! ! Parallel Sparse BLAS GPU plugin ! (C) Copyright 2013 ! Salvatore Filippone ! Alessandro Fanfarillo ! ! Redistribution and use in source and binary forms, with or without ! modification, are permitted provided that the following conditions ! are met: ! 1. Redistributions of source code must retain the above copyright ! notice, this list of conditions and the following disclaimer. ! 2. Redistributions in binary form must reproduce the above copyright ! notice, this list of conditions, and the following disclaimer in the ! documentation and/or other materials provided with the distribution. ! 3. The name of the PSBLAS group or the names of its contributors may ! not be used to endorse or promote products derived from this ! software without specific written permission. ! ! THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ! ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED ! TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR ! PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE PSBLAS GROUP OR ITS CONTRIBUTORS ! BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR ! CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF ! SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS ! INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN ! CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ! ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE ! POSSIBILITY OF SUCH DAMAGE. ! ! ! File: spdegenmv.f90 ! ! Program: pdegenmv ! This sample program measures the performance of the matrix-vector product. ! The matrix is generated in the same way as for the pdegen test case of ! the main PSBLAS library. ! ! module psb_s_pde3d_mod use psb_base_mod, only : psb_spk_, psb_ipk_, psb_lpk_, psb_desc_type,& & psb_sspmat_type, psb_s_vect_type, szero,& & psb_s_base_sparse_mat, psb_s_base_vect_type, & & psb_i_base_vect_type, psb_l_base_vect_type interface function s_func_3d(x,y,z) result(val) import :: psb_spk_ real(psb_spk_), intent(in) :: x,y,z real(psb_spk_) :: val end function s_func_3d end interface interface psb_gen_pde3d module procedure psb_s_gen_pde3d end interface psb_gen_pde3d contains function s_null_func_3d(x,y,z) result(val) real(psb_spk_), intent(in) :: x,y,z real(psb_spk_) :: val val = szero end function s_null_func_3d ! ! functions parametrizing the differential equation ! function b1(x,y,z) use psb_base_mod, only : psb_spk_, sone, szero implicit none real(psb_spk_) :: b1 real(psb_spk_), intent(in) :: x,y,z b1=sone/sqrt((3*sone)) end function b1 function b2(x,y,z) use psb_base_mod, only : psb_spk_, sone, szero implicit none real(psb_spk_) :: b2 real(psb_spk_), intent(in) :: x,y,z b2=sone/sqrt((3*sone)) end function b2 function b3(x,y,z) use psb_base_mod, only : psb_spk_, sone, szero implicit none real(psb_spk_) :: b3 real(psb_spk_), intent(in) :: x,y,z b3=sone/sqrt((3*sone)) end function b3 function c(x,y,z) use psb_base_mod, only : psb_spk_, sone, szero implicit none real(psb_spk_) :: c real(psb_spk_), intent(in) :: x,y,z c=szero end function c function a1(x,y,z) use psb_base_mod, only : psb_spk_, sone, szero implicit none real(psb_spk_) :: a1 real(psb_spk_), intent(in) :: x,y,z