*z%v(i) end do end if else if (alpha == zone) then if (beta == zzero) then do i=1, n z%v(i) = y(i)*x(i) end do else if (beta == zone) then do i=1, n z%v(i) = z%v(i) + y(i)*x(i) end do else do i=1, n z%v(i) = beta*z%v(i) + y(i)*x(i) end do end if else if (alpha == -zone) then if (beta == zzero) then do i=1, n z%v(i) = -y(i)*x(i) end do else if (beta == zone) then do i=1, n z%v(i) = z%v(i) - y(i)*x(i) end do else do i=1, n z%v(i) = beta*z%v(i) - y(i)*x(i) end do end if else if (beta == zzero) then do i=1, n z%v(i) = alpha*y(i)*x(i) end do else if (beta == zone) then do i=1, n z%v(i) = z%v(i) + alpha*y(i)*x(i) end do else do i=1, n z%v(i) = beta*z%v(i) + alpha*y(i)*x(i) end do end if end if end if end subroutine z_base_mlt_a_2 ! !> Function base_mlt_v_2 !! \memberof psb_z_base_vect_type !! \brief AXPBY-like Vector entry-by-entry multiply by class(base_vect) !! z=beta*z+alpha*x*y !! \param alpha !! \param beta !! \param x The class(base_vect) to be multiplied b !! \param y The class(base_vect) to be multiplied by !! \param info return code !! subroutine z_base_mlt_v_2(alpha,x,y,beta,z,info,conjgx,conjgy) use psi_serial_mod use psb_string_mod implicit none complex(psb_dpk_), intent(in) :: alpha,beta class(psb_z_base_vect_type), intent(inout) :: x class(psb_z_base_vect_type), intent(inout) :: y class(psb_z_base_vect_type), intent(inout) :: z integer(psb_ipk_), intent(out) :: info character(len=1), intent(in), optional :: conjgx, conjgy integer(psb_ipk_) :: i, n logical :: conjgx_, conjgy_ info = 0 if (.not.psb_z_is_complex_) then call z%mlt(alpha,x%v,y%v,beta,info) else conjgx_=.false. if (present(conjgx)) conjgx_ = (psb_toupper(conjgx)=='C') conjgy_=.false. if (present(conjgy)) conjgy_ = (psb_toupper(conjgy)=='C') if (conjgx_) x%v=conjg(x%v) if (conjgy_) y%v=conjg(y%v) call z%mlt(alpha,x%v,y%v,beta,info) if (conjgx_) x%v=conjg(x%v) if (conjgy_) y%v=conjg(y%v) end if end subroutine z_base_mlt_v_2 subroutine z_base_mlt_av(alpha,x,y,beta,z,info) use psi_serial_mod implicit none complex(psb_dpk_), intent(in) :: alpha,beta complex(psb_dpk_), intent(in) :: x(:) class(psb_z_base_vect_type), intent(inout) :: y class(psb_z_base_vect_type), intent(inout) :: z integer(psb_ipk_), intent(out) :: info integer(psb_ipk_) :: i, n info = 0 call z%mlt(alpha,x,y%v,beta,info) end subroutine z_base_mlt_av subroutine z_base_mlt_va(alpha,x,y,beta,z,info) use psi_serial_mod implicit none complex(psb_dpk_), intent(in) :: alpha,beta complex(psb_dpk_), intent(in) :: y(:) class(psb_z_base_vect_type), intent(inout) :: x class(psb_z_base_vect_type), intent(inout) :: z integer(psb_ipk_), intent(out) :: info integer(psb_ipk_) :: i, n info = 0 call z%mlt(alpha,y,x,beta,info) end subroutine z_base_mlt_va ! ! Simple scaling ! !> Function base_scal !! \memberof psb_z_base_vect_type !! \brief Scale all entries x = alpha*x !! \param alpha The multiplier !! subroutine z_base_scal(alpha, x) use psi_serial_mod implicit none class(psb_z_base_vect_type), intent(inout) :: x complex(psb_dpk_), intent (in) :: alpha if (allocated(x%v)) x%v = alpha*x%v end subroutine z_base_scal ! ! Norms 1, 2 and infinity ! !> Function base_nrm2 !! \memberof psb_z_base_vect_type !! \brief 2-norm |x(1:n)|_2 !! \param n how many entries to consider function z_base_nrm2(n,x) result(res) implicit none class(psb_z_base_vect_type), intent(inout) :: x integer(psb_ipk_), intent(in) :: n real(psb_dpk_) :: res real(psb_dpk_), external :: dznrm2 res = dznrm2(n,x%v,1) end function z_base_nrm2 ! !> Function base_amax !! \memberof psb_z_base_vect_type !! \brief infinity-norm |x(1:n)|_\infty !! \param n how many entries to consider function z_base_amax(n,x) result(res) implicit none class(psb_z_base_vect_type), intent(inout) :: x integer(psb_ipk_), intent(in) :: n real(psb_dpk_) :: res res = maxval(abs(x%v(1:n))) end function z_base_amax ! !> Function base_asum !! \memberof psb_z_base_vect_type !! \brief 1-norm |x(1:n)|_1 !! \param n how many entries to consider function z_base_asum(n,x) result(res) implicit none class(psb_z_base_vect_type), intent(inout) :: x integer(psb_ipk_), intent(in) :: n real(psb_dpk_) :: res res = sum(abs(x%v(1:n))) end function z_base_asum ! ! Gather: Y = beta * Y + alpha * X(IDX(:)) ! ! !