
PSBLAS-2.0 User’s guide

A reference guide for the Parallel Sparse BLAS library

by Salvatore Filippone

and Alfredo Buttari

“Tor Vergata” University of Rome. April 26, 2006

Contents

1 Introduction 1

2 General overview 1

3 Data Structures 4
3.1 Sparse Matrix data structure . 4

3.1.1 Named Constants . 6
3.2 Descriptor data structure . 6

3.2.1 Named Constants . 8
3.3 Preconditioner data structure . 9

3.3.1 Named Constants . 9

4 Algebraic routines 11
psb geaxpby . 12
psb gedot . 14
psb gedot . 16
psb geamax . 18
psb geamax . 19
psb geasum . 20
psb genrm2 . 21
psb spnrmi . 22
psb spmm . 23
psb spsm . 25

5 Communication routines 28
psb halo . 29
psb ovrl . 31
psb gather . 33
psb scatter . 35

6 Data management and initialization routines 37
psb cdall . 38
psb cdins . 40
psb cdasb . 41
psb cdcpy . 42
psb cdfree . 43
psb spall . 44
psb spins . 45
psb spasb . 47
psb spfree . 48
psb sprn . 49
psb geall . 50
psb geins . 51
psb geasb . 52
psb gefree . 53
psb gelp . 54
psb glob to loc . 55
psb loc to glob . 56

i

7 Iterative Methods 57
psb cg . 58
psb cgs . 60
psb bicg . 62
psb bicgstab . 64
psb bicgstabl . 66
psb gmres . 68

8 Preconditioner routines 70
psb precset . 71
psb precbld . 72
psb precaply . 73

9 Error handling 74
psb errpush . 76
psb error . 77
psb set errverbosity . 78
psb set erraction . 79
psb errcomm . 80

ii

1 Introduction

The PSBLAS library, developed with the aim to facilitate the parallelization of
computationally intensive scientific applications, is designed to address parallel
implementation of iterative solvers for sparse linear systems through the dis-
tributed memory paradigm. It includes routines for multiplying sparse matrices
by dense matrices, solving block diagonal systems with triangular diagonal en-
tries, preprocessing sparse matrices, and contains additional routines for dense
matrix operations. The current implementation of PSBLAS addresses a dis-
tributed memory execution model operating with message passing. However,
the overall design does not preclude different implementation paradigms, such
as those based on a shared memory model.

The PSBLAS library is internally implemented in a mixture of Fortran 77
and Fortran 95 [?] programming languages. A similar approach has been ad-
vocated by a number of authors, e.g. [?]. Moreover, the Fortran 95 facilities
for dynamic memory management and interface overloading greatly enhance
the usability of the PSBLAS subroutines. In this way, the library can take
care of runtime memory requirements that are quite difficult or even impossible
to predict at implementation or compilation time. The following presentation
of the PSBLAS library follows the general structure of the proposal for serial
Sparse BLAS [?], which in its turn is based on the proposal for BLAS on dense
matrices [?, ?, ?].

The applicability of sparse iterative solvers to many different areas causes
some terminology problems because the same concept may be denoted through
different names depending on the application area. The PSBLAS features pre-
sented in this section will be discussed mainly in terms of finite difference dis-
cretizations of Partial Differential Equations (PDEs). However, the scope of the
library is wider than that: for example, it can be applied to finite element dis-
cretizations of PDEs, and even to different classes of problems such as nonlinear
optimization, for example in optimal control problems.

The design of a solver for sparse linear systems is driven by many con-
flicting objectives, such as limiting occupation of storage resources, exploiting
regularities in the input data, exploiting hardware characteristics of the par-
allel platform. To achieve an optimal communication to computation ratio on
distributed memory machines it is essential to keep the data locality as high as
possible; this can be done through an appropriate data allocation strategy. The
choice of the preconditioner is another very important factor that affects effi-
ciency of the implemented application. Optimal data distribution requirements
for a given preconditioner may conflict with distribution requirements of the rest
of the solver. Finding the optimal trade-off may be very difficult because it is
application dependent. Possible solution to these problems and other important
inputs to the development of the PSBLAS software package has come from an
established experience in applying the PSBLAS solvers to computational fluid
dynamics applications.

2 General overview

The PSBLAS library is designed to handle the implementation of iterative
solvers for sparse linear systems on distributed memory parallel computers.

1

The system coefficient matrix A must be square; it may be real or complex,
nonsymmetric, and its sparsity pattern needs not to be symmetric. The serial
computation parts are based on the serial sparse BLAS, so that any extension
made to the data structures of the serial kernels is available to the parallel
version. The overall design and parallelization strategy have been influenced
by the structure of the ScaLAPACK parallel library [?]. The layered structure
of the PSBLAS library is shown in figure 1 ; lower layers of the library indi-
cate an encapsulation relationship with upper layers. The ongoing discussion
focuses on the Fortran 95 layer immediately below the application layer. The
serial parts of the computation on each process are executed through calls to
the serial sparse BLAS subroutines. In a similar way, the inter-process message
exchanges are implemented through the Basic Linear Algebra Communication
Subroutines (BLACS) library [?] that guarantees a portable and efficient com-
munication layer. The Message Passing Interface code is encapsulated within
the BLACS layer. However, in some cases, MPI routines are directly used ei-
ther to improve efficiency or to implement communication patterns for which
the BLACS package doesn’t provide any method.

PSBLAS (Fortran 77)

PSBLAS (Fortran 90)

Application

BLACS

MPI

Sparse
BLAS

Serial

Figure 1: PSBLAS library components hierarchy.

The PSBLAS library consists of two classes of subroutines that is, the com-
putational routines and the auxiliary routines. The computational routine set
includes:

• Sparse matrix by dense matrix product;

• Sparse triangular systems solution for block diagonal matrices;

• Vector and matrix norms;

• Dense matrix sums;

• Dot products.

The auxiliary routine set includes:

• Communication descriptors allocation;

• Dense and sparse matrix allocation;

• Dense and sparse matrix build and update;

2

• Sparse matrix and data distribution preprocessing.

The following naming scheme has been adopted for all the symbols internally
defined in the PSBLAS software package:

• all the symbols (i.e. subroutine names, data types...) are prefixed by psb_

• all the data type names are suffixed by _type

• all the constant values are suffixed by _

• all the subroutine names follow the rule psb_xxname where xx can be
either:

– ge: the routine is related to dense data,

– sp: the routine is related to sparse data,

– cd: the routine is related to communication descriptor (see 3).

For example the psb_geins, psb_spins and psb_cdins perform the same
action (see 6) on dense matrices, sparse matrices and communication de-
scriptors respectively. Interface overloading allows the usage of the same
subroutine interfaces for both real and complex data.

In the description of the subroutines, arguments or argument entries are classi-
fied as:

global For input arguments, the value must be the same on all processes partici-
pating in the subroutine call; for output arguments the value is guaranteed
to be the same.

local Each process has its own value(s) independently.

3

3 Data Structures

In this chapter are illustrated data structures used for definition of routines
interfaces. This include data structure for sparse matrix, communication de-
scriptor and preconditioner. These data structures are used for calling PSBLAS
routines in Fortran 90 language and will be used to next chapters containing
these callings. Their definitions are included in the modules psb_spmat_type,
psb_descriptor_type and psb_prec_type.