a1=sone/80 end function a1 function a2(x,y,z) use psb_base_mod, only : psb_spk_, sone, szero implicit none real(psb_spk_) :: a2 real(psb_spk_), intent(in) :: x,y,z a2=sone/80 end function a2 function a3(x,y,z) use psb_base_mod, only : psb_spk_, sone, szero implicit none real(psb_spk_) :: a3 real(psb_spk_), intent(in) :: x,y,z a3=sone/80 end function a3 function g(x,y,z) use psb_base_mod, only : psb_spk_, sone, szero implicit none real(psb_spk_) :: g real(psb_spk_), intent(in) :: x,y,z g = szero if (x == sone) then g = sone else if (x == szero) then g = exp(y**2-z**2) end if end function g ! ! subroutine to allocate and fill in the coefficient matrix and ! the rhs. ! subroutine psb_s_gen_pde3d(ctxt,idim,a,bv,xv,desc_a,afmt,info,& & f,amold,vmold,imold,partition,nrl,iv) use psb_base_mod use psb_util_mod ! ! Discretizes the partial differential equation ! ! a1 dd(u) a2 dd(u) a3 dd(u) b1 d(u) b2 d(u) b3 d(u) ! - ------ - ------ - ------ + ----- + ------ + ------ + c u = f ! dxdx dydy dzdz dx dy dz ! ! with Dirichlet boundary conditions ! u = g ! ! on the unit cube 0<=x,y,z<=1. ! ! ! Note that if b1=b2=b3=c=0., the PDE is the Laplace equation. ! implicit none integer(psb_ipk_) :: idim type(psb_sspmat_type) :: a type(psb_s_vect_type) :: xv,bv type(psb_desc_type) :: desc_a type(psb_ctxt_type) :: ctxt integer(psb_ipk_) :: info character(len=*) :: afmt procedure(s_func_3d), optional :: f class(psb_s_base_sparse_mat), optional :: amold class(psb_s_base_vect_type), optional :: vmold class(psb_i_base_vect_type), optional :: imold integer(psb_ipk_), optional :: partition, nrl,iv(:) ! Local variables. integer(psb_ipk_), parameter :: nb=20 type(psb_s_csc_sparse_mat) :: acsc type(psb_s_coo_sparse_mat) :: acoo type(psb_s_csr_sparse_mat) :: acsr real(psb_spk_) :: zt(nb),x,y,z integer(psb_ipk_) :: nnz,nr,nlr,i,j,ii,ib,k, partition_ integer(psb_lpk_) :: m,n,glob_row,nt integer(psb_ipk_) :: ix,iy,iz,ia,indx_owner ! For 3D partition ! Note: integer control variables going directly into an MPI call ! must be 4 bytes, i.e. psb_mpk_ integer(psb_mpk_) :: npdims(3), npp, minfo integer(psb_ipk_) :: npx,npy,npz, iamx,iamy,iamz,mynx,myny,mynz integer(psb_ipk_), allocatable :: bndx(:),bndy(:),bndz(:) ! Process grid integer(psb_ipk_) :: np, iam integer(psb_ipk_) :: icoeff integer(psb_lpk_), allocatable :: irow(:),icol(:),myidx(:) real(psb_spk_), allocatable :: val(:) ! deltah dimension of each grid cell ! deltat discretization time real(psb_spk_) :: deltah, sqdeltah, deltah2 real(psb_spk_), parameter :: rhs=szero,one=sone,zero=szero real(psb_dpk_) :: t0, t1, t2, t3, tasb, talc, ttot, tgen, tcdasb integer(psb_ipk_) :: err_act procedure(s_func_3d), pointer :: f_ character(len=20) :: name, ch_err,tmpfmt info = psb_success_ name = 'create_matrix' call psb_erractionsave(err_act) call psb_info(ctxt, iam, np) if (present(f)) then f_ => f else f_ => s_null_func_3d end if deltah = sone/(idim+2) sqdeltah = deltah*deltah deltah2 = (2*sone)* deltah if (present(partition)) then if ((1<= partition).and.