> Function base_gthab !! \memberof psb_z_base_vect_type !! \brief gather into an array !! Y = beta * Y + alpha * X(IDX(:)) !! \param n how many entries to consider !! \param idx(:) indices !! \param alpha !! \param beta subroutine z_base_gthab(n,idx,alpha,x,beta,y) use psi_serial_mod integer(psb_ipk_) :: n, idx(:) complex(psb_dpk_) :: alpha, beta, y(:) class(psb_z_base_vect_type) :: x call x%sync() call psi_gth(n,idx,alpha,x%v,beta,y) end subroutine z_base_gthab ! ! shortcut alpha=1 beta=0 ! !> Function base_gthzv !! \memberof psb_z_base_vect_type !! \brief gather into an array special alpha=1 beta=0 !! Y = X(IDX(:)) !! \param n how many entries to consider !! \param idx(:) indices subroutine z_base_gthzv_x(i,n,idx,x,y) use psi_serial_mod integer(psb_ipk_) :: i,n class(psb_i_base_vect_type) :: idx complex(psb_dpk_) :: y(:) class(psb_z_base_vect_type) :: x call x%gth(n,idx%v(i:),y) end subroutine z_base_gthzv_x ! ! shortcut alpha=1 beta=0 ! !> Function base_gthzv !! \memberof psb_z_base_vect_type !! \brief gather into an array special alpha=1 beta=0 !! Y = X(IDX(:)) !! \param n how many entries to consider !! \param idx(:) indices subroutine z_base_gthzv(n,idx,x,y) use psi_serial_mod integer(psb_ipk_) :: n, idx(:) complex(psb_dpk_) :: y(:) class(psb_z_base_vect_type) :: x call x%sync() call psi_gth(n,idx,x%v,y) end subroutine z_base_gthzv ! ! Scatter: ! Y(IDX(:)) = beta*Y(IDX(:)) + X(:) ! ! !> Function base_sctb !! \memberof psb_z_base_vect_type !! \brief scatter into a class(base_vect) !! Y(IDX(:)) = beta * Y(IDX(:)) + X(:) !! \param n how many entries to consider !! \param idx(:) indices !! \param beta !! \param x(:) subroutine z_base_sctb(n,idx,x,beta,y) use psi_serial_mod integer(psb_ipk_) :: n, idx(:) complex(psb_dpk_) :: beta, x(:) class(psb_z_base_vect_type) :: y call y%sync() call psi_sct(n,idx,x,beta,y%v) call y%set_host() end subroutine z_base_sctb subroutine z_base_sctb_x(i,n,idx,x,beta,y) use psi_serial_mod integer(psb_ipk_) :: i, n class(psb_i_base_vect_type) :: idx complex(psb_dpk_) :: beta, x(:) class(psb_z_base_vect_type) :: y call y%sct(n,idx%v(i:),x,beta) end subroutine z_base_sctb_x end module psb_z_base_vect_mod module psb_z_base_multivect_mod use psb_const_mod use psb_error_mod !> \namespace psb_base_mod \class psb_z_base_vect_type !! The psb_z_base_vect_type !! defines a middle level integer(psb_ipk_) encapsulated dense vector. !! The encapsulation is needed, in place of a simple array, to allow !! for complicated situations, such as GPU programming, where the memory !! area we are interested in is not easily accessible from the host/Fortran !! side. It is also meant to be encapsulated in an outer type, to allow !! runtime switching as per the STATE design pattern, similar to the !! sparse matrix types. !! private public :: psb_z_base_multivect, psb_z_base_multivect_type type psb_z_base_multivect_type !> Values. complex(psb_dpk_), allocatable :: v(:,:) contains ! ! Constructors/allocators ! procedure, pass(x) :: bld_x => z_base_mv_bld_x procedure, pass(x) :: bld_n => z_base_mv_bld_n generic, public :: bld => bld_x, bld_n procedure, pass(x) :: all => z_base_mv_all procedure, pass(x) :: mold => z_base_mv_mold ! ! Insert/set. Assembly and free. ! Assembly does almost nothing here, but is important ! in derived classes. ! procedure, pass(x) :: ins => z_base_mv_ins procedure, pass(x) :: zero => z_base_mv_zero procedure, pass(x) :: asb => z_base_mv_asb procedure, pass(x) :: free => z_base_mv_free ! ! Sync: centerpiece of handling of external storage. ! Any derived class having extra storage upon sync ! will guarantee that both fortran/host side and ! external side contain the same data. The base ! version is only a placeholder. ! procedure, pass(x) :: sync => z_base_mv_sync procedure, pass(x) :: is_host => z_base_mv_is_host procedure, pass(x) :: is_dev => z_base_mv_is_dev procedure, pass(x) :: is_sync => z_base_mv_is_sync procedure, pass(x) :: set_host => z_base_mv_set_host procedure, pass(x) :: set_dev => z_base_mv_set_dev procedure, pass(x) :: set_sync => z_base_mv_set_sync ! ! Basic info procedure, pass(x) :: get_nrows => z_base_mv_get_nrows procedure, pass(x) :: get_ncols => z_base_mv_get_ncols procedure, pass(x) :: sizeof => z_base_mv_sizeof procedure, nopass :: get_fmt => z_base_mv_get_fmt ! ! Set/get data from/to an external array; also ! overload assignment. ! procedure, pass(x) :: get_vect => z_base_mv_get_vect procedure, pass(x) :: set_scal => z_base_mv_set_scal procedure, pass(x) :: set_vect => z_base_mv_set_vect generic, public :: set => set_vect, set_scal ! ! Dot product and AXPBY ! !!