3.1 Sparse Matrix data structure

The psb spmat type data structure contains all information about local portion
of the sparse matrix and its storage mode. Many of this fields are set in fully-
transparent mode by PSBLAS-TOOLS routines when inserting a new sparse
matrix, user must set only fields which describe matrix storage mode.
Fields contained in Sparse matrix structures are:

aspk Contains values of the local distributed sparse matrix.
Specified as: a pointer to an array of rank one of type corresponding to
matrix entries type.

ia1 Holds integer information on distributed sparse matrix. Actual information
will depend on data format used.
Specified as: a pointer to an integer array of rank one.

ia2 Holds integer information on distributed sparse matrix. Actual information
will depend on data format used.
Specified as: a pointer to an integer array of rank one.

infoa On entry can hold auxiliary information on distributed sparse matrix.
Actual information will depend on data format used.
Specified as: integer array of length psb_ifasize_.

fida Defines the format of the distributed sparse matrix.
Specified as: a string of length 5

descra Describe the characteristic of the distributed sparse matrix.
Specified as: array of character of length 9.

pl Specifies the local row permutation of distributed sparse matrix. If pl(1) is
equal to 0, then there isn’t row permutation.
Specified as: pointer to integer array of dimension equal to number of
local row (matrix data[psb n row])

pr Specifies the local column permutation of distributed sparse matrix. If
PR(1) is equal to 0, then there isn’t columnm permutation.
Specified as: pointer to integer array of dimension equal to number of
local row (matrix data[psb n col])

m Number of rows; if row indices are stored explicitly, as in Coordinate Storage,
should be greater than or equal to the maximum row index actually present
in the sparse matrix. Specified as: integer variable.

4

k Number of columns; if column indices are stored explicitly, as in Coordinate
Storage or Compressed Sparse Rows, should be greater than or equal to the
maximum column index actually present in the sparse matrix. Specified
as: integer variable.

FORTRAN95 interface for distributed sparse matrices containing double preci-
sion real entries is defined as in figure 2.

type psb_dspmat_type
integer :: m, k
character :: fida(5)
character :: descra(10)
integer :: infoa(psb_ifa_size_)
real(kind(1.d0)), pointer :: aspk(:)
integer, pointer :: ia1(:), ia2(:), pr(:), pl(:)

end type psb_dspmat_type

Figure 2: The PSBLAS defined data type that contains a sparse matrix.

The following two cases are among the most commonly used:

fida=“CSR” Compressed storage by rows. In this case the following should
hold:

1. ia2(i) contains the index of the first element of row i; the last
element of the sparse matrix is thus stored at index ia2(m+1)−1. It
should contain m+1 entries in nondecreasing order (strictly increasing,
if there are no empty rows).

2. ia1(j) contains the column index and aspk(j) contains the corre-
sponding coefficient value, for all ia2(1) ≤ j ≤ ia2(m + 1)− 1.

fida=“COO” Coordinate storage. In this case the following should hold:

1. infoa(1) contains the number of nonzero elements in the matrix;

2. For all 1 ≤ j ≤ infoa(1), the coefficient, row index and column index
are stored into apsk(j), ia1(j) and ia2(j) respectively.

A sparse matrix has an associated state, which can take the following values:

Build: State entered after the first allocation, and before the first assembly; in
this state it is possible to add nonzero entries.

Assembled: State entered after the assembly; computations using the sparse
matrix, such as matrix-vector products, are only possible in this state;

Update: State entered after a reinitalization; this is used to handle applications
in which the same sparsity pattern is used multiple times with different
coefficients. In this state it is only possible to enter coefficients for already
existing nonzero entries.

5

3.1.1 Named Constants

psb nztotreq Request to fetch the total number of nonzeroes stored in a
sparse matrix

psb nzrowreq Request to fetch the number of nonzeroes in a given row in a
sparse matrix

psb dupl ovwrt Duplicate coefficients should be overwritten (i.e. ignore du-
plications)

psb dupl add Duplicate coefficients should be added;

psb dupl err Duplicate coefficients should trigger an error conditino

psb upd dflt Default update strategy for matrix coefficients;

psb upd srch Update strategy based on search into the data structure;

psb upd perm Update strategy based on additional permutation data (see
tools routine description).

3.2 Descriptor data structure

All the general matrix informations and elements to be exchanged among pro-
cesses are stored within a data structure of the type psb desc type. Every
structure of this type is associated to a sparse matrix, it contains data about
general matrix informations and elements to be exchanged among processes.
It is not necessary for the user to know the internal structure of psb_desc_type,
it is set in fully-transparent mode by PSBLAS-TOOLS routines when inserting
a new sparse matrix, however the definition of the descriptor is the following.

matrix data includes general information about matrix and BLACS grid. More
precisely:

matrix data[psb dec type] Identifies the decomposition type (global);
the actual values are internally defined, so they should never be ac-
cessed directly.

matrix data[psb ctxt] Communication context as returned by the BLACS
(global).

matrix data[psb m] Total number of equations (global).

matrix data[psb n] Total number of variables (global).

matrix data[psb n row] Number of grid variables owned by the cur-
rent process (local); equivalent to the number of local rows in the
sparse coefficient matrix.

matrix data[psb n col] Total number of grid variables read by the cur-
rent process (local); equivalent to the number of local columns in the
sparse coefficient matrix. They include the halo.

Specified as: a pointer to integer array of dimension 10.

6

halo index A list of the halo and boundary elements for the current process
to be exchanged with other processes; for each processes with which it is
necessary to communicate:

1. Process identifier;

2. Number of points to be received;

3. Indices of points to be received;

4. Number of points to be sent;

5. Indices of points to be sent;

The list may contain an arbitrary number of groups; its end is marked by
a -1.
Specified as: a pointer to an integer array of rank one.

ovrlap index A list of the overlap elements for the current process, organized
in groups like the previous vector:

1. Process identifier;

2. Number of points to be received;

3. Indices of points to be received;

4. Number of points to be sent;

5. Indices of points to be sent;

The list may contain an arbitrary number of groups; its end is marked by
a -1.
Specified as: a pointer to an integer array of rank one.

ovrlap index For all overlap points belonging to th ecurrent process:

1. Overlap point index;

2. Number of processes sharing that overlap points;

The list may contain an arbitrary number of groups; its end is marked by
a -1.
Specified as: a pointer to an integer array of rank one.

loc to glob each element i of this array contains global identifier of the local
variable i.
Specified as: a pointer to an integer array of rank one.

glob to loc if global variable i is read by current process then element i con-
tains local index correpondent to global variable i; else element i contains
-1 (NULL) value.
Specified as: a pointer to an integer array of rank one.

FORTRAN95 interface for psb_desc_type structures is therefore defined as
follows:

A communication descriptor associated with a sparse matrix has a state,
which can take the following values:

7

type psb_desc_type
integer, pointer :: matrix_data(:), halo_index(:)
integer, pointer :: overlap_elem(:), overlap_index(:)
integer, pointer :: loc_to_glob(:), glob_to_loc(:)

end type psb_desc_type

Figure 3: The PSBLAS defined data type that contains the communication
descriptor.