(partition <= 3)) then partition_ = partition else write(*,*) 'Invalid partition choice ',partition,' defaulting to 3' partition_ = 3 end if else partition_ = 3 end if ! initialize array descriptor and sparse matrix storage. provide an ! estimate of the number of non zeroes m = (1_psb_lpk_*idim)*idim*idim n = m nnz = ((n*7)/(np)) if(iam == psb_root_) write(psb_out_unit,'("Generating Matrix (size=",i0,")...")')n t0 = psb_wtime() select case(partition_) case(1) ! A BLOCK partition if (present(nrl)) then nr = nrl else ! ! Using a simple BLOCK distribution. ! nt = (m+np-1)/np nr = max(0,min(nt,m-(iam*nt))) end if nt = nr call psb_sum(ctxt,nt) if (nt /= m) then write(psb_err_unit,*) iam, 'Initialization error ',nr,nt,m info = -1 call psb_barrier(ctxt) call psb_abort(ctxt) return end if ! ! First example of use of CDALL: specify for each process a number of ! contiguous rows ! call psb_cdall(ctxt,desc_a,info,nl=nr) myidx = desc_a%get_global_indices() nlr = size(myidx) case(2) ! A partition defined by the user through IV if (present(iv)) then if (size(iv) /= m) then write(psb_err_unit,*) iam, 'Initialization error: wrong IV size',size(iv),m info = -1 call psb_barrier(ctxt) call psb_abort(ctxt) return end if else write(psb_err_unit,*) iam, 'Initialization error: IV not present' info = -1 call psb_barrier(ctxt) call psb_abort(ctxt) return end if ! ! Second example of use of CDALL: specify for each row the ! process that owns it ! call psb_cdall(ctxt,desc_a,info,vg=iv) myidx = desc_a%get_global_indices() nlr = size(myidx) case(3) ! A 3-dimensional partition ! A nifty MPI function will split the process list npdims = 0 call mpi_dims_create(np,3,npdims,info) npx = npdims(1) npy = npdims(2) npz = npdims(3) allocate(bndx(0:npx),bndy(0:npy),bndz(0:npz)) ! We can reuse idx2ijk for process indices as well. call idx2ijk(iamx,iamy,iamz,iam,npx,npy,npz,base=0) ! Now let's split the 3D cube in hexahedra call dist1Didx(bndx,idim,npx) mynx = bndx(iamx+1)-bndx(iamx) call dist1Didx(bndy,idim,npy) myny = bndy(iamy+1)-bndy(iamy) call dist1Didx(bndz,idim,npz) mynz = bndz(iamz+1)-bndz(iamz) ! How many indices do I own? nlr = mynx*myny*mynz allocate(myidx(nlr)) ! Now, let's generate the list of indices I own nr = 0 do i=bndx(iamx),bndx(iamx+1)-1 do j=bndy(iamy),bndy(iamy+1)-1 do k=bndz(iamz),bndz(iamz+1)-1 nr = nr + 1 call ijk2idx(myidx(nr),i,j,k,idim,idim,idim) end do end do end do if (nr /= nlr) then write(psb_err_unit,*) iam,iamx,iamy,iamz, 'Initialization error: NR vs NLR ',& & nr,nlr,mynx,myny,mynz info = -1 call psb_barrier(ctxt) call psb_abort(ctxt) end if ! ! Third example of use of CDALL: specify for each process ! the set of global indices it owns. ! call psb_cdall(ctxt,desc_a,info,vl=myidx) case default write(psb_err_unit,*) iam, 'Initialization error: should not get here' info = -1 call psb_barrier(ctxt) call psb_abort(ctxt) return end select if (info == psb_success_) call psb_spall(a,desc_a,info,nnz=nnz,& & dupl=psb_dupl_err_) ! define rhs from boundary conditions; also build initial guess if (info == psb_success_) call psb_geall(xv,desc_a,info) if (info == psb_success_) call psb_geall(bv,desc_a,info) call psb_barrier(ctxt) talc = psb_wtime()-t0 if (info /= psb_success_) then info=psb_err_from_subroutine_ ch_err='allocation rout.' call