$ procedure, pass(x) :: dot_v => z_base_mv_dot_v !!$ procedure, pass(x) :: dot_a => z_base_mv_dot_a !!$ generic, public :: dot => dot_v, dot_a !!$ procedure, pass(y) :: axpby_v => z_base_mv_axpby_v !!$ procedure, pass(y) :: axpby_a => z_base_mv_axpby_a !!$ generic, public :: axpby => axpby_v, axpby_a !!$ ! !!$ ! Vector by vector multiplication. Need all variants !!$ ! to handle multiple requirements from preconditioners !!$ ! !!$ procedure, pass(y) :: mlt_v => z_base_mv_mlt_v !!$ procedure, pass(y) :: mlt_a => z_base_mv_mlt_a !!$ procedure, pass(z) :: mlt_a_2 => z_base_mv_mlt_a_2 !!$ procedure, pass(z) :: mlt_v_2 => z_base_mv_mlt_v_2 !!$ procedure, pass(z) :: mlt_va => z_base_mv_mlt_va !!$ procedure, pass(z) :: mlt_av => z_base_mv_mlt_av !!$ generic, public :: mlt => mlt_v, mlt_a, mlt_a_2, mlt_v_2, mlt_av, mlt_va !!$ ! !!$ ! Scaling and norms !!$ ! !!$ procedure, pass(x) :: scal => z_base_mv_scal !!$ procedure, pass(x) :: nrm2 => z_base_mv_nrm2 !!$ procedure, pass(x) :: amax => z_base_mv_amax !!$ procedure, pass(x) :: asum => z_base_mv_asum !!$ ! !!$ ! Gather/scatter. These are needed for MPI interfacing. !!$ ! May have to be reworked. !!$ ! !!$ procedure, pass(x) :: gthab => z_base_mv_gthab !!$ procedure, pass(x) :: gthzv => z_base_mv_gthzv !!$ procedure, pass(x) :: gthzv_x => z_base_mv_gthzv_x !!$ generic, public :: gth => gthab, gthzv, gthzv_x !!$ procedure, pass(y) :: sctb => z_base_mv_sctb !!$ procedure, pass(y) :: sctb_x => z_base_mv_sctb_x !!$ generic, public :: sct => sctb, sctb_x end type psb_z_base_multivect_type interface psb_z_base_multivect module procedure constructor, size_const end interface contains ! ! Constructors. ! !> Function constructor: !! \brief Constructor from an array !! \param x(:) input array to be copied !! function constructor(x) result(this) complex(psb_dpk_) :: x(:,:) type(psb_z_base_multivect_type) :: this integer(psb_ipk_) :: info this%v = x call this%asb(size(x,dim=1,kind=psb_ipk_),size(x,dim=2,kind=psb_ipk_),info) end function constructor !> Function constructor: !! \brief Constructor from size !! \param n Size of vector to be built. !! function size_const(m,n) result(this) integer(psb_ipk_), intent(in) :: m,n type(psb_z_base_multivect_type) :: this integer(psb_ipk_) :: info call this%asb(m,n,info) end function size_const ! ! Build from a sample ! !> Function bld_x: !! \memberof psb_z_base_multivect_type !! \brief Build method from an array !! \param x(:) input array to be copied !! subroutine z_base_mv_bld_x(x,this) use psb_realloc_mod complex(psb_dpk_), intent(in) :: this(:,:) class(psb_z_base_multivect_type), intent(inout) :: x integer(psb_ipk_) :: info call psb_realloc(size(this,1),size(this,2),x%v,info) if (info /= 0) then call psb_errpush(psb_err_alloc_dealloc_,'base_mv_vect_bld') return end if x%v(:,:) = this(:,:) end subroutine z_base_mv_bld_x ! ! Create with size, but no initialization ! !> Function bld_n: !! \memberof psb_z_base_multivect_type !! \brief Build method with size (uninitialized data) !! \param n size to be allocated. !! subroutine z_base_mv_bld_n(x,m,n) use psb_realloc_mod integer(psb_ipk_), intent(in) :: m,n class(psb_z_base_multivect_type), intent(inout) :: x integer(psb_ipk_) :: info call psb_realloc(m,n,x%v,info) call x%asb(m,n,info) end subroutine z_base_mv_bld_n !> Function base_mv_all: !! \memberof psb_z_base_multivect_type !! \brief Build method with size (uninitialized data) and !! allocation return code. !! \param n size to be allocated. !! \param info return code !! subroutine z_base_mv_all(m,n, x, info) use psi_serial_mod use psb_realloc_mod implicit none integer(psb_ipk_), intent(in) :: m,n class(psb_z_base_multivect_type), intent(out) :: x integer(psb_ipk_), intent(out) :: info call psb_realloc(m,n,x%v,info) end subroutine z_base_mv_all !