/* * spGPU - Sparse matrices on GPU library. * * Copyright (C) 2010 - 2012 * Davide Barbieri - University of Rome Tor Vergata * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * version 3 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include "cudadebug.h" #include "cudalang.h" extern "C" { #include "core.h" #include "vector.h" int getGPUMultiProcessors(); int getGPUMaxThreadsPerMP(); //#include "cuda_util.h" } #include "debug.h" #define BLOCK_SIZE 512 #if 1 __global__ void spgpuSaxpby_krn(float *z, int n, float beta, float *y, float alpha, float* x) { int id = threadIdx.x + BLOCK_SIZE*blockIdx.x; unsigned int gridSize = blockDim.x * gridDim.x; if (beta == 0.0f) { for ( ; id < n; id +=gridSize) { // Since z, x and y are accessed with the same offset by the same thread, // and the write to z follows the x and y read, x, y and z can share the same base address (in-place computing). z[id] = PREC_FMUL(alpha,x[id]); } } else { for ( ; id < n; id +=gridSize) { // Since z, x and y are accessed with the same offset by the same thread, // and the write to z follows the x and y read, x, y and z can share the same base address (in-place computing). z[id] = PREC_FADD(PREC_FMUL(alpha, x[id]), PREC_FMUL(beta,y[id])); } } } void spgpuSaxpby(spgpuHandle_t handle, __device float *z, int n, float beta, __device float *y, float alpha, __device float* x) { int msize = (n+BLOCK_SIZE-1)/BLOCK_SIZE; int num_mp, max_threads_mp, num_blocks_mp, num_blocks; dim3 block(BLOCK_SIZE); num_mp = getGPUMultiProcessors(); max_threads_mp = getGPUMaxThreadsPerMP(); num_blocks_mp = max_threads_mp/BLOCK_SIZE; num_blocks = num_blocks_mp*num_mp; dim3 grid(num_blocks); spgpuSaxpby_krn<<currentStream>>>(z, n, beta, y, alpha, x); } #else __global__ void spgpuSaxpby_krn(float *z, int n, float beta, float *y, float alpha, float* x) { int id = threadIdx.x + BLOCK_SIZE*blockIdx.x; if (id < n) { // Since z, x and y are accessed with the same offset by the same thread, // and the write to z follows the x and y read, x, y and z can share the same base address (in-place computing). if (beta == 0.0f) z[id] = PREC_FMUL(alpha,x[id]); else z[id] = PREC_FADD(PREC_FMUL(alpha, x[id]), PREC_FMUL(beta,y[id])); } } void spgpuSaxpby_(spgpuHandle_t handle, __device float *z, int n, float beta, __device float *y, float alpha, __device float* x) { int msize = (n+BLOCK_SIZE-1)/BLOCK_SIZE; dim3 block(BLOCK_SIZE); dim3 grid(msize); spgpuSaxpby_krn<<currentStream>>>(z, n, beta, y, alpha, x); } void spgpuSaxpby(spgpuHandle_t handle, __device float *z, int n, float beta, __device float *y, float alpha, __device float* x) { int maxNForACall = max(handle->maxGridSizeX, BLOCK_SIZE*handle->maxGridSizeX); while (n > maxNForACall) //managing large vectors { spgpuSaxpby_(handle, z, maxNForACall, beta, y, alpha, x); x = x + maxNForACall; y = y + maxNForACall; z = z + maxNForACall; n -= maxNForACall; } spgpuSaxpby_(handle, z, n, beta, y, alpha, x); cudaCheckError("CUDA error on saxpby"); } #endif void spgpuSmaxpby(spgpuHandle_t handle, __device float *z, int n, float beta, __device float *y, float alpha, __device float* x, int count, int pitch) { for (int i=0; i