Build: State entered after the first allocation, and before the first assembly; in
this state it is possible to add communication requirements among different
processes.

Assembled: State entered after the assembly; computations using the associ-
ated sparse matrix, such as matrix-vector products, are only possible in
this state.

3.2.1 Named Constants

psb none Generic no-op;

psb nohalo Do not fetch halo elements;

psb halo Fetch halo elements from neighbouring processes;

psb sum Sum overlapped elements

psb avg Average overlapped elements

psb dec type Entry holding decomposition type (in desc_a%matrix_data)

psb m Entry holding total number of rows

psb n Entry holding total number of columns

psb n row Entry holding the number of rows stored in the current process

psb n col Entry holding the number of columns stored in the current process

psb ctxt Entry holding a copy of the BLACS communication context

psb desc asb State of the descriptor: assembled, i.e. suitable for computa-
tional tasks.

psb desc bld State of the descriptor: build, must be assembled before com-
putational use.

8

3.3 Preconditioner data structure

PSBLAS-2.0 offers the possibility to use many different types of preconditioning
schemes. Besides the simple well known preconditioners like Diagonal Scaling or
Block Jacobi (with ILU(0) incomplete factorization) also more complex precon-
ditioning methods are implemented like the Additive Schwarz and Two-Level
ones. A preconditioner is held in the psb prec type data structure which de-
pends on the psb_base_prec reported in figure 4. The psb_base_prec data
type may contain a simple preconditioning matrix with the associated com-
munication descriptor which may be different than the system communication
descriptor in the case of parallel preconditioners like the Additive Schwarz one.
Then the psb_prec_type may contain more than one preconditioning matrix
like in the case of Two-Level (in general Multi-Level) preconditioners. The user
can choose the type of preconditioner to be used by means of the psb_precset
subroutine; once the type of preconditioning method is specified, along with
all the parameters that characterize it, the preconditioner data structure can
be built using the psb_precbld subroutine. This data structure wants to be
flexible enough to easily allow the implementation of new kind of precondition-
ers. The values contained in the iprcparm and dprcparm define tha type of
preconditioner along with all the parameters related to it; thus, iprcparm and
dprcparm define how the other records have to be interpreted.

type psb_base_prec

type(psb_spmat_type), pointer :: av(:) => null()

real(kind(1.d0)), pointer :: d(:) => null()

type(psb_desc_type), pointer :: desc_data => null()

integer, pointer :: iprcparm(:) => null()

real(kind(1.d0)), pointer :: dprcparm(:) => null()

integer, pointer :: perm(:) => null()

integer, pointer :: mlia(:) => null()

integer, pointer :: invperm(:) => null()

integer, pointer :: nlaggr(:) => null()

type(psb_spmat_type), pointer :: aorig => null()

real(kind(1.d0)), pointer :: dorig(:) => null()

end type psb_base_prec

type psb_prec_type

type(psb_base_prec), pointer :: baseprecv(:) => null()

integer :: prec, base_prec

end type psb_prec_type

Figure 4: The PSBLAS defined data type that contains a preconditioner.

3.3.1 Named Constants

f ilu n Incomplete LU factorization with n levels of fill-in; currently only n = 0
is implemented;

9

f slu Sparse factorization using SuperLU;

f umf Sparse factorization using UMFPACK;

add ml prec Additive multilevel correction;

mult ml prec Multiplicative multilevel correction;

pre smooth Pre-smoothing in applying multiplicative multilevel corrections;

post smooth Post-smoothing in applying multiplicative multilevel corrections;

smooth both Two-sided (i.e. symmetric) smoothing in applying multiplica-
tive multilevel corrections;

mat distr Coarse matrix distributed among processes

mat repl Coarse matrix replicated among processes

10

4 Algebraic routines

11

psb geaxpby—General Dense Matrix Sum

This subroutine is an interface to the computational kernel for dense matrix
sum:

y ← α x + βy

Syntax

call psb geaxpby (alpha, x, beta, y, desc a, info)

x, y, α, β Subroutine
Long Precision Real psb geaxpby
Long Precision Complex psb geaxpby

Table 1: Data types

On Entry

alpha the scalar α.
Scope: global
Type: required
Specified as: a number of the data type indicated in Table 1.

x the local portion of global dense matrix x.
Scope: local
Type: required
Specified as: a rank one or two array containing numbers of type specified
in Table 1. The rank of x must be the same of y.

beta the scalar β.
Scope: global
Type: required
Specified as: a number of the data type indicated in Table 1.

y the local portion of the global dense matrix y.
Scope: local
Type: required
Specified as: a rank one or two array containing numbers of the type
indicated in Table 1. The rank of y must be the same of x.

desc a contains data structures for communications.
Scope: local
Type: required
Specified as: a structured data of type psb desc type.

On Return

12

y the local portion of result submatrix y.
Scope: local
Type: required
Specified as: a rank one or two array containing numbers of the type
indicated in Table 1.

info the local portion of result submatrix y.
Scope: local
Type: required
An integer value that contains an error code.

13

psb gedot—Dot Product

This function computes dot product between two vectors x and y.
If x and y are double precision real vectors computes dot-product as:

dot← xT y

Else if x and y are double precision complex vectors then computes dot-product
as:

dot← xHy

Syntax

psb gedot (x, y, desc a, info)

dot, x, y Function
Long Precision Real psb gedot
Long Precision Complex psb gedot

Table 2: Data types

On Entry

x the local portion of global dense matrix x.
Scope: local
Type: required
Specified as: an array of rank one or two containing numbers of type
specified in Table 2. The rank of x must be the same of y.

y the local portion of global dense matrix y.
Scope: local
Type: required
Specified as: an array of rank one or two containing numbers of type
specified in Table 2. The rank of y must be the same of x.

desc a contains data structures for communications.
Scope: local
Type: required
Specified as: a structured data of type psb desc type.

On Return

Function value is the dot product of subvectors x and y.
Scope: global
Specified as: a number of the data type indicated in Table 2.

14

info the local portion of result submatrix y.
Scope: local
Type: required
An integer value that contains an error code.

15

psb gedot—Generalized Dot Product

This subroutine computes a series of dot products among the columns of two
dense matrices x and y:

res(i)← x(:, i)T y(:, i)

If the matrices are complex, then the usual convention applies, i.e. the conjugate
transpose of x is used. If x and y are of rank one, then res is a scalar, else it is
a rank one array.

Syntax

psb gedot (res, x, y, desc a, info)

res, x, y Subroutine
Long Precision Real psb gedot
Long Precision Complex psb gedot

Table 3: Data types

On Entry

x the local portion of global dense matrix x.
Scope: local
Type: required
Specified as: an array of rank one or two containing numbers of type
specified in Table 3. The rank of x must be the same of y.

y the local portion of global dense matrix y.
Scope: local
Type: required
Specified as: an array of rank one or two containing numbers of type
specified in Table 3. The rank of y must be the same of x.

desc a contains data structures for communications.
Scope: local
Type: required
Specified as: a structured data of type psb desc type.

On Return

res is the dot product of subvectors x and y.
Scope: global
Specified as: a number or a rank-one array of the data type indicated in
Table 2.