> Function base_mv_mold: !! \memberof psb_z_base_multivect_type !! \brief Mold method: return a variable with the same dynamic type !! \param y returned variable !! \param info return code !! subroutine z_base_mv_mold(x, y, info) use psi_serial_mod use psb_realloc_mod implicit none class(psb_z_base_multivect_type), intent(in) :: x class(psb_z_base_multivect_type), intent(out), allocatable :: y integer(psb_ipk_), intent(out) :: info allocate(psb_z_base_multivect_type :: y, stat=info) end subroutine z_base_mv_mold ! ! Insert a bunch of values at specified positions. ! !> Function base_mv_ins: !! \memberof psb_z_base_multivect_type !! \brief Insert coefficients. !! !! !! Given a list of N pairs !! (IRL(i),VAL(i)) !! record a new coefficient in X such that !! X(IRL(1:N)) = VAL(1:N). !! !! - the update operation will perform either !! X(IRL(1:n)) = VAL(1:N) !! or !! X(IRL(1:n)) = X(IRL(1:n))+VAL(1:N) !! according to the value of DUPLICATE. !! !! !! \param n number of pairs in input !! \param irl(:) the input row indices !! \param val(:) the input coefficients !! \param dupl how to treat duplicate entries !! \param info return code !! ! subroutine z_base_mv_ins(n,irl,val,dupl,x,info) use psi_serial_mod implicit none class(psb_z_base_multivect_type), intent(inout) :: x integer(psb_ipk_), intent(in) :: n, dupl integer(psb_ipk_), intent(in) :: irl(:) complex(psb_dpk_), intent(in) :: val(:,:) integer(psb_ipk_), intent(out) :: info integer(psb_ipk_) :: i, isz info = 0 if (psb_errstatus_fatal()) return if (.not.allocated(x%v)) then info = psb_err_invalid_vect_state_ else if (n > min(size(irl),size(val))) then info = psb_err_invalid_input_ else isz = size(x%v,1) select case(dupl) case(psb_dupl_ovwrt_) do i = 1, n !loop over all val's rows ! row actual block row if ((1 <= irl(i)).and.(irl(i) <= isz)) then ! this row belongs to me ! copy i-th row of block val in x x%v(irl(i),:) = val(i,:) end if enddo case(psb_dupl_add_) do i = 1, n !loop over all val's rows if ((1 <= irl(i)).and.(irl(i) <= isz)) then ! this row belongs to me ! copy i-th row of block val in x x%v(irl(i),:) = x%v(irl(i),:) + val(i,:) end if enddo case default info = 321 ! !$ call psb_errpush(info,name) ! !$ goto 9999 end select end if if (info /= 0) then call psb_errpush(info,'base_mv_vect_ins') return end if end subroutine z_base_mv_ins ! !> Function base_mv_zero !! \memberof psb_z_base_multivect_type !! \brief Zero out contents !! ! subroutine z_base_mv_zero(x) use psi_serial_mod implicit none class(psb_z_base_multivect_type), intent(inout) :: x if (allocated(x%v)) x%v=zzero end subroutine z_base_mv_zero ! ! Assembly. ! For derived classes: after this the vector ! storage is supposed to be in sync. ! !> Function base_mv_asb: !! \memberof psb_z_base_multivect_type !! \brief Assemble vector: reallocate as necessary. !! !! \param n final size !! \param info return code !! ! subroutine z_base_mv_asb(m,n, x, info) use psi_serial_mod use psb_realloc_mod implicit none integer(psb_ipk_), intent(in) :: m,n class(psb_z_base_multivect_type), intent(inout) :: x integer(psb_ipk_), intent(out) :: info if ((x%get_nrows() < m).or.(x%get_ncols() Function base_mv_free: !! \memberof psb_z_base_multivect_type !! \brief Free vector !! !! \param info return code !! ! subroutine z_base_mv_free(x, info) use psi_serial_mod use psb_realloc_mod implicit none class(psb_z_base_multivect_type), intent(inout) :: x integer(psb_ipk_), intent(out) :: info info = 0 if (allocated(x%v)) deallocate(x%v, stat=info) if (info /= 0) call & & psb_errpush(psb_err_alloc_dealloc_,'vect_free') end subroutine z_base_mv_free ! ! The base version of SYNC & friends does nothing, it's just ! a placeholder. ! ! !> Function base_mv_sync: !! \memberof psb_z_base_multivect_type !! \brief Sync: base version is a no-op. !! ! subroutine z_base_mv_sync(x) implicit none class(psb_z_base_multivect_type), intent(inout) :: x end subroutine z_base_mv_sync ! !> Function base_mv_set_host: !! \memberof psb_z_base_multivect_type !! \brief Set_host: base version is a no-op. !! ! subroutine z_base_mv_set_host(x) implicit none class(psb_z_base_multivect_type), intent(inout) :: x end subroutine z_base_mv_set_host ! !> Function base_mv_set_dev: !! \memberof psb_z_base_multivect_type !! \brief Set_dev: base version is a no-op. !! ! subroutine z_base_mv_set_dev(x) implicit none class(psb_z_base_multivect_type), intent(inout) :: x end subroutine z_base_mv_set_dev ! !> Function base_mv_set_sync: !! \memberof psb_z_base_multivect_type !! \brief Set_sync: base version is a no-op. !! ! subroutine z_base_mv_set_sync(x) implicit none class(psb_z_base_multivect_type), intent(inout) :: x end subroutine z_base_mv_set_sync ! !