! ! This sample program shows how to build and solve a sparse linear ! ! The program solves a linear system based on the partial differential ! equation ! ! ! ! the equation generated is: ! b1 d d (u) b2 d d (u) a1 d (u)) a2 d (u))) ! - ------ - ------ + ----- + ------ + a3 u = 0 ! dx dx dy dy dx dy ! ! ! with Dirichlet boundary conditions on the unit cube ! ! 0<=x,y,z<=1 ! ! The equation is discretized with finite differences and uniform stepsize; ! the resulting discrete equation is ! ! ( u(x,y,z)(2b1+2b2+a1+a2)+u(x-1,y)(-b1-a1)+u(x,y-1)(-b2-a2)+ ! -u(x+1,y)b1-u(x,y+1)b2)*(1/h**2) ! ! Example taken from: C.T.Kelley ! Iterative Methods for Linear and Nonlinear Equations ! SIAM 1995 ! ! ! In this sample program the index space of the discretized ! computational domain is first numbered sequentially in a standard way, ! then the corresponding vector is distributed according to an HPF BLOCK ! distribution directive. ! ! Boundary conditions are set in a very simple way, by adding ! equations of the form ! ! u(x,y) = rhs(x,y) ! program pde90 use psb_sparse_mod use psb_error_mod implicit none interface !.....user passed subroutine..... subroutine part_block(glob_index,n,np,pv,nv) integer, intent(in) :: glob_index, n, np integer, intent(out) :: nv integer, intent(out) :: pv(*) end subroutine part_block end interface ! input parameters character :: cmethd*10, prec*10, afmt*5 integer :: idim, iret ! miscellaneous character, parameter :: order='r' integer :: iargc,convert_descr,dim, check_descr real(kind(1.d0)), parameter :: dzero = 0.d0, one = 1.d0 real(kind(1.d0)) :: mpi_wtime, t1, t2, tprec, tsolve, t3, t4 external mpi_wtime ! sparse matrix and preconditioner type(psb_dspmat_type) :: a, l, u, h type(psb_dprec_type) :: pre ! descriptor type(psb_desc_type) :: desc_a, desc_a_out ! dense matrices real(kind(1.d0)), pointer :: b(:), x(:), d(:),ld(:) integer, pointer :: work(:) ! blacs parameters integer :: nprow, npcol, icontxt, iam, np, myprow, mypcol ! solver parameters integer :: iter, itmax,ierr,itrace, methd,iprec, istopc,& & iparm(20), ml real(kind(1.d0)) :: err, eps, rparm(20) ! other variables integer :: i,info integer :: internal, m,ii character(len=10) :: ptype character(len=20) :: name,ch_err info=0 name='pde90' call psb_set_errverbosity(2) call psb_set_erraction(0) ! initialize blacs call blacs_pinfo(iam, np) call blacs_get(izero, izero, icontxt) ! rectangular grid, p x 1 call blacs_gridinit(icontxt, order, np, ione) call blacs_gridinfo(icontxt, nprow, npcol, myprow, mypcol) ! ! get parameters ! call get_parms(icontxt,cmethd,prec,afmt,idim,istopc,itmax,itrace,ml) ! ! allocate and fill in the coefficient matrix, rhs and initial guess ! call blacs_barrier(icontxt,'ALL') t1 = mpi_wtime() call create_matrix(idim,a,b,x,desc_a,part_block,icontxt,afmt,info) t2 = mpi_wtime() - t1 if(info.ne.0) then info=4010 ch_err='create_matrix' call psb_errpush(info,name,a_err=ch_err) goto 9999 end if goto 9999 dim=size(a%aspk) !!