psb_errpush(info,name,a_err=ch_err) goto 9999 end if ! we build an auxiliary matrix consisting of one row at a ! time; just a small matrix. might be extended to generate ! a bunch of rows per call. ! allocate(val(20*nb),irow(20*nb),& &icol(20*nb),stat=info) if (info /= psb_success_ ) then info=psb_err_alloc_dealloc_ call psb_errpush(info,name) goto 9999 endif ! loop over rows belonging to current process in a block ! distribution. call psb_barrier(ctxt) t1 = psb_wtime() do ii=1, nlr,nb ib = min(nb,nlr-ii+1) icoeff = 1 do k=1,ib i=ii+k-1 ! local matrix pointer glob_row=myidx(i) ! compute gridpoint coordinates call idx2ijk(ix,iy,iz,glob_row,idim,idim,idim) ! x, y, z coordinates x = (ix-1)*deltah y = (iy-1)*deltah z = (iz-1)*deltah zt(k) = f_(x,y,z) ! internal point: build discretization ! ! term depending on (x-1,y,z) ! val(icoeff) = -a1(x,y,z)/sqdeltah-b1(x,y,z)/deltah2 if (ix == 1) then zt(k) = g(szero,y,z)*(-val(icoeff)) + zt(k) else call ijk2idx(icol(icoeff),ix-1,iy,iz,idim,idim,idim) irow(icoeff) = glob_row icoeff = icoeff+1 endif ! term depending on (x,y-1,z) val(icoeff) = -a2(x,y,z)/sqdeltah-b2(x,y,z)/deltah2 if (iy == 1) then zt(k) = g(x,szero,z)*(-val(icoeff)) + zt(k) else call ijk2idx(icol(icoeff),ix,iy-1,iz,idim,idim,idim) irow(icoeff) = glob_row icoeff = icoeff+1 endif ! term depending on (x,y,z-1) val(icoeff)=-a3(x,y,z)/sqdeltah-b3(x,y,z)/deltah2 if (iz == 1) then zt(k) = g(x,y,szero)*(-val(icoeff)) + zt(k) else call ijk2idx(icol(icoeff),ix,iy,iz-1,idim,idim,idim) irow(icoeff) = glob_row icoeff = icoeff+1 endif ! term depending on (x,y,z) val(icoeff)=(2*sone)*(a1(x,y,z)+a2(x,y,z)+a3(x,y,z))/sqdeltah & & + c(x,y,z) call ijk2idx(icol(icoeff),ix,iy,iz,idim,idim,idim) irow(icoeff) = glob_row icoeff = icoeff+1 ! term depending on (x,y,z+1) val(icoeff)=-a3(x,y,z)/sqdeltah+b3(x,y,z)/deltah2 if (iz == idim) then zt(k) = g(x,y,sone)*(-val(icoeff)) + zt(k) else call ijk2idx(icol(icoeff),ix,iy,iz+1,idim,idim,idim) irow(icoeff) = glob_row icoeff = icoeff+1 endif ! term depending on (x,y+1,z) val(icoeff)=-a2(x,y,z)/sqdeltah+b2(x,y,z)/deltah2 if (iy == idim) then zt(k) = g(x,sone,z)*(-val(icoeff)) + zt(k) else call ijk2idx(icol(icoeff),ix,iy+1,iz,idim,idim,idim) irow(icoeff) = glob_row icoeff = icoeff+1 endif ! term depending on (x+1,y,z) val(icoeff)=-a1(x,y,z)/sqdeltah+b1(x,y,z)/deltah2 if (ix==idim) then zt(k) = g(sone,y,z)*(-val(icoeff)) + zt(k) else call ijk2idx(icol(icoeff),ix+1,iy,iz,idim,idim,idim) irow(icoeff) = glob_row icoeff = icoeff+1 endif end do call psb_spins(icoeff-1,irow,icol,val,a,desc_a,info) if(info /= psb_success_) exit call psb_geins(ib,myidx(ii:ii+ib-1),zt(1:ib),bv,desc_a,info) if(info /= psb_success_) exit zt(:)=szero call psb_geins(ib,myidx(ii:ii+ib-1),zt(1:ib),xv,desc_a,info) if(info /= psb_success_) exit end do tgen = psb_wtime()-t1 if(info /= psb_success_) then info=psb_err_from_subroutine_ ch_err='insert rout.' call psb_errpush(info,name,a_err=ch_err) goto 9999 end if deallocate(val,irow,icol) call psb_barrier(ctxt) t1 = psb_wtime() call psb_cdasb(desc_a,info,mold=imold) tcdasb = psb_wtime()-t1 call psb_barrier(ctxt) t1 = psb_wtime() if (info == psb_success_) then