> Function base_mv_is_dev: !! \memberof psb_z_base_multivect_type !! \brief Is vector on external device . !! ! function z_base_mv_is_dev(x) result(res) implicit none class(psb_z_base_multivect_type), intent(in) :: x logical :: res res = .false. end function z_base_mv_is_dev ! !> Function base_mv_is_host !! \memberof psb_z_base_multivect_type !! \brief Is vector on standard memory . !! ! function z_base_mv_is_host(x) result(res) implicit none class(psb_z_base_multivect_type), intent(in) :: x logical :: res res = .true. end function z_base_mv_is_host ! !> Function base_mv_is_sync !! \memberof psb_z_base_multivect_type !! \brief Is vector on sync . !! ! function z_base_mv_is_sync(x) result(res) implicit none class(psb_z_base_multivect_type), intent(in) :: x logical :: res res = .true. end function z_base_mv_is_sync ! ! Size info. ! ! !> Function base_mv_get_nrows !! \memberof psb_z_base_multivect_type !! \brief Number of entries !! ! function z_base_mv_get_nrows(x) result(res) implicit none class(psb_z_base_multivect_type), intent(in) :: x integer(psb_ipk_) :: res res = 0 if (allocated(x%v)) res = size(x%v,1) end function z_base_mv_get_nrows function z_base_mv_get_ncols(x) result(res) implicit none class(psb_z_base_multivect_type), intent(in) :: x integer(psb_ipk_) :: res res = 0 if (allocated(x%v)) res = size(x%v,2) end function z_base_mv_get_ncols ! !> Function base_mv_get_sizeof !! \memberof psb_z_base_multivect_type !! \brief Size in bytesa !! ! function z_base_mv_sizeof(x) result(res) implicit none class(psb_z_base_multivect_type), intent(in) :: x integer(psb_long_int_k_) :: res ! Force 8-byte integers. res = (1_psb_long_int_k_ * psb_sizeof_int) * x%get_nrows() * x%get_ncols() end function z_base_mv_sizeof ! !> Function base_mv_get_fmt !! \memberof psb_z_base_multivect_type !! \brief Format !! ! function z_base_mv_get_fmt() result(res) implicit none character(len=5) :: res res = 'BASE' end function z_base_mv_get_fmt ! ! ! !> Function base_mv_get_vect !! \memberof psb_z_base_multivect_type !! \brief Extract a copy of the contents !! ! function z_base_mv_get_vect(x) result(res) class(psb_z_base_multivect_type), intent(inout) :: x complex(psb_dpk_), allocatable :: res(:,:) integer(psb_ipk_) :: info,m,n m = x%get_nrows() n = x%get_ncols() if (.not.allocated(x%v)) return call x%sync() allocate(res(m,n),stat=info) if (info /= 0) then call psb_errpush(psb_err_alloc_dealloc_,'base_mv_get_vect') return end if res(1:m,1:n) = x%v(1:m,1:n) end function z_base_mv_get_vect ! ! Reset all values ! ! !> Function base_mv_set_scal !! \memberof psb_z_base_multivect_type !! \brief Set all entries !! \param val The value to set !! subroutine z_base_mv_set_scal(x,val) class(psb_z_base_multivect_type), intent(inout) :: x complex(psb_dpk_), intent(in) :: val integer(psb_ipk_) :: info x%v = val end subroutine z_base_mv_set_scal ! !> Function base_mv_set_vect !! \memberof psb_z_base_multivect_type !! \brief Set all entries !! \param val(:) The vector to be copied in !! subroutine z_base_mv_set_vect(x,val) class(psb_z_base_multivect_type), intent(inout) :: x complex(psb_dpk_), intent(in) :: val(:,:) integer(psb_ipk_) :: nr integer(psb_ipk_) :: info if (allocated(x%v)) then nr = min(size(x%v,1),size(val,1)) nc = min(size(x%v,2),size(val,2)) x%v(1:nr,1:nc) = val(1:nr,1:nc) else x%v = val end if end subroutine z_base_mv_set_vect !!$ ! !!$ ! Dot products !!$ ! !!$ ! !!$ !> Function base_mv_dot_v !!$ !! \memberof psb_z_base_multivect_type !!$ !! \brief Dot product by another base_mv_vector !!$ !! \param n Number of entries to be considere !!$ !! \param y The other (base_mv_vect) to be multiplied by !!$ !! !!$ function z_base_mv_dot_v(n,x,y) result(res) !!$ implicit none !!$ class(psb_z_base_multivect_type), intent(inout) :: x, y !!$ integer(psb_ipk_), intent(in) :: n !!$ complex(psb_dpk_) :: res !!$ complex(psb_dpk_), external :: ddot !!$ !!$ res = izero !!$ ! !!$ ! Note: this is the base implementation. !!$ ! When we get here, we are sure that X is of !!$ ! TYPE psb_z_base_mv_vect. !!$ ! If Y is not, throw the burden on it, implicitly !!$ ! calling dot_a !!$ ! !!$ select type(yy => y) !!$ type is (psb_z_base_multivect_type) !!