$ allocate(h%aspk(dim),h%ia1(dim),h%ia2(dim),h%pl(size(a%pl)),& !!$ & h%pl(size(a%pl)),d(size(a%pl)),& !!$ & desc_a_out%matrix_data(size(desc_a%matrix_data)),& !!$ & desc_a_out%halo_index(size(desc_a%halo_index)),& !!$ & desc_a_out%ovrlap_index(size(desc_a%ovrlap_index)),& !!$ & desc_a_out%ovrlap_elem(size(desc_a%ovrlap_elem)),& !!$ & desc_a_out%loc_to_glob(size(desc_a%loc_to_glob)),& !!$ & desc_a_out%glob_to_loc(size(desc_a%glob_to_loc)), work(1024)) !!$ check_descr=15 ! work(5)=9 !!$ write(0,*)'calling verify' !!$ call f90_psverify(d,a,desc_a,check_descr,convert_descr,h,& !!$ & desc_a_out,work) !!$ write(0,*)'verify done',convert_descr ! deallocate(work) call dgamx2d(icontxt,'a',' ',ione, ione,t2,ione,t1,t1,-1,-1,-1) if (iam.eq.0) write(6,*) 'matrix creation time : ',t2 ! ! prepare the preconditioner. ! write(0,*)'precondizionatore=',prec select case (prec) case ('ILU') iprec = 2 ptype='bja' call psb_precset(pre,ptype) case ('DIAGSC') iprec = 1 ptype='diagsc' call psb_precset(pre,ptype) case ('NONE') iprec = 0 ptype='noprec' call psb_precset(pre,ptype) case default info=5003 ch_err(1:3)=prec(1:3) call psb_errpush(info,name,a_err=ch_err) goto 9999 end select write(0,*)'preconditioner set' call blacs_barrier(icontxt,'ALL') t1 = mpi_wtime() call psb_precbld(a,pre,desc_a,info)!,'f') if(info.ne.0) then info=4010 ch_err='psb_precbld' call psb_errpush(info,name,a_err=ch_err) goto 9999 end if tprec = mpi_wtime()-t1 call dgamx2d(icontxt,'a',' ',ione, ione,tprec,ione,t1,t1,-1,-1,-1) if (iam.eq.0) write(6,*) 'preconditioner time : ',tprec ! ! iterative method parameters ! write(*,*) 'calling iterative method', a%ia2(7999:8001) call blacs_barrier(icontxt,'ALL') t1 = mpi_wtime() eps = 1.d-9 if (cmethd.eq.'BICGSTAB') then call psb_bicgstab(a,pre,b,x,eps,desc_a,info,& & itmax,iter,err,itrace) else if (cmethd.eq.'CGS') then call psb_cgs(a,pre,b,x,eps,desc_a,info,& & itmax,iter,err,itrace) else if (cmethd.eq.'BICGSTABL') then call psb_bicgstabl(a,pre,b,x,eps,desc_a,info,& & itmax,iter,err,itrace,ml) else write(0,*) 'unknown method ',cmethd end if if(info.ne.0) then info=4010 ch_err='solver routine' call psb_errpush(info,name,a_err=ch_err) goto 9999 end if call blacs_barrier(icontxt,'ALL') t2 = mpi_wtime() - t1 call dgamx2d(icontxt,'a',' ',ione, ione,t2,ione,t1,t1,-1,-1,-1) if (iam.eq.0) then write(6,*) 'time to solve matrix : ',t2 write(6,*) 'time per iteration : ',t2/iter write(6,*) 'number of iterations : ',iter write(6,*) 'error on exit : ',err write(6,*) 'info on exit : ',ierr end if ! ! cleanup storage and exit ! call psb_free(b,desc_a,info) call psb_free(x,desc_a,info) call psb_spfree(a,desc_a,info) call psb_dscfree(desc_a,info) if(info.ne.0) then info=4010 ch_err='free routine' call psb_errpush(info,name,a_err=ch_err) goto 9999 end if 9999 continue if(info /= 0) then call psb_error(icontxt) call blacs_gridexit(icontxt) call blacs_exit(0) else call blacs_gridexit(icontxt) call blacs_exit(0) end if stop contains ! ! get iteration parameters from the command line ! subroutine