16

info Scope: local
Type: required
An integer value that contains an error code.

17

psb geamax—Infinity-Norm of Vector

This function computes the infinity-norm of a vector x.
If x is a double precision real vector computes infinity norm as:

amax← max
i
|xi|

else if x is a double precision complex vector then computes infinity-norm as:

amax← max
i

(|re(xi)|+ |im(xi)|)

Syntax

psb geamax (x, desc a, info)

amax x Function
Long Precision Real Long Precision Real psb geamax
Long Precision Real Long Precision Complex psb geamax

Table 4: Data types

On Entry

x the local portion of global dense matrix x.
Scope: local
Type: required
Specified as: a rank one or two array containing numbers of type specified
in Table 4.

desc a contains data structures for communications.
Scope: local
Type: required
Specified as: a structured data of type psb desc type.

On Return

Function value is the infinity norm of subvector x.
Scope: global
Specified as: a long precision real number.

info Scope: global
Type: required
An integer value that contains an error code.

18

psb geamax—Generalized Infinity Norm

This subroutine computes a series of infinity norms on the columns of a dense
matrix x:

res(i)← max
k
|x(k, i)|

Syntax

psb geamax (res, x, desc a, info)

res x Subroutine
Long Precision Real Long Precision Real psb geamax
Long Precision Real Long Precision Complex psb geamax

Table 5: Data types

On Entry

x the local portion of global dense matrix x.
Scope: local
Type: required
Specified as: a rank one or two array containing numbers of type specified
in Table 5.

desc a contains data structures for communications.
Scope: local
Type: required
Specified as: a structured data of type psb desc type.

On Return

res is the infinity norm of the columns of x.
Scope: global
Specified as: a number or a rank-one array of long precision real numbers.

info Scope: local
Type: required
An integer value that contains an error code.

19

psb geasum—1-Norm of Vector

This function computes the 1-norm of a vector x.
If x is a double precision real vector computes 1-norm as:

asum← ‖xi‖

else if x ic double precision complex vector then computes 1-norm as:

asum← ‖re(x)‖1 + ‖im(x)‖1

Syntax

psb geasum (x, desc a, info)

asum x Function
Long Precision Real Long Precision Real psb geasum
Long Precision Real Long Precision Complex psb geasum

Table 6: Data types

On Entry

x the local portion of global dense matrix x.
Scope: local
Type: required
Specified as: a rank one or two array containing numbers of type specified
in Table 6.

desc a contains data structures for communications.
Scope: local
Type: required
Specified as: a structured data of type psb desc type.

On Return

Function value is the 1-norm of vector x.
Scope: global
Specified as: a long precision real number.

info Scope: local
Type: required
An integer value that contains an error code.

20

psb genrm2—2-Norm of Vector

This function computes the 2-norm of a vector x.
If x is a double precision real vector computes 2-norm as:

nrm2←
√

xT x

else if x is double precision complex vector then computes 2-norm as:

nrm2←
√

xHx

nrm2 x Function
Long Precision Real Long Precision Real psb genrm2
Long Precision Real Long Precision Complex psb genrm2

Table 7: Data types

Syntax

psb genrm2 (x, desc a, info)

On Entry

x the local portion of global dense matrix x.
Scope: local
Type: required
Specified as: a rank one or two array containing numbers of type specified
in Table 7.

desc a contains data structures for communications.
Scope: local
Type: required
Specified as: a structured data of type psb desc type.

On Return

Function Value is the 2-norm of subvector x.
Scope: global
Type: required
Specified as: a long precision real number.

info Scope: local
Type: required
An integer value that contains an error code.

21

psb spnrmi—Infinity Norm of Sparse Matrix

This function computes the infinity-norm of a matrix A:

nrmi← ‖A‖∞

where:

A represents the global matrix A

A Function
Long Precision Real psb spnrmi
Long Precision Complex psb spnrmi

Table 8: Data types

Syntax

psb spnrmi (A, desc a, info)

On Entry

a the local portion of the global sparse matrix A.
Scope: local
Type: required
Specified as: a structured data of type psb spmat type.

desc a contains data structures for communications.
Scope: local
Type: required
Specified as: a structured data of type psb desc type.

On Return

Function value is the infinity-norm of sparse submatrix A.
Scope: global
Specified as: a long precision real number.

info Scope: local
Type: required
An integer value that contains an error code.

22

psb spmm—Sparse Matrix by Dense Matrix
Product

This subroutine computes the Sparse Matrix by Dense Matrix Product:

y ← αPrAPcx + βy (1)

y ← αPrA
T Pcx + βy (2)

y ← αPrA
HPcx + βy (3)

where:

x is the global dense submatrix x:,:

y is the global dense submatrix y:,:

A is the global sparse submatrix A

Pr, Pc are the permutation matrices.

A, x, y, α, β Subroutine
Long Precision Real psb spmm
Long Precision Complex psb spmm

Table 9: Data types

Syntax

CALL psb spmm (alpha, a, x, beta, y, desc a, info)

CALL psb spmm (alpha, a, x, beta, y,desc a, info, trans, work)

On Entry

alpha the scalar α.
Scope: global
Type: required
Specified as: a number of the data type indicated in Table 9.

a the local portion of the sparse matrix A.
Scope: local
Type: required
Specified as: a structured data of type psb spmat type.

x the local portion of global dense matrix x.
Scope: local
Type: required
Specified as: a rank one or two array containing numbers of type specified
in Table 9. The rank of x must be the same of y.

23

beta the scalar β.
Scope: global
Type: required
Specified as: a number of the data type indicated in Table 9.

y the local portion of global dense matrix y.
Scope: local
Type: required
Specified as: a rank one or two array containing numbers of type specified
in Table 9. The rank of y must be the same of x.

desc a contains data structures for communications.
Scope: local
Type: required
Specified as: a structured data of type psb desc type.

trans indicate what kind of operation to perform.

trans = N the operation is specified by equation 1

trans = T the operation is specified by equation 2

trans = C the operation is specified by equation 3

Scope: global
Type: optional
Default: trans = N
Specified as: a character variable.

work work array.
Scope: local
Type: optional
Specified as: a rank one array of the same type of x and y with the
TARGET attribute.

On Return

y the local portion of result submatrix y.
Scope: local
Type: required
Specified as: an array of rank one or two containing numbers of type
specified in Table 9.

info Scope: local
Type: required
An integer value that contains an error code.

24

psb spsm—Triangular System Solve

This subroutine computes the Triangular System Solve:

y ← αPrT
−1Pcx + βy

y ← αDPrT
−1Pcx + βy

y ← αPrT
−1PcDx + βy

y ← αPrT
−T Pcx + βy

y ← αDPrT
−T Pcx + βy

y ← αPrT
−T PcDx + βy

y ← αPrT
−HPcx + βy

y ← αDPrT
−HPcx + βy

y ← αPrT
−HPcDx + βy

where:

x is the global dense submatrix x:,:

y is the global dense submatrix y:,:

T is the global sparse block triangular submatrix T

D is the scaling diagonal matrix.

Pr, Pc are the permutation matrices.