$ res = ddot(n,x%v,1,y%v,1) !!$ class default !!$ res = y%dot(n,x%v) !!$ end select !!$ !!$ end function z_base_mv_dot_v !!$ !!$ ! !!$ ! Base workhorse is good old BLAS1 !!$ ! !!$ ! !!$ !> Function base_mv_dot_a !!$ !! \memberof psb_z_base_multivect_type !!$ !! \brief Dot product by a normal array !!$ !! \param n Number of entries to be considere !!$ !! \param y(:) The array to be multiplied by !!$ !! !!$ function z_base_mv_dot_a(n,x,y) result(res) !!$ implicit none !!$ class(psb_z_base_multivect_type), intent(inout) :: x !!$ complex(psb_dpk_), intent(in) :: y(:) !!$ integer(psb_ipk_), intent(in) :: n !!$ complex(psb_dpk_) :: res !!$ integer(psb_ipk_), external :: ddot !!$ !!$ res = ddot(n,y,1,x%v,1) !!$ !!$ end function z_base_mv_dot_a !!$ ! !!$ ! AXPBY is invoked via Y, hence the structure below. !!$ ! !!$ ! !!$ ! !!$ !> Function base_mv_axpby_v !!$ !! \memberof psb_z_base_multivect_type !!$ !! \brief AXPBY by a (base_mv_vect) y=alpha*x+beta*y !!$ !! \param m Number of entries to be considere !!$ !! \param alpha scalar alpha !!$ !! \param x The class(base_mv_vect) to be added !!$ !! \param beta scalar alpha !!$ !! \param info return code !!$ !! !!$ subroutine z_base_mv_axpby_v(m,alpha, x, beta, y, info) !!$ use psi_serial_mod !!$ implicit none !!$ integer(psb_ipk_), intent(in) :: m !!$ class(psb_z_base_multivect_type), intent(inout) :: x !!$ class(psb_z_base_multivect_type), intent(inout) :: y !!$ complex(psb_dpk_), intent (in) :: alpha, beta !!$ integer(psb_ipk_), intent(out) :: info !!$ !!$ select type(xx => x) !!$ type is (psb_z_base_multivect_type) !!$ call psb_geaxpby(m,alpha,x%v,beta,y%v,info) !!$ class default !!$ call y%axpby(m,alpha,x%v,beta,info) !!$ end select !!$ !!$ end subroutine z_base_mv_axpby_v !!$ !!$ ! !!$ ! AXPBY is invoked via Y, hence the structure below. !!$ ! !!$ ! !!$ !> Function base_mv_axpby_a !!$ !! \memberof psb_z_base_multivect_type !!$ !! \brief AXPBY by a normal array y=alpha*x+beta*y !!$ !! \param m Number of entries to be considere !!$ !! \param alpha scalar alpha !!$ !! \param x(:) The array to be added !!$ !! \param beta scalar alpha !!$ !! \param info return code !!$ !! !!$ subroutine z_base_mv_axpby_a(m,alpha, x, beta, y, info) !!$ use psi_serial_mod !!$ implicit none !!$ integer(psb_ipk_), intent(in) :: m !!$ complex(psb_dpk_), intent(in) :: x(:) !!$ class(psb_z_base_multivect_type), intent(inout) :: y !!$ complex(psb_dpk_), intent (in) :: alpha, beta !!$ integer(psb_ipk_), intent(out) :: info !!$ !!$ call psb_geaxpby(m,alpha,x,beta,y%v,info) !!$ !!$ end subroutine z_base_mv_axpby_a !!$ ! !!$ ! Multiple variants of two operations: !!$ ! Simple multiplication Y(:) = X(:)*Y(:) !!$ ! blas-like: Z(:) = alpha*X(:)*Y(:)+beta*Z(:) !!$ ! !!$ ! Variants expanded according to the dynamic type !!$ ! of the involved entities !!$ ! !!$ ! !!$ !> Function base_mv_mlt_a !!$ !! \memberof psb_z_base_multivect_type !!$ !! \brief Vector entry-by-entry multiply by a base_mv_vect array y=x*y !!$ !! \param x The class(base_mv_vect) to be multiplied by !!$ !! \param info return code !!$ !! !!$ subroutine z_base_mv_mlt_v(x, y, info) !!$ use psi_serial_mod !!$ implicit none !!$ class(psb_z_base_multivect_type), intent(inout) :: x !!$ class(psb_z_base_multivect_type), intent(inout) :: y !!$ integer(psb_ipk_), intent(out) :: info !!$ integer(psb_ipk_) :: i, n !!$ !!$ info = 0 !!$ select type(xx => x) !!$ type is (psb_z_base_multivect_type) !!$ n = min(size(y%v), size(xx%v)) !!$ do i=1, n !!$ y%v(i) = y%v(i)*xx%v(i) !!$ end do !!$ class default !!$ call y%mlt(x%v,info) !!$ end select !!$ !!$ end subroutine z_base_mv_mlt_v !!$ !!$ ! !!$ !> Function base_mv_mlt_a !!$ !! \memberof psb_z_base_multivect_type !!$ !! \brief Vector entry-by-entry multiply by a normal array y=x*y !!$ !! \param x(:) The array to be multiplied by !!$ !! \param info return code !!$ !! !!$ subroutine z_base_mv_mlt_a(x, y, info) !!$ use psi_serial_mod !!$ implicit none !!$ complex(psb_dpk_), intent(in) :: x(:) !!$ class(psb_z_base_multivect_type), intent(inout) :: y !!$ integer(psb_ipk_), intent(out) :: info !!$ integer(psb_ipk_) :: i, n !!$ !!$ info = 0 !!$ n = min(size(y%v), size(x)) !!$ do i=1, n !!$ y%v(i) = y%v(i)*x(i) !!$ end do !!$ !!$ end subroutine z_base_mv_mlt_a !!$ !!$ !!$ ! !!$ !> Function base_mv_mlt_a_2 !!