get_parms(icontxt,cmethd,prec,afmt,idim,istopc,itmax,itrace,ml) integer :: icontxt character :: cmethd*10, prec*10, afmt*5 integer :: idim, iret, istopc,itmax,itrace,ml character*40 :: charbuf integer :: iargc, nprow, npcol, myprow, mypcol external iargc integer :: intbuf(10), ip call blacs_gridinfo(icontxt, nprow, npcol, myprow, mypcol) if (myprow==0) then read(*,*) ip if (ip.ge.3) then read(*,*) cmethd read(*,*) prec read(*,*) afmt ! convert strings in array do i = 1, len(cmethd) intbuf(i) = iachar(cmethd(i:i)) end do ! broadcast parameters to all processors call igebs2d(icontxt,'ALL',' ',10,1,intbuf,10) do i = 1, len(prec) intbuf(i) = iachar(prec(i:i)) end do ! broadcast parameters to all processors call igebs2d(icontxt,'ALL',' ',10,1,intbuf,10) do i = 1, len(afmt) intbuf(i) = iachar(afmt(i:i)) end do ! broadcast parameters to all processors call igebs2d(icontxt,'ALL',' ',10,1,intbuf,10) read(*,*) idim if (ip.ge.4) then read(*,*) istopc else istopc=1 endif if (ip.ge.5) then read(*,*) itmax else itmax=500 endif if (ip.ge.6) then read(*,*) itrace else itrace=-1 endif if (ip.ge.7) then read(*,*) ml else ml=1 endif ! broadcast parameters to all processors intbuf(1) = idim intbuf(2) = istopc intbuf(3) = itmax intbuf(4) = itrace intbuf(5) = ml call igebs2d(icontxt,'ALL',' ',5,1,intbuf,5) write(6,*)'solving matrix: ell1' write(6,*)'on grid',idim,'x',idim,'x',idim write(6,*)' with block data distribution, np=',np,& & ' preconditioner=',prec,& & ' iterative methd=',cmethd else ! wrong number of parameter, print an error message and exit call pr_usage(0) call blacs_abort(icontxt,-1) stop 1 endif else ! receive parameters call igebr2d(icontxt,'ALL',' ',10,1,intbuf,10,0,0) do i = 1, 10 cmethd(i:i) = achar(intbuf(i)) end do call igebr2d(icontxt,'ALL',' ',10,1,intbuf,10,0,0) do i = 1, 10 prec(i:i) = achar(intbuf(i)) end do call igebr2d(icontxt,'ALL',' ',10,1,intbuf,10,0,0) do i = 1, 5 afmt(i:i) = achar(intbuf(i)) end do call igebr2d(icontxt,'ALL',' ',5,1,intbuf,5,0,0) idim = intbuf(1) istopc = intbuf(2) itmax = intbuf(3) itrace = intbuf(4) ml = intbuf(5) end if return end subroutine get_parms ! ! print an error message ! subroutine pr_usage(iout) integer :: iout write(iout,*)'incorrect parameter(s) found' write(iout,*)' usage: pde90 methd prec dim & &[istop itmax itrace]' write(iout,*)' where:' write(iout,*)' methd: cgstab tfqmr cgs' write(iout,*)' prec : ilu diagsc none' write(iout,*)' dim number of points along each axis' write(iout,*)' the size of the resulting linear ' write(iout,*)' system is dim**3' write(iout,*)' istop stopping criterion 1, 2 or 3 [1] ' write(iout,*)' itmax maximum number of iterations [500] ' write(iout,*)' itrace 0 (no tracing, default) or ' write(iout,*)' >= 0 do tracing every itrace' write(iout,*)' iterations ' end subroutine pr_usage ! ! subroutine to allocate and fill in the coefficient matrix and ! the rhs. ! subroutine create_matrix(idim,a,b,t,desc_a,parts,icontxt,afmt,info) ! ! discretize the partial diferential equation ! ! b1 dd(u) b2 dd(u) b3 dd(u) a1 d(u) a2 d(u) a3 d(u) ! - ------ - ------ - ------ - ----- - ------ - ------ + a4 u ! dxdx dydy dzdz dx dy dz ! ! = 0 ! ! boundary condition: dirichlet ! 