Syntax

CALL psb spsm (alpha, t, x, beta, y, desc a, info)

CALL psb spsm
(alpha, t, x, beta, y, desc a, info, trans, unit, choice, diag, work)

T , x, y, D, α, β Subroutine
Long Precision Real psb spsm
Long Precision Complex psb spsm

Table 10: Data types

On Entry

25

alpha the scalar α.
Scope: global
Type: required
Specified as: a number of the data type indicated in Table 10.

t the global portion of the sparse matrix T .
Scope: local
Type: required
Specified as: a structured data type specified in § 3.

x the local portion of global dense matrix x.
Scope: local
Type: required
Specified as: a rank one or two array containing numbers of type specified
in Table 10. The rank of x must be the same of y.

beta the scalar β.
Scope: global
Type: required
Specified as: a number of the data type indicated in Table 10.

y the local portion of global dense matrix y.
Scope: local
Type: required
Specified as: a rank one or two array containing numbers of type specified
in Table 10. The rank of y must be the same of x.

desc a contains data structures for communications.
Scope: local
Type: required
Specified as: a structured data of type psb desc type.

trans specify with unitd the operation to perform.

trans = ’N’ the operation is with no transposed matrix

trans = ’T’ the operation is with transposed matrix.

trans = ’C’ the operation is with conjugate transposed matrix.

Scope: global
Type: optional
Default: trans = N
Specified as: a character variable.

unitd specify with trans the operation to perform.

unitd = ’U’ the operation is with no scaling

unitd = ’L’ the operation is with left scaling

unitd = ’R’ the operation is with right scaling.

Scope: global
Type: optional
Default: unitd = U
Specified as: a character variable.

26

choice specifies the update of overlap elements to be performed on exit:

psb_none_

psb_sum_

psb_avg_

psb_square_root_

Scope: global
Type: optional
Default: psb_avg_
Specified as: an integer variable.

diag the diagonal scaling matrix.
Scope: local
Type: optional
Default: diag(1) = 1(noscaling)
Specified as: a rank one array containing numbers of the type indicated
in Table 10.

work a work array.
Scope: local
Type: optional
Specified as: a rank one array of the same type of x with the TARGET
attribute.

On Return

y the local portion of global dense matrix y.
Scope: local
Type: required
Specified as: a pointer to array of rank one or two containing numbers of
type specified in Table 10.

info Scope: local
Type: required
An integer value that contains an error code.

27

5 Communication routines

28

psb halo—Halo Data Communication

These subroutines restore a consistent status for the halo elements, and (op-
tionally) scale the result:

x← αx

where:

x is a global dense submatrix.

α, x Subroutine
Long Precision Real psb halo
Long Precision Complex psb halo

Table 11: Data types

Syntax

CALL psb halo (x, desc a, info)

CALL psb halo (x, desc a, info, alpha, work)

On Entry

x global dense matrix x.
Scope: local
Type: required
Specified as: a rank one or two array with the TARGET attribute con-
taining numbers of type specified in Table 11.

desc a contains data structures for communications.
Scope: local
Type: required
Specified as: a structured data of type psb desc type.

alpha the scalar α.
Scope: global
Type: optional
Default: alpha = 1
Specified as: a number of the data type indicated in Table 11.

work the work array.
Scope: local
Type: optional
Specified as: a rank one array of the same type of x with the POINTER
attribute.

29

On Return

x global dense result matrix x.
Scope: local
Type: required
Returned as: a rank one or two array containing numbers of type specified
in Table 11.

info the local portion of result submatrix y.
Scope: local
Type: required
An integer value that contains an error code.

30

psb ovrl—Overlap Update

These subroutines restore a consistent status for the overlap elements:

x← Qx

where:

x is the global dense submatrix x

Q is the overlap operator; it is the composition of two operators Pa and PT .

x Subroutine
Long Precision Real psb ovrl
Long Precision Complex psb ovrl

Table 12: Data types

Syntax

CALL psb ovrl (x, desc a, info)

CALL psb ovrl (x, desc a, info, update=update type, work=work)

On Entry

x global dense matrix x.
Scope: local
Type: required
Specified as: a rank one or two array containing numbers of type specified
in Table 12.

desc a contains data structures for communications.
Scope: local
Type: required
Specified as: a structured data of type psb desc type.

update Update operator.

update = psb none Do nothing;
update = psb add Sum overlap entries, i.e. apply PT ;
update = psb avg Average overlap entries, i.e. apply PaPT ;

Scope: global
Default: update type = psb avg
Scope: global
Specified as: a integer variable.

31

work the work array.
Scope: local
Type: optional
Specified as: a one dimensional array of the same type of x.

On Return

x global dense result matrix x.
Scope: local
Type: required
Specified as: an array of rank one or two containing numbers of type
specified in Table 12.

info the local portion of result submatrix y.
Scope: local
Type: required
An integer value that contains an error code.

Usage notes

1. If there is no overlap in the data distribution, no operations are performed;

2. The operator PT performs the reduction sum of overlap elements; it is a
“prolongation” operator PT that replicates overlap elements, accounting
for the physical replication of data;

3. The operator Pa performs a scaling on the overlap elements by the amount
of replication; thus, when combined with the reduction operator, it imple-
ments the average of replicated elements over all of their instances.

32

psb gather—Gather Global Dense Matrix

These subroutines collect the portions of global dense matrix distributed over
all process into one single array stored on one process.

glob x← collect(loc xi)

where:

glob x is the global submatrix glob xiy:iy+m−1,jy:jy+n−1

loc xi is the local portion of global dense matrix on process i.

collect is the collect function.

xi, y Subroutine
Long Precision Real psb gather
Long Precision Complex psb gather

Table 13: Data types

Syntax

call psb gather (glob x, loc x, desc a, info, root, iglobx, jglobx, ilocx, jlocx, k)

Syntax

call psb gather (glob x, loc x, desc a, info, root, iglobx, ilocx)

On Entry

loc x the local portion of global dense matrix glob x.
Scope: local
Type: required
Specified as: a rank one or two array containing numbers of the type
indicated in Table 13.

desc a contains data structures for communications.
Scope: local
Type: required
Specified as: a structured data of type psb desc type.

root The process that holds the global copy. If root = −1 all the processes will
have a copy of the global vector.
Scope: global
Type: optional
Specified as: an integer variable 0 ≤ ix ≤ np.

33

iglobx Row index to define a submatrix in glob x into which gather the local
pieces.
Scope: global
Type: optional
Specified as: an integer variable 1 ≤ ix ≤ matrix data(psb m).

jglobx Column index to define a submatrix in glob x into which gather the
local pieces.
Scope: global
Type: optional
Specified as: an integer variable.

ilocx Row index to define a submatrix in loc x that has to be gathered into
glob x.
Scope: local
Type: optional
Specified as: an integer variable.

jlocx Columns index to define a submatrix in loc x that has to be gathered
into glob x.
Scope: global
Type: optional
Specified as: an integer variable.

k The number of columns to gather.
Scope: global
Type: optional
Specified as: an integer variable.

On Return

glob x The array where the local parts must be gathered.
Scope: global
Type: required
Specified as: a rank one or two array.

info the local portion of result submatrix y.
Scope: local
Type: required
An integer value that contains an error code.