$ !! \memberof psb_z_base_multivect_type !!$ !! \brief AXPBY-like Vector entry-by-entry multiply by normal arrays !!$ !! z=beta*z+alpha*x*y !!$ !! \param alpha !!$ !! \param beta !!$ !! \param x(:) The array to be multiplied b !!$ !! \param y(:) The array to be multiplied by !!$ !! \param info return code !!$ !! !!$ subroutine z_base_mv_mlt_a_2(alpha,x,y,beta,z,info) !!$ use psi_serial_mod !!$ implicit none !!$ complex(psb_dpk_), intent(in) :: alpha,beta !!$ complex(psb_dpk_), intent(in) :: y(:) !!$ complex(psb_dpk_), intent(in) :: x(:) !!$ class(psb_z_base_multivect_type), intent(inout) :: z !!$ integer(psb_ipk_), intent(out) :: info !!$ integer(psb_ipk_) :: i, n !!$ !!$ info = 0 !!$ n = min(size(z%v), size(x), size(y)) !!$ if (alpha == izero) then !!$ if (beta == ione) then !!$ return !!$ else !!$ do i=1, n !!$ z%v(i) = beta*z%v(i) !!$ end do !!$ end if !!$ else !!$ if (alpha == ione) then !!$ if (beta == izero) then !!$ do i=1, n !!$ z%v(i) = y(i)*x(i) !!$ end do !!$ else if (beta == ione) then !!$ do i=1, n !!$ z%v(i) = z%v(i) + y(i)*x(i) !!$ end do !!$ else !!$ do i=1, n !!$ z%v(i) = beta*z%v(i) + y(i)*x(i) !!$ end do !!$ end if !!$ else if (alpha == -ione) then !!$ if (beta == izero) then !!$ do i=1, n !!$ z%v(i) = -y(i)*x(i) !!$ end do !!$ else if (beta == ione) then !!$ do i=1, n !!$ z%v(i) = z%v(i) - y(i)*x(i) !!$ end do !!$ else !!$ do i=1, n !!$ z%v(i) = beta*z%v(i) - y(i)*x(i) !!$ end do !!$ end if !!$ else !!$ if (beta == izero) then !!$ do i=1, n !!$ z%v(i) = alpha*y(i)*x(i) !!$ end do !!$ else if (beta == ione) then !!$ do i=1, n !!$ z%v(i) = z%v(i) + alpha*y(i)*x(i) !!$ end do !!$ else !!$ do i=1, n !!$ z%v(i) = beta*z%v(i) + alpha*y(i)*x(i) !!$ end do !!$ end if !!$ end if !!$ end if !!$ end subroutine z_base_mv_mlt_a_2 !!$ !!$ ! !!$ !> Function base_mv_mlt_v_2 !!$ !! \memberof psb_z_base_multivect_type !!$ !! \brief AXPBY-like Vector entry-by-entry multiply by class(base_mv_vect) !!$ !! z=beta*z+alpha*x*y !!$ !! \param alpha !!$ !! \param beta !!$ !! \param x The class(base_mv_vect) to be multiplied b !!$ !! \param y The class(base_mv_vect) to be multiplied by !!$ !! \param info return code !!$ !! !!$ subroutine z_base_mv_mlt_v_2(alpha,x,y,beta,z,info,conjgx,conjgy) !!$ use psi_serial_mod !!$ use psb_string_mod !!$ implicit none !!$ complex(psb_dpk_), intent(in) :: alpha,beta !!$ class(psb_z_base_multivect_type), intent(inout) :: x !!$ class(psb_z_base_multivect_type), intent(inout) :: y !!$ class(psb_z_base_multivect_type), intent(inout) :: z !!$ integer(psb_ipk_), intent(out) :: info !!$ character(len=1), intent(in), optional :: conjgx, conjgy !!$ integer(psb_ipk_) :: i, n !!$ logical :: conjgx_, conjgy_ !!$ !!$ info = 0 !!$ if (.not.psb_i_is_complex_) then !!$ call z%mlt(alpha,x%v,y%v,beta,info) !!$ else !!$ conjgx_=.false. !!$ if (present(conjgx)) conjgx_ = (psb_toupper(conjgx)=='C') !!$ conjgy_=.false. !!$ if (present(conjgy)) conjgy_ = (psb_toupper(conjgy)=='C') !!$ if (conjgx_) x%v=(x%v) !!$ if (conjgy_) y%v=(y%v) !!$ call z%mlt(alpha,x%v,y%v,beta,info) !!$ if (conjgx_) x%v=(x%v) !!$ if (conjgy_) y%v=(y%v) !!$ end if !!$ end subroutine z_base_mv_mlt_v_2 !!$ !!$ subroutine z_base_mv_mlt_av(alpha,x,y,beta,z,info) !!$ use psi_serial_mod !!$ implicit none !!$ complex(psb_dpk_), intent(in) :: alpha,beta !!$ complex(psb_dpk_), intent(in) :: x(:) !!$ class(psb_z_base_multivect_type), intent(inout) :: y !!$ class(psb_z_base_multivect_type), intent(inout) :: z !!$ integer(psb_ipk_), intent(out) :: info !!$ integer(psb_ipk_) :: i, n !!$ !!$ info = 0 !!$ !!$ call z%mlt(alpha,x,y%v,beta,info) !!$ !!$ end subroutine z_base_mv_mlt_av !!$ !!$ subroutine z_base_mv_mlt_va(alpha,x,y,beta,z,info) !!$ use psi_serial_mod !!$ implicit none !!$ complex(psb_dpk_), intent(in) :: alpha,beta !!$ complex(psb_dpk_), intent(in) :: y(:) !!$ class(psb_z_base_multivect_type), intent(inout) :: x !!$ class(psb_z_base_multivect_type), intent(inout) :: z !!$ integer(psb_ipk_), intent(out) :: info !!$ integer(psb_ipk_) :: i, n !!$ !!$ info = 0 !!$ !!$ call z%mlt(alpha,y,x,beta,info) !!$ !!$ end subroutine z_base_mv_mlt_va !!$ !!$ !!$ ! !!$ ! Simple scaling !!$ ! !!$ !> Function base_mv_scal !!$ !! \memberof psb_z_base_multivect_type !!$ !! \brief Scale all entries x = alpha*x !!$ !! \param alpha The multiplier !!$ !! !!