0< x,y,z<1 ! ! u(x,y,z)(2b1+2b2+2b3+a1+a2+a3)+u(x-1,y,z)(-b1-a1)+u(x,y-1,z)(-b2-a2)+ ! + u(x,y,z-1)(-b3-a3)-u(x+1,y,z)b1-u(x,y+1,z)b2-u(x,y,z+1)b3 use psb_spmat_type use psb_descriptor_type use psb_tools_mod use psb_methd_mod implicit none integer :: idim integer, parameter :: nbmax=10 real(kind(1.d0)),pointer :: b(:),t(:) type(psb_desc_type) :: desc_a integer :: icontxt, info character :: afmt*5 interface ! .....user passed subroutine..... subroutine parts(global_indx,n,np,pv,nv) implicit none integer, intent(in) :: global_indx, n, np integer, intent(out) :: nv integer, intent(out) :: pv(*) end subroutine parts end interface ! local variables type(psb_dspmat_type) :: a real(kind(1.d0)) :: zt(nbmax),glob_x,glob_y,glob_z integer :: m,n,nnz,glob_row,j type(psb_dspmat_type) :: row_mat integer :: x,y,z,counter,ia,i,indx_owner integer :: nprow,npcol,myprow,mypcol integer :: element integer :: nv, inv integer, allocatable :: prv(:) integer, pointer :: ierrv(:) real(kind(1.d0)), pointer :: dwork(:) integer,pointer :: iwork(:) ! deltah dimension of each grid cell ! deltat discretization time real(kind(1.d0)) :: deltah real(kind(1.d0)),parameter :: rhs=0.d0,one=1.d0,zero=0.d0 real(kind(1.d0)) :: mpi_wtime, t1, t2, t3, tins real(kind(1.d0)) :: a1, a2, a3, a4, b1, b2, b3 external mpi_wtime,a1, a2, a3, a4, b1, b2, b3 integer :: nb, ir1, ir2, ipr, err_act logical :: own ! common area character(len=20) :: name, ch_err info = 0 name = 'create_matrix' call psb_erractionsave(err_act) call blacs_gridinfo(icontxt, nprow, npcol, myprow, mypcol) deltah = 1.d0/(idim-1) ! initialize array descriptor and sparse matrix storage. provide an ! estimate of the number of non zeroes m = idim*idim*idim n = m nnz = ((n*9)/(nprow*npcol)) write(*,*) 'size: n ',n,myprow call psb_dscall(n,n,parts,icontxt,desc_a,info) write(*,*) 'allocating a. nnz:',nnz,myprow call psb_spalloc(a,desc_a,info,nnz=nnz) ! define rhs from boundary conditions; also build initial guess write(*,*) 'allocating b', info,myprow call psb_alloc(n,b,desc_a,info) write(*,*) 'allocating t', info,myprow call psb_alloc(n,t,desc_a,info) if(info.ne.0) then info=4010 ch_err='allocation rout.' call psb_errpush(info,name,a_err=ch_err) goto 9999 end if ! we build an auxiliary matrix consisting of one row at a ! time; just a small matrix. might be extended to generate ! a bunch of rows per call. ! row_mat%descra(1:1) = 'G' row_mat%fida = 'CSR' ! write(*,*) 'allocating row_mat',20*nbmax allocate(row_mat%aspk(20*nbmax),row_mat%ia1(20*nbmax),& &row_mat%ia2(20*nbmax),prv(nprow),stat=info) if (info.ne.0 ) then info=4000 call psb_errpush(info,name) goto 9999 endif tins = 0.d0 call blacs_barrier(icontxt,'ALL') t1 = mpi_wtime() ! loop over rows belonging to current process in a block ! distribution. row_mat%ia2(1)=1 do glob_row = 