if (present(amold)) then call psb_spasb(a,desc_a,info,mold=amold) else call psb_spasb(a,desc_a,info,afmt=afmt) end if end if call psb_barrier(ctxt) if(info /= psb_success_) then info=psb_err_from_subroutine_ ch_err='asb rout.' call psb_errpush(info,name,a_err=ch_err) goto 9999 end if if (info == psb_success_) call psb_geasb(xv,desc_a,info,mold=vmold) if (info == psb_success_) call psb_geasb(bv,desc_a,info,mold=vmold) if(info /= psb_success_) then info=psb_err_from_subroutine_ ch_err='asb rout.' call psb_errpush(info,name,a_err=ch_err) goto 9999 end if tasb = psb_wtime()-t1 call psb_barrier(ctxt) ttot = psb_wtime() - t0 call psb_amx(ctxt,talc) call psb_amx(ctxt,tgen) call psb_amx(ctxt,tasb) call psb_amx(ctxt,ttot) if(iam == psb_root_) then tmpfmt = a%get_fmt() write(psb_out_unit,'("The matrix has been generated and assembled in ",a3," format.")')& & tmpfmt write(psb_out_unit,'("-allocation time : ",es12.5)') talc write(psb_out_unit,'("-coeff. gen. time : ",es12.5)') tgen write(psb_out_unit,'("-desc asbly time : ",es12.5)') tcdasb write(psb_out_unit,'("- mat asbly time : ",es12.5)') tasb write(psb_out_unit,'("-total time : ",es12.5)') ttot end if call psb_erractionrestore(err_act) return 9999 call psb_error_handler(ctxt,err_act) return end subroutine psb_s_gen_pde3d end module psb_s_pde3d_mod program pdgenmv use psb_base_mod use psb_util_mod use psb_ext_mod #ifdef HAVE_CUDA use psb_cuda_mod #endif use psb_s_pde3d_mod implicit none ! input parameters character(len=5) :: acfmt, agfmt integer :: idim ! miscellaneous real(psb_spk_), parameter :: one = 1.e0 real(psb_dpk_) :: t1, t2, tprec, flops, tflops,& & tt1, tt2, gt1, gt2, gflops, bdwdth,& & tcnvcsr, tcnvc1, tcnvgpu, tcnvg1 ! sparse matrix and preconditioner type(psb_sspmat_type) :: a, agpu, aux_a ! descriptor type(psb_desc_type) :: desc_a ! dense matrices type(psb_s_vect_type), target :: xv,bv, xg, bg #ifdef HAVE_CUDA type(psb_s_vect_cuda) :: vmold type(psb_i_vect_cuda) :: imold #endif real(psb_spk_), allocatable :: x1(:), x2(:), x0(:) ! blacs parameters type(psb_ctxt_type) :: ctxt integer :: iam, np ! solver parameters integer(psb_epk_) :: amatsize, precsize, descsize, annz, nbytes real(psb_spk_) :: err, eps integer, parameter :: ntests=200, ngpu=50, ncnv=20 type(psb_s_coo_sparse_mat), target :: acoo type(psb_s_csr_sparse_mat), target :: acsr type(psb_s_ell_sparse_mat), target :: aell type(psb_s_hll_sparse_mat), target :: ahll type(psb_s_dia_sparse_mat), target :: adia type(psb_s_hdia_sparse_mat), target :: ahdia #ifdef HAVE_CUDA type(psb_s_cuda_elg_sparse_mat), target :: aelg type(psb_s_cuda_csrg_sparse_mat), target :: acsrg #if CUDA_SHORT_VERSION <= 10 type(psb_s_cuda_hybg_sparse_mat), target :: ahybg #endif type(psb_s_cuda_hlg_sparse_mat), target :: ahlg type(psb_s_cuda_hdiag_sparse_mat), target :: ahdiag type(psb_s_cuda_dnsg_sparse_mat), target :: adnsg #endif class(psb_s_base_sparse_mat), pointer :: agmold, acmold ! other variables logical, parameter :: dump=.false. integer(psb_ipk_) :: info, i, j, nr, nrg integer(psb_lpk_) :: ig character(len=20) :: name,ch_err character(len=40) :: fname info=psb_success_ call psb_init(ctxt) call