$ subroutine z_base_mv_scal(alpha, x) !!$ use psi_serial_mod !!$ implicit none !!$ class(psb_z_base_multivect_type), intent(inout) :: x !!$ complex(psb_dpk_), intent (in) :: alpha !!$ !!$ if (allocated(x%v)) x%v = alpha*x%v !!$ !!$ end subroutine z_base_mv_scal !!$ !!$ ! !!$ ! Norms 1, 2 and infinity !!$ ! !!$ !> Function base_mv_nrm2 !!$ !! \memberof psb_z_base_multivect_type !!$ !! \brief 2-norm |x(1:n)|_2 !!$ !! \param n how many entries to consider !!$ function z_base_mv_nrm2(n,x) result(res) !!$ implicit none !!$ class(psb_z_base_multivect_type), intent(inout) :: x !!$ integer(psb_ipk_), intent(in) :: n !!$ real(psb_dpk_) :: res !!$ integer(psb_ipk_), external :: dnrm2 !!$ !!$ res = dnrm2(n,x%v,1) !!$ !!$ end function z_base_mv_nrm2 !!$ !!$ ! !!$ !> Function base_mv_amax !!$ !! \memberof psb_z_base_multivect_type !!$ !! \brief infinity-norm |x(1:n)|_\infty !!$ !! \param n how many entries to consider !!$ function z_base_mv_amax(n,x) result(res) !!$ implicit none !!$ class(psb_z_base_multivect_type), intent(inout) :: x !!$ integer(psb_ipk_), intent(in) :: n !!$ real(psb_dpk_) :: res !!$ !!$ res = maxval(abs(x%v(1:n))) !!$ !!$ end function z_base_mv_amax !!$ !!$ ! !!$ !> Function base_mv_asum !!$ !! \memberof psb_z_base_multivect_type !!$ !! \brief 1-norm |x(1:n)|_1 !!$ !! \param n how many entries to consider !!$ function z_base_mv_asum(n,x) result(res) !!$ implicit none !!$ class(psb_z_base_multivect_type), intent(inout) :: x !!$ integer(psb_ipk_), intent(in) :: n !!$ real(psb_dpk_) :: res !!$ !!$ res = sum(abs(x%v(1:n))) !!$ !!$ end function z_base_mv_asum !!$ !!$ !!$ ! !!$ ! Gather: Y = beta * Y + alpha * X(IDX(:)) !!$ ! !!$ ! !!$ !> Function base_mv_gthab !!$ !! \memberof psb_z_base_multivect_type !!$ !! \brief gather into an array !!$ !! Y = beta * Y + alpha * X(IDX(:)) !!$ !! \param n how many entries to consider !!$ !! \param idx(:) indices !!$ !! \param alpha !!$ !! \param beta !!$ subroutine z_base_mv_gthab(n,idx,alpha,x,beta,y) !!$ use psi_serial_mod !!$ integer(psb_ipk_) :: n, idx(:) !!$ complex(psb_dpk_) :: alpha, beta, y(:) !!$ class(psb_z_base_multivect_type) :: x !!$ !!$ call x%sync() !!$ call psi_gth(n,idx,alpha,x%v,beta,y) !!$ !!$ end subroutine z_base_mv_gthab !!$ ! !!$ ! shortcut alpha=1 beta=0 !!$ ! !!$ !> Function base_mv_gthzv !!$ !! \memberof psb_z_base_multivect_type !!$ !! \brief gather into an array special alpha=1 beta=0 !!$ !! Y = X(IDX(:)) !!$ !! \param n how many entries to consider !!$ !! \param idx(:) indices !!$ subroutine z_base_mv_gthzv_x(i,n,idx,x,y) !!$ use psi_serial_mod !!$ integer(psb_ipk_) :: i,n !!$ class(psb_z_base_multivect_type) :: idx !!$ complex(psb_dpk_) :: y(:) !!$ class(psb_z_base_multivect_type) :: x !!$ !!$ call x%gth(n,idx%v(i:),y) !!$ !!$ end subroutine z_base_mv_gthzv_x !!$ !!$ ! !!$ ! shortcut alpha=1 beta=0 !!$ ! !!$ !> Function base_mv_gthzv !!$ !! \memberof psb_z_base_multivect_type !!$ !! \brief gather into an array special alpha=1 beta=0 !!$ !! Y = X(IDX(:)) !!$ !! \param n how many entries to consider !!$ !! \param idx(:) indices !!$ subroutine z_base_mv_gthzv(n,idx,x,y) !!$ use psi_serial_mod !!$ integer(psb_ipk_) :: n, idx(:) !!$ complex(psb_dpk_) :: y(:) !!$ class(psb_z_base_multivect_type) :: x !!$ !!$ call x%sync() !!$ call psi_gth(n,idx,x%v,y) !!$ !!$ end subroutine z_base_mv_gthzv !!$ !!$ ! !!$ ! Scatter: !!$ ! Y(IDX(:)) = beta*Y(IDX(:)) + X(:) !!$ ! !!$ ! !!$ !> Function base_mv_sctb !!$ !! \memberof psb_z_base_multivect_type !!$ !! \brief scatter into a class(base_mv_vect) !!$ !! Y(IDX(:)) = beta * Y(IDX(:)) + X(:) !!$ !! \param n how many entries to consider !!$ !! \param idx(:) indices !!$ !! \param beta !!$ !! \param x(:) !!$ subroutine z_base_mv_sctb(n,idx,x,beta,y) !!$ use psi_serial_mod !!$ integer(psb_ipk_) :: n, idx(:) !!$ complex(psb_dpk_) :: beta, x(:) !!$ class(psb_z_base_multivect_type) :: y !!$ !!$ call y%sync() !!$ call psi_sct(n,idx,x,beta,y%v) !!$ call y%set_host() !!$ !!$ end subroutine z_base_mv_sctb !!$ !!$ subroutine z_base_mv_sctb_x(i,n,idx,x,beta,y) !!$ use psi_serial_mod !!$ integer(psb_ipk_) :: i, n !!$ class(psb_z_base_multivect_type) :: idx !!$ complex( psb_dpk_) :: beta, x(:) !!$ class(psb_z_base_multivect_type) :: y !!$ !!$ call y%sct(n,idx%v(i:),x,beta) !!$ !!$ end subroutine z_base_mv_sctb_x end module psb_z_base_multivect_mod