34

psb scatter—Scatter Global Dense Matrix

These subroutines scatters the portions of global dense matrix owned by a pro-
cess to all the processes in the processes grid.

loc xi ← scatter(glob xi)

where:

glob x is the global submatrix glob xiy:iy+m−1,jy:jy+n−1

loc xi is the local portion of global dense matrix on process i.

scatter is the scatter function.

xi, y Subroutine
Long Precision Real psb scatter
Long Precision Complex psb scatter

Table 14: Data types

Syntax

call psb scatter (glob x, loc x, desc a, info, root, iglobx, jglobx, ilocx, jlocx, k)

Syntax

call psb scatter (glob x, loc x, desc a, info, root, iglobx, ilocx)

On Entry

glob x The array that must be scattered into local pieces.
Scope: global
Type: required
Specified as: a rank one or two array.

desc a contains data structures for communications.
Scope: local
Type: required
Specified as: a structured data of type psb desc type.

root The process that holds the global copy. If root = −1 all the processes
have a copy of the global vector.
Scope: global
Type: optional
Specified as: an integer variable 0 ≤ ix ≤ np.

35

iglobx Row index to define a submatrix in glob x that has to be scattered into
local pieces.
Scope: global
Type: optional
Specified as: an integer variable 1 ≤ ix ≤ matrix data(psb m).

jglobx Column index to define a submatrix in glob x that has to be scattered
into local pieces.
Scope: global
Type: optional
Specified as: an integer variable.

ilocx Row index to define a submatrix in loc x into which scatter the local
piece of glob x.
Scope: local
Type: optional
Specified as: an integer variable.

jlocx Columns index to define a submatrix in loc x into which scatter the local
piece of glob x.
Scope: global
Type: optional
Specified as: an integer variable.

k The number of columns to scatter.
Scope: global
Type: optional
Specified as: an integer variable.

On Return

loc x the local portion of global dense matrix glob x.
Scope: local
Type: required
Specified as: a rank one or two array containing numbers of the type
indicated in Table 14.

info the local portion of result submatrix y.
Scope: local
Type: required
An integer value that contains an error code.

36

6 Data management and initialization routines

37

psb cdall—Allocates a communication
descriptor

Syntax

call psb cdall (m, n, parts, icontxt, desc a, info)

call psb cdall (m, v, icontxt, desc a, info, flag)

This subroutine initializes the communication descriptor associated with an in-
dex space. It takes two forms depending on whether the user specifies the
domain partitioning through a subroutine or through a vector

First Form: On Entry

m the number of rows of the problem.
Scope:global.
Type:required.
Specified as: an integer value.

n the number of columns of the problem.
Scope:global.
Type:required.
Specified as: an integer value. Currently constrained to be m = n.

parts the subroutine that defines the partitioning scheme.
Scope:global.
Type:required.
Specified as: a subroutine.

icontxt the communication context.
Scope:global.
Type:required.
Specified as: an integer value.

Second Form: On Entry

m the size of the index space.
Scope:global.
Type:required.
Specified as: an integer value m > 0.

v Data allocation: each index i ∈ {1 . . .m} is allocated to process v(i). Scope:global.
Type:required.
Specified as: an integer array of size m.

icontxt the communication context.
Scope:global.
Type:required.
Specified as: an integer value.

38

flag Specifies whether entries in v are zero- or one-based. Scope:global.
Type:optional.
Specified as: an integer value 0, 1, default 0.

On Return

desc a the communication descriptor.
Scope:local.
Type:required.
Specified as: a structured data of type psb desc type.

info Error code. Scope: local
Type: required
Specified as: an integer variable.

39

psb cdins—Communication descriptor insert
routine

Syntax

call psb cdins (nz, ia, ja, desc a, info)

On Entry

nz the number of points being inserted.
Scope: local.
Type: required.
Specified as: an integer value.

ia the row indices of the points being inserted.
Scope: local.
Type: required.
Specified as: an integer array of length nz.

ja the column indices of the points being inserted.
Scope: local.
Type: required.
Specified as: an integer array of length nz.

On Return

desc a the communication descriptor to be freed.
Scope:local.
Type:required.
Specified as: a structured data of type psb desc type.

info Error code. Scope: local
Type: required
Specified as: an integer variable.

40

psb cdasb—Communication descriptor assembly
routine

Syntax

call psb cdasb (desc a, info)

On Entry

desc a the communication descriptor.
Scope:local.
Type:required.
Specified as: a structured data of type psb desc type.

On Return

info Error code. Scope: local
Type: required
Specified as: an integer variable.

41

psb cdcpy—Copies a communication descriptor

Syntax

call psb cdcpy (desc out, desc a, info)

On Entry

desc a the communication descriptor.
Scope:local.
Type:required.
Specified as: a structured data of type psb desc type.

On Return

desc out the communication descriptor copy.
Scope:local.
Type:required.
Specified as: a structured data of type psb desc type.

info Error code. Scope: local
Type: required
Specified as: an integer variable.

42

psb cdfree—Frees a communication descriptor

Syntax

call psb cdfree (desc a, info)

On Entry

desc a the communication descriptor to be freed.
Scope:local.
Type:required.
Specified as: a structured data of type psb desc type.

On Return

info Error code. Scope: local
Type: required
Specified as: an integer variable.

43

psb spall—Allocates a sparse matrix

Syntax

call psb spall (a, desc a, info, nnz)

On Entry

desc a the communication descriptor.
Scope:local.
Type:required.
Specified as: a structured data of type psb desc type.

nnz the number of nonzeroes in the local part of the assembled matrix.
Scope: global.
Type: optional.
Specified as: an integer value. Note: a good estimate for the number of
nonzeroes in the assembled matrix may substantially improve performance
in the matrix build phase, as it will reduce or eliminate the need for
multiple data allocation.

On Return

a the matrix to be allocated.
Scope:local
Type:required
Specified as: a structured data of type psb spmat type.

info Error code. Scope: local
Type: required
Specified as: an integer variable.

44

psb spins—Insert a cloud of elements into a
sparse matrix

Syntax

call psb spins (nz, ia, ja, val, a, desc a, info)

On Entry

nz the number of elements to be inserted.
Scope:local.
Type:required.
Specified as: an integer scalar.

ia the row indices of the elements to be inserted.
Scope:local.
Type:required.
Specified as: an integer array of size nz.

ja the column indices of the elements to be inserted.
Scope:local.
Type:required.
Specified as: an integer array of size nz.

val the elements to be inserted.
Scope:local.
Type:required.
Specified as: an array of size nz.

desc a The communication descriptor.
Scope: local.
Type: required.
Specified as: a variable of type psb desc type.

On Return

a the matrix into which elements will be inserted.
Scope:local
Type:required
Specified as: a structured data of type psb spmat type.

desc a The communication descriptor.
Scope: local.
Type: required.
Specified as: a variable of type psb desc type.

45

info Error code.
Scope: local
Type: required

46

psb spasb—Sparse matrix assembly routine

Syntax

call psb spasb (a, desc a, info, afmt, upd, dupl)

On Entry

desc a the communication descriptor.
Scope:local.
Type:required.
Specified as: a structured data of type psb desc type.

afmt the storage format for the sparse matrix.
Scope: global.
Type: optional.
Specified as: an array of characters. Defalt: ’CSR’.

upd Provide for updates to the matrix coefficients.
Scope: global.
Type: optional.
Specified as: integer, possible values: psb_upd_srch_, psb_upd_perm_

dupl How to handle duplicate coefficients.
Scope: global.
Type: optional.
Specified as: integer, possible values: psb_dupl_ovwrt_, psb_dupl_add_,
psb_dupl_err_.