psb_info(ctxt,iam,np) #ifdef HAVE_CUDA call psb_cuda_init(ctxt) #endif #ifdef HAVE_RSB call psb_rsb_init() #endif if (iam < 0) then ! This should not happen, but just in case call psb_exit(ctxt) stop endif if(psb_get_errstatus() /= 0) goto 9999 name='pdegenmv-cuda' ! ! Hello world ! if (iam == psb_root_) then write(*,*) 'Welcome to PSBLAS version: ',psb_version_string_ write(*,*) 'This is the ',trim(name),' sample program' end if #ifdef HAVE_CUDA write(*,*) 'Process ',iam,' running on device: ', psb_cuda_getDevice(),' out of', psb_cuda_getDeviceCount() write(*,*) 'Process ',iam,' device ', psb_cuda_getDevice(),' is a: ', trim(psb_cuda_DeviceName()) #endif ! ! get parameters ! call get_parms(ctxt,acfmt,agfmt,idim) ! ! allocate and fill in the coefficient matrix and initial vectors ! call psb_barrier(ctxt) t1 = psb_wtime() call psb_gen_pde3d(ctxt,idim,a,bv,xv,desc_a,'CSR ',info,partition=3) call psb_barrier(ctxt) t2 = psb_wtime() - t1 if(info /= psb_success_) then info=psb_err_from_subroutine_ ch_err='create_matrix' call psb_errpush(info,name,a_err=ch_err) goto 9999 end if if (iam == psb_root_) write(psb_out_unit,'("Overall matrix creation time : ",es12.5)')t2 if (iam == psb_root_) write(psb_out_unit,'(" ")') if (dump) then write(fname,'(a,i3.3,a,i3.3,a,i3.3,a)') 'pde',idim,'-',iam,'-',np,'.mtx' call a%print(fname,head='PDEGEN test matrix') end if select case(psb_toupper(acfmt)) case('ELL') acmold => aell case('HLL') acmold => ahll case('DIA') acmold => adia case('HDIA') acmold => ahdia case('CSR') acmold => acsr case('COO') acmold => acoo #ifdef HAVE_RSB case('RSB') acmold => arsb #endif case default write(*,*) 'Unknown format defaulting to HLL' acmold => ahll end select call a%cscnv(info,mold=acmold) if ((info /= 0).or.(psb_get_errstatus()/=0)) then write(0,*) 'From cscnv ',info call psb_error() stop end if #ifdef HAVE_CUDA select case(psb_toupper(agfmt)) case('ELG') agmold => aelg case('HLG') agmold => ahlg case('HDIAG') agmold => ahdiag case('CSRG') agmold => acsrg case('DNSG') agmold => adnsg #if CUDA_SHORT_VERSION <= 10 case('HYBG') agmold => ahybg #endif case default write(*,*) 'Unknown format defaulting to HLG' agmold => ahlg end select call a%cscnv(agpu,info,mold=agmold) if ((info /= 0).or.(psb_get_errstatus()/=0)) then write(0,*) 'From cscnv ',info call psb_error() stop end if call desc_a%cnv(mold=imold) call psb_geasb(bg,desc_a,info,scratch=.true.,mold=vmold) call psb_geasb(xg,desc_a,info,scratch=.true.,mold=vmold) #endif nr = desc_a%get_local_rows() nrg = desc_a%get_global_rows() call psb_geall(x0,desc_a,info) do i=1, nr call desc_a%l2g(i,ig,info) x0(i) = 1.0 + (1.0*ig)/nrg end do call a%cscnv(aux_a,info,mold=acoo) tcnvcsr = 0 tcnvgpu = 0 call psb_geall(x1,desc_a,info) do j=1, ncnv call aux_a%cscnv(a,info,mold=acoo) call psb_barrier(ctxt) t1 = psb_wtime() call a%cscnv(info,mold=acmold) t2 = psb_Wtime() -t1 call psb_amx(ctxt,t2) tcnvcsr = tcnvcsr + t2 if (j==1) tcnvc1 = t2 call psb_geasb(x1,desc_a,info) call xv%bld(x0) call psb_geasb(bv,desc_a,info,scratch=.true.) #ifdef HAVE_CUDA call aux_a%cscnv(agpu,info,mold=acoo) call xg%bld(x0,mold=vmold) call psb_geasb(bg,desc_a,info,scratch=.true.,mold=vmold) call