1, n call parts(glob_row,n,nprow,prv,nv) do inv = 1, nv indx_owner = prv(inv) if (indx_owner == myprow) then ! local matrix pointer element=0 ! compute gridpoint coordinates if (mod(glob_row,(idim*idim)).eq.0) then x = glob_row/(idim*idim) else x = glob_row/(idim*idim)+1 endif if (mod((glob_row-(x-1)*idim*idim),idim).eq.0) then y = (glob_row-(x-1)*idim*idim)/idim else y = (glob_row-(x-1)*idim*idim)/idim+1 endif z = glob_row-(x-1)*idim*idim-(y-1)*idim ! glob_x, glob_y, glob_x coordinates glob_x=x*deltah glob_y=y*deltah glob_z=z*deltah ! check on boundary points if (x.eq.1) then element=element+1 row_mat%aspk(element)=one row_mat%ia2(element)=(x-1)*idim*idim+(y-1)*idim+(z) row_mat%ia1(element)=glob_row else if (y.eq.1) then element=element+1 row_mat%aspk(element)=one row_mat%ia2(element)=(x-1)*idim*idim+(y-1)*idim+(z) row_mat%ia1(element)=glob_row else if (z.eq.1) then element=element+1 row_mat%aspk(element)=one row_mat%ia2(element)=(x-1)*idim*idim+(y-1)*idim+(z) row_mat%ia1(element)=glob_row else if (x.eq.idim) then element=element+1 row_mat%aspk(element)=one row_mat%ia2(element)=(x-1)*idim*idim+(y-1)*idim+(z) row_mat%ia1(element)=glob_row else if (y.eq.idim) then element=element+1 row_mat%aspk(element)=one row_mat%ia2(element)=(x-1)*idim*idim+(y-1)*idim+(z) row_mat%ia1(element)=glob_row else if (z.eq.idim) then element=element+1 row_mat%aspk(element)=one row_mat%ia2(element)=(x-1)*idim*idim+(y-1)*idim+(z) row_mat%ia1(element)=glob_row else ! internal point: build discretization ! ! term depending on (x-1,y,z) ! element=element+1 row_mat%aspk(element)=-b1(glob_x,glob_y,glob_z)& & -a1(glob_x,glob_y,glob_z) row_mat%aspk(element) = row_mat%aspk(element)/(deltah*& & deltah) row_mat%ia2(element)=(x-2)*idim*idim+(y-1)*idim+(z) row_mat%ia1(element)=glob_row ! term depending on (x,y-1,z) element=element+1 row_mat%aspk(element)=-b2(glob_x,glob_y,glob_z)& & -a2(glob_x,glob_y,glob_z) row_mat%aspk(element) = row_mat%aspk(element)/(deltah*& & deltah) row_mat%ia2(element)=(x-1)*idim*idim+(y-2)*idim+(z) row_mat%ia1(element)=glob_row ! term depending on (x,y,z-1) element=element+1 row_mat%aspk(element)=-b3(glob_x,glob_y,glob_z)& & -a3(glob_x,glob_y,glob_z) row_mat%aspk(element) = row_mat%aspk(element)/(deltah*& & deltah) row_mat%ia2(element)=(x-1)*idim*idim+(y-1)*idim+(z-1) row_mat%ia1(element)=glob_row ! term depending on (x,y,z) element=element+1 row_mat%aspk(element)=2*b1(glob_x,glob_y,glob_z)& & +2*b2(glob_x,glob_y,glob_z)& & +2*b3(glob_x,glob_y,glob_z)& & +a1(glob_x,glob_y,glob_z)& & +a2(glob_x,glob_y,glob_z)& & +a3(glob_x,glob_y,glob_z) row_mat%aspk(element) = row_mat%aspk(element)/(deltah*& & deltah) row_mat%ia2(element)=(x-1)*idim*idim+(y-1)*idim+(z) row_mat%ia1(element)=glob_row ! term depending on (x,y,z+1) element=element+1 row_mat%aspk(element)=-b1(glob_x,glob_y,glob_z) row_mat%aspk(element) = row_mat%aspk(element)/(deltah*& & deltah) row_mat%ia2(element)=(x-1)*idim*idim+(y-1)*idim+(z+1) row_mat%ia1(element)=glob_row ! term depending on (x,y+1,z) element=element+1 row_mat%aspk(element)=-b2(glob_x,glob_y,glob_z) row_mat%aspk(element) = row_mat%aspk(element)/(deltah*& & deltah) row_mat%ia2(element)=(x-1)*idim*idim+(y)*idim+(z) row_mat%ia1(element)=glob_row ! term depending on (x+1,y,z) element=element+1 row_mat%aspk(element)=-b3(glob_x,glob_y,glob_z) row_mat%aspk(element) = row_mat%aspk(element)/(deltah*& & deltah) row_mat%ia2(element)=(x)*idim*idim+(y-1)*idim+(z) row_mat%ia1(element)=glob_row endif row_mat%m=1 row_mat%k=n ! row_mat%ia2(2)=element ! ia== global row index ia=glob_row !!$ ia=(x-1)*idim*idim+(y-1)*idim+(z) !!$ write(0,*) 'inserting row ',ia,' on proc',myprow t3 = mpi_wtime() call psb_spins(element,row_mat%ia1,row_mat%ia2,row_mat%aspk,a,desc_a,info) if(info.ne.0) exit tins = tins + (mpi_wtime()-t3) ! build rhs if (x==1) then glob_y=(y-idim/2)*deltah glob_z=(z-idim/2)*deltah zt(1) = exp(-glob_y**2-glob_z**2) else if ((y==1).or.(y==idim).or.(z==1).or.(z==idim)) then glob_x=3*(x-1)*deltah glob_y=(y-idim/2)*deltah glob_z=(z-idim/2)*deltah zt(1) = exp(-glob_y**2-glob_z**2)*exp(-glob_x) else zt(1) = 0.d0 endif call psb_ins(1,b,ia,zt(1:1),desc_a,info) if(info.ne.0) exit zt(1)=0.d0 call psb_ins(1,t,ia,zt(1:1),desc_a,info) if(info.ne.0) exit end if end do end do call blacs_barrier(icontxt,'ALL') t2 = mpi_wtime() if(info.ne.0) then info=4010 ch_err='insert rout.' call psb_errpush(info,name,a_err=ch_err) goto 9999 end if write(*,*) ' pspins time',tins write(*,*) ' insert time',(t2-t1) deallocate(row_mat%aspk,row_mat%ia1,row_mat%ia2) t1 = mpi_wtime() call psb_dscasb(desc_a,info) call psb_spasb(a,desc_a,info,dup=1,afmt=afmt) call blacs_barrier(icontxt,'ALL') t2 = mpi_wtime() if(info.ne.0) then info=4010 ch_err='asb rout.' call psb_errpush(info,name,a_err=ch_err) goto 9999 end if write(0,*) ' assembly time',(t2-t1),' ',a%fida(1:4) call psb_asb(b,desc_a,info) write(0,*)'Remeber This!!!!!!' ! call psb_asb(t,desc_a,info) if(info.ne.0) then info=4010 ch_err='asb rout.' call psb_errpush(info,name,a_err=ch_err) goto 9999 end if if (myprow.eq.0) then write(0,*) ' end create_matrix' endif call psb_erractionrestore(err_act) return 9999 continue call psb_erractionrestore(err_act) if (err_act.eq.act_abort) then call psb_error(icontxt) return end if return end subroutine create_matrix end program pde90 ! ! functions parametrizing the differential equation ! function a1(x,y,z) real(kind(1.d0)) :: a1 real(kind(1.d0)) :: x,y,z a1=1.d0 end function a1 function a2(x,y,z) real(kind(1.d0)) :: a2 real(kind(1.d0)) :: x,y,z a2=2.d1*y end function a2 function a3(x,y,z) real(kind(1.d0)) :: a3 real(kind(1.d0)) :: x,y,z a3=1.d0 end function a3 function a4(x,y,z) real(kind(1.d0)) :: a4 real(kind(1.d0)) :: x,y,z a4=1.d0 end function a4 function b1(x,y,z) real(kind(1.d0)) :: b1 real(kind(1.d0)) :: x,y,z b1=1.d0 end function b1 function b2(x,y,z) real(kind(1.d0)) :: b2 real(kind(1.d0)) :: x,y,z b2=1.d0 end function b2 function b3(x,y,z) real(kind(1.d0)) :: b3 real(kind(1.d0)) :: x,y,z b3=1.d0 end function b3