On Return

a the matrix to be assembled.
Scope:local
Type:required
Specified as: a structured data of type psb spmat type.

info Error code. Scope: local
Type: required
Specified as: an integer variable.

47

psb spfree—Frees a sparse matrix

Syntax

call psb spfree (a, desc a, info)

On Entry

a the matrix to be freed.
Scope:local
Type:required
Specified as: a structured data of type psb spmat type.

desc a the communication descriptor.
Scope:local.
Type:required.
Specified as: a structured data of type psb desc type.

On Return

info Error code. Scope: local
Type: required
Specified as: an integer variable.

48

psb sprn—Reinit sparse matrix structure for
psblas routines.

Syntax

call psb sprn (a, decsc a, info)

On Entry

a the matrix to be reinitialized.
Scope:local
Type:required
Specified as: a structured data of type psb spmat type.

desc a the communication descriptor.
Scope:local.
Type:required.
Specified as: a structured data of type psb desc type.

On Return

info Error code. Scope: local
Type: required
Specified as: an integer variable.

49

psb geall—Allocates a dense matrix

Syntax

call psb geall (x, desc a, info, n)

On Entry

desc a The communication descriptor.
Scope: local
Type: required
Specified as: a variable of type psb desc type.

n The number of columns of the dense matrix to be allocated.
Scope: local
Type: optional
Specified as: Integer scalar, default 1. It is ignored if x is a rank-1 array.

On Return

x The dense matrix to be allocated.
Scope: local
Type: required
Specified as: a rank one or two array with the POINTER attribute, of
type real, complex or integer.

info Error code. Scope: local
Type: required
Specified as: Integer scalar.

50

psb geins—Dense matrix insertion routine

Syntax

call psb geins (m, irw, val, x, desc a, info,dupl)

On Entry

m Number of rows in val to be inserted.
Scope:local.
Type:required.
Specified as: an integer value.

irw Indices of the rows to be inserted. Specifically, row i of val will be in-
serted into the local row corresponding to the global row index irw(i).
Scope:local.
Type:required.
Specified as: an integer array.

val the dense submatrix to be inserted.
Scope:local.
Type:required.
Specified as: a rank 1 or 2 array. Specified as: an integer value.

desc a the communication descriptor.
Scope:local.
Type:required.
Specified as: a structured data of type psb desc type.

dupl How to handle duplicate coefficients.
Scope: global.
Type: optional.
Specified as: integer, possible values: psb_dupl_ovwrt_, psb_dupl_add_,
psb_dupl_err_.

On Return

x the output dense matrix.
Scope: local
Type: required
Specified as: a rank one or two array with the POINTER attribute, of
type real, complex or integer.

info Error code. Scope: local
Type: required
Specified as: an integer variable.

51

psb geasb—Assembly a dense matrix

Syntax

call psb geasb (x, desc a, info)

On Entry

desc a The communication descriptor.
Scope: local
Type: required
Specified as: a variable of type psb desc type.

On Return

x The dense matrix to be assembled.
Scope: local
Type: required
Specified as: a rank one or two array with the POINTER attribute, of
type real, complex or integer.

info Error code.
Scope: local
Type: required
Specified as: Integer scalar.

52

psb gefree—Frees a dense matrix

Syntax

call psb gefree (x, desc a, info)

On Entry

x The dense matrix to be freed.
Scope: local
Type: required
Specified as: a rank one or two array with the POINTER attribute, of
type real, complex or integer.

desc a The communication descriptor.
Scope: local
Type: required
Specified as: a variable of type psb desc type.

On Return

info Error code.
Scope: local
Type: required
Specified as: Integer scalar.

53

psb gelp—Applies a left permutation to a dense
matrix

Syntax

call psb gelp (trans, iperm, x, desc a, info)

On Entry

trans A character that specifies whether to permute A or AT .
Scope: local
Type: required
Specified as: a single character with value ’N’ for A or ’T’ for AT .

iperm An integer array containing permutation information.
Scope: local
Type: required
Specified as: an integer one-dimensional array.

x The dense matrix to be permuted.
Scope: local
Type: required
Specified as: a one or two dimensional array.

desc a The communication descriptor.
Scope: local
Type: required
Specified as: a variable of type psb desc type.

On Return

info Error code.
Scope: local
Type: required
Specified as: Integer scalar.

54

psb glob to loc—Global to local indices
convertion

Syntax

call psb glob to loc (x, y, desc a, info, iact)

call psb glob to loc (x, desc a, info, iact)

On Entry

x An integer vector of indices to be converted.
Scope: local
Type: required
Specified as: a rank one integer array.

desc a the communication descriptor.
Scope:local.
Type:required.
Specified as: a structured data of type psb desc type.

iact specifies action to be taken in case of range errors. Scope: global
Type: optional
Specified as: a character variable E, W or A.

On Return

x If y is not present, then x is overwritten with the translated integer indices.
Scope: global
Type: required
Specified as: a rank one integer array.

y If y is not present, then y is overwritten with the translated integer indices,
and x is left unchanged. Scope: global
Type: optional
Specified as: a rank one integer array.

info Error code. Scope: local
Type: required
Specified as: an integer variable.

55

psb loc to glob—Local to global indices
conversion

Syntax

call psb loc to glob (x, y, desc a, info, iact)

call psb loc to glob (x, desc a, info, iact)

On Entry

x An integer vector of indices to be converted.
Scope: local
Type: required
Specified as: a rank one integer array.

desc a the communication descriptor.
Scope:local.
Type:required.
Specified as: a structured data of type psb desc type.

iact specifies action to be taken in case of range errors. Scope: global
Type: optional
Specified as: a character variable E, W or A.

On Return

x If y is not present, then x is overwritten with the translated integer indices.
Scope: global
Type: required
Specified as: a rank one integer array.

y If y is not present, then y is overwritten with the translated integer indices,
and x is left unchanged. Scope: global
Type: optional
Specified as: a rank one integer array.

info Error code. Scope: local
Type: required
Specified as: an integer variable.

56

7 Iterative Methods

In this chapter we provide routines for preconditioners and iterative methods.
Their interfaces are defined in the module psb_methd_mod

57

psb cg —CG Iterative Method

This subroutine implements the CG method with restarting. The stopping
criterion is the normwise backward error, in the infinity norm, i.e. the iteration
is stopped when

‖r‖
(‖A‖‖x‖+ ‖b‖)

< eps

or
‖ri‖
‖b‖2

< eps

according to the value passed through the istop argument (see later).

Syntax

call psb cg (a,prec,b,x,eps,desc a,info,itmax,iter,err,itrace,istop)

On Entry

a the local portion of global sparse matrix A.
Scope: local
Type: required
Specified as: a structured data of type psb spmat type.

prec The data structure containing the preconditioner.
Scope: local
Type: required
Specified as: a structured data of type psb prec type.

b The RHS vector.
Scope: local
Type: required
Specified as: a rank one array.

x The initial guess.
Scope: local
Type: required
Specified as: a rank one array.

eps The stopping tolerance.
Scope: global
Type: required
Specified as: a real number.

desc a contains data structures for communications.
Scope: local
Type: required
Specified as: a structured data of type psb desc type.