psb_barrier(ctxt) t1 = psb_wtime() call agpu%cscnv(info,mold=agmold) call psb_cuda_DeviceSync() t2 = psb_Wtime() -t1 call psb_amx(ctxt,t2) if (j==1) tcnvg1 = t2 tcnvgpu = tcnvgpu + t2 #endif end do call xv%set(x0) call psb_barrier(ctxt) t1 = psb_wtime() do i=1,ntests call psb_spmm(sone,a,xv,szero,bv,desc_a,info) end do call psb_barrier(ctxt) t2 = psb_wtime() - t1 call psb_amx(ctxt,t2) #ifdef HAVE_CUDA call xg%set(x0) ! FIXME: cache flush needed here x1 = bv%get_vect() x2 = bg%get_vect() call psb_barrier(ctxt) tt1 = psb_wtime() do i=1,ntests call psb_spmm(sone,agpu,xv,szero,bg,desc_a,info) if ((info /= 0).or.(psb_get_errstatus()/=0)) then write(0,*) 'From 1 spmm',info,i,ntests call psb_error() stop end if end do call psb_cuda_DeviceSync() call psb_barrier(ctxt) tt2 = psb_wtime() - tt1 call psb_amx(ctxt,tt2) x1 = bv%get_vect() x2 = bg%get_vect() nr = desc_a%get_local_rows() eps = maxval(abs(x1(1:nr)-x2(1:nr))) call psb_amx(ctxt,eps) if (iam==0) write(*,*) 'Max diff on xGPU',eps ! FIXME: cache flush needed here call xg%set(x0) call xg%sync() call psb_barrier(ctxt) gt1 = psb_wtime() do i=1,ntests*ngpu call psb_spmm(sone,agpu,xg,szero,bg,desc_a,info) ! For timing purposes we need to make sure all threads ! in the device are done. if ((info /= 0).or.(psb_get_errstatus()/=0)) then write(0,*) 'From 2 spmm',info,i,ntests call psb_error() stop end if end do call psb_cuda_DeviceSync() call psb_barrier(ctxt) gt2 = psb_wtime() - gt1 call psb_amx(ctxt,gt2) call bg%sync() x1 = bv%get_vect() x2 = bg%get_vect() call psb_geaxpby(-sone,bg,+sone,bv,desc_a,info) eps = psb_geamax(bv,desc_a,info) call psb_amx(ctxt,t2) eps = maxval(abs(x1(1:nr)-x2(1:nr))) call psb_amx(ctxt,eps) if (iam==0) write(*,*) 'Max diff on GPU',eps if (dump) then write(fname,'(a,i3.3,a,i3.3,a)')'XCPU-out-',iam,'-',np,'.mtx' call mm_array_write(x1(1:nr),'Local part CPU',info,filename=fname) write(fname,'(a,i3.3,a,i3.3,a)')'XGPU-out-',iam,'-',np,'.mtx' call mm_array_write(x2(1:nr),'Local part GPU',info,filename=fname) end if #endif annz = a%get_nzeros() amatsize = a%sizeof() descsize = psb_sizeof(desc_a) call psb_sum(ctxt,nr) call psb_sum(ctxt,annz) call psb_sum(ctxt,amatsize) call psb_sum(ctxt,descsize) if (iam == psb_root_) then write(psb_out_unit,& & '("Matrix: ell1 ",i0)') idim write(psb_out_unit,& &'("Test on : ",i20," processors")') np write(psb_out_unit,& &'("Size of matrix : ",i20," ")') nr write(psb_out_unit,& &'("Number of nonzeros : ",i20," ")') annz write(psb_out_unit,& &'("Memory occupation : ",i20," ")') amatsize flops = ntests*(2.d0*annz) tflops = flops gflops = flops * ngpu write(psb_out_unit,'("Storage type for A: ",a)') a%get_fmt() #ifdef HAVE_CUDA write(psb_out_unit,'("Storage type for AGPU: ",a)') agpu%get_fmt() write(psb_out_unit,'("Time to convert A from COO to CPU (1): ",F20.9)')& & tcnvc1 write(psb_out_unit,'("Time to convert A from COO to CPU (t): ",F20.9)')& & tcnvcsr write(psb_out_unit,'("Time to convert A from COO to CPU (a): ",F20.9)')& & tcnvcsr/ncnv write(psb_out_unit,'("Time to convert A from COO to GPU (1): ",F20.9)')& & tcnvg1 write(psb_out_unit,'("Time to convert A from COO to GPU (t): ",F20.9)')& & tcnvgpu