58

itmax The maximum number of iterations to perform.
Scope: global
Type: optional
Default: itmax = 1000.
Specified as: an integer variable itmax ≥ 1.

itrace If > 0 print out a convergence message every itrace iterations.
Scope: global
Type: optional

istop An integer specifying the stopping criterion.
Scope: global
Type: optional

On Return

x The computed solution.
Scope: local
Type: required
Specified as: a rank one array.

iter The number of iterations performed.
Scope: global
Type: optional
Returned as: an integer variable.

err The error estimate on exit.
Scope: global
Type: optional
Returned as: a real number.

info An error code.
Scope: global
Type: optional
Returned as: an integer variable.

59

psb cgs —CGS Iterative Method

This subroutine implements the CGS method with restarting. The stopping
criterion is the normwise backward error, in the infinity norm, i.e. the iteration
is stopped when

‖r‖
(‖A‖‖x‖+ ‖b‖)

< eps

or
‖ri‖
‖b‖2

< eps

according to the value passed through the istop argument (see later).

Syntax

call psb cgs (a,prec,b,x,eps,desc a,info,itmax,iter,err,itrace,istop)

On Entry

a the local portion of global sparse matrix A.
Scope: local
Type: required
Specified as: a structured data of type psb spmat type.

prec The data structure containing the preconditioner.
Scope: local
Type: required
Specified as: a structured data of type psb prec type.

b The RHS vector.
Scope: local
Type: required
Specified as: a rank one array.

x The initial guess.
Scope: local
Type: required
Specified as: a rank one array.

eps The stopping tolerance.
Scope: global
Type: required
Specified as: a real number.

desc a contains data structures for communications.
Scope: local
Type: required
Specified as: a structured data of type psb desc type.

60

itmax The maximum number of iterations to perform.
Scope: global
Type: optional
Default: itmax = 1000.
Specified as: an integer variable itmax ≥ 1.

itrace If > 0 print out a convergence message every itrace iterations.
Scope: global
Type: optional

istop An integer specifying the stopping criterion.
Scope: global
Type: optional

On Return

x The computed solution.
Scope: local
Type: required
Specified as: a rank one array.

iter The number of iterations performed.
Scope: global
Type: optional
Returned as: an integer variable.

err The error estimate on exit.
Scope: global
Type: optional
Returned as: a real number.

info An error code.
Scope: global
Type: optional
Returned as: an integer variable.

61

psb bicg —BiCG Iterative Method

This subroutine implements the BiCG method with restarting. The stopping
criterion is the normwise backward error, in the infinity norm, i.e. the iteration
is stopped when

‖r‖
(‖A‖‖x‖+ ‖b‖)

< eps

or
‖ri‖
‖b‖2

< eps

according to the value passed through the istop argument (see later).

Syntax

call psb bicg (a,prec,b,x,eps,desc a,info,itmax,iter,err,itrace,istop)

On Entry

a the local portion of global sparse matrix A.
Scope: local
Type: required
Specified as: a structured data of type psb spmat type.

prec The data structure containing the preconditioner.
Scope: local
Type: required
Specified as: a structured data of type psb prec type.

b The RHS vector.
Scope: local
Type: required
Specified as: a rank one array.

x The initial guess.
Scope: local
Type: required
Specified as: a rank one array.

eps The stopping tolerance.
Scope: global
Type: required
Specified as: a real number.

desc a contains data structures for communications.
Scope: local
Type: required
Specified as: a structured data of type psb desc type.

62

itmax The maximum number of iterations to perform.
Scope: global
Type: optional
Default: itmax = 1000.
Specified as: an integer variable itmax ≥ 1.

itrace If > 0 print out a convergence message every itrace iterations.
Scope: global
Type: optional

istop An integer specifying the stopping criterion.
Scope: global
Type: optional

On Return

x The computed solution.
Scope: local
Type: required
Specified as: a rank one array.

iter The number of iterations performed.
Scope: global
Type: optional
Returned as: an integer variable.

err The error estimate on exit.
Scope: global
Type: optional
Returned as: a real number.

info An error code.
Scope: global
Type: optional
Returned as: an integer variable.

63

psb bicgstab —BiCGSTAB Iterative Method

This subroutine implements the BiCGSTAB method with restarting. The stop-
ping criterion is the normwise backward error, in the infinity norm, i.e. the
iteration is stopped when

‖r‖
(‖A‖‖x‖+ ‖b‖)

< eps

or
‖ri‖
‖b‖2

< eps

according to the value passed through the istop argument (see later).

Syntax

call psb bicgstab (a,prec,b,x,eps,desc a,info,itmax,iter,err,itrace,istop)

On Entry

a the local portion of global sparse matrix A.
Scope: local
Type: required
Specified as: a structured data of type psb spmat type.

prec The data structure containing the preconditioner.
Scope: local
Type: required
Specified as: a structured data of type psb prec type.

b The RHS vector.
Scope: local
Type: required
Specified as: a rank one array.

x The initial guess.
Scope: local
Type: required
Specified as: a rank one array.

eps The stopping tolerance.
Scope: global
Type: required
Specified as: a real number.

desc a contains data structures for communications.
Scope: local
Type: required
Specified as: a structured data of type psb desc type.

64

itmax The maximum number of iterations to perform.
Scope: global
Type: optional
Default: itmax = 1000.
Specified as: an integer variable itmax ≥ 1.

itrace If > 0 print out a convergence message every itrace iterations.
Scope: global
Type: optional

istop An integer specifying the stopping criterion.
Scope: global
Type: optional

On Return

x The computed solution.
Scope: local
Type: required
Specified as: a rank one array.

iter The number of iterations performed.
Scope: global
Type: optional
Returned as: an integer variable.

err The error estimate on exit.
Scope: global
Type: optional
Returned as: a real number.

info An error code.
Scope: global
Type: optional
Returned as: an integer variable.

65

psb bicgstabl —BiCGSTAB-l Iterative Method

This subroutine implements the BiCGSTAB-l method with restarting. The
stopping criterion is the normwise backward error, in the infinity norm, i.e. the
iteration is stopped when

‖r‖
(‖A‖‖x‖+ ‖b‖)

< eps

or
‖ri‖
‖b‖2

< eps

according to the value passed through the istop argument (see later).

Syntax

call psb bicgstab (a,prec,b,x,eps,desc a,info,itmax,iter,err,itrace,irst,istop)

On Entry

a the local portion of global sparse matrix A.
Scope: local
Type: required
Specified as: a structured data of type psb spmat type.

prec The data structure containing the preconditioner.
Scope: local
Type: required
Specified as: a structured data of type psb prec type.

b The RHS vector.
Scope: local
Type: required
Specified as: a rank one array.

x The initial guess.
Scope: local
Type: required
Specified as: a rank one array.

eps The stopping tolerance.
Scope: global
Type: required
Specified as: a real number.

desc a contains data structures