write(psb_out_unit,'("Time to convert A from COO to GPU (a): ",F20.9)')& & tcnvgpu/ncnv #endif write(psb_out_unit,& & '("Number of flops (",i0," prod) : ",F20.0," ")') & & ntests,flops flops = flops / (t2) tflops = tflops / (tt2) gflops = gflops / (gt2) write(psb_out_unit,'("Time for ",i6," products (s) (CPU) : ",F20.3)')& & ntests,t2 write(psb_out_unit,'("Time per product (ms) (CPU) : ",F20.3)')& & t2*1.d3/(1.d0*ntests) write(psb_out_unit,'("MFLOPS (CPU) : ",F20.3)')& & flops/1.d6 #ifdef HAVE_CUDA write(psb_out_unit,'("Time for ",i6," products (s) (xGPU) : ",F20.3)')& & ntests, tt2 write(psb_out_unit,'("Time per product (ms) (xGPU) : ",F20.3)')& & tt2*1.d3/(1.d0*ntests) write(psb_out_unit,'("MFLOPS (xGPU) : ",F20.3)')& & tflops/1.d6 write(psb_out_unit,'("Time for ",i6," products (s) (GPU.) : ",F20.3)')& & ngpu*ntests,gt2 write(psb_out_unit,'("Time per product (ms) (GPU.) : ",F20.3)')& & gt2*1.d3/(1.d0*ntests*ngpu) write(psb_out_unit,'("MFLOPS (GPU.) : ",F20.3)')& & gflops/1.d6 #endif ! ! This computation assumes the data movement associated with CSR: ! it is minimal in terms of coefficients. Other formats may either move ! more data (padding etc.) or less data (if they can save on the indices). ! nbytes = nr*(2*psb_sizeof_sp + psb_sizeof_ip)+& & annz*(psb_sizeof_sp + psb_sizeof_ip) bdwdth = ntests*nbytes/(t2*1.d6) write(psb_out_unit,*) write(psb_out_unit,'("MBYTES/S sust. effective bandwidth (CPU) : ",F20.3)') bdwdth #ifdef HAVE_CUDA bdwdth = ngpu*ntests*nbytes/(gt2*1.d6) write(psb_out_unit,'("MBYTES/S sust. effective bandwidth (GPU) : ",F20.3)') bdwdth bdwdth = psb_cuda_MemoryPeakBandwidth() write(psb_out_unit,'("MBYTES/S peak bandwidth (GPU) : ",F20.3)') bdwdth #endif write(psb_out_unit,'("Storage type for DESC_A: ",a)') desc_a%indxmap%get_fmt() write(psb_out_unit,'("Total memory occupation for DESC_A: ",i12)')descsize end if ! ! cleanup storage and exit ! call psb_gefree(bv,desc_a,info) call psb_gefree(xv,desc_a,info) call psb_spfree(a,desc_a,info) call psb_cdfree(desc_a,info) if(info /= psb_success_) then info=psb_err_from_subroutine_ ch_err='free routine' call psb_errpush(info,name,a_err=ch_err) goto 9999 end if #ifdef HAVE_CUDA call psb_cuda_exit() #endif call psb_exit(ctxt) stop 9999 continue call psb_error(ctxt) contains ! ! get iteration parameters from standard input ! subroutine get_parms(ctxt,acfmt,agfmt,idim) type(psb_ctxt_type) :: ctxt character(len=*) :: agfmt, acfmt integer :: idim integer :: np, iam integer :: intbuf(10), ip call psb_info(ctxt, iam, np) if (iam == 0) then write(*,*) 'CPU side format?' read(psb_inp_unit,*) acfmt write(*,*) 'CUDA side format?' read(psb_inp_unit,*) agfmt write(*,*) 'Size of discretization cube?' read(psb_inp_unit,*) idim endif call psb_bcast(ctxt,acfmt) call psb_bcast(ctxt,agfmt) call psb_bcast(ctxt,idim) if (iam == 0) then write(psb_out_unit,'("Testing matrix : ell1")') write(psb_out_unit,'("Grid dimensions : ",i4,"x",i4,"x",i4)')idim,idim,idim write(psb_out_unit,'("Number of processors : ",i0)')np write(psb_out_unit,'("Data distribution : BLOCK")') write(psb_out_unit,'(" ")') end if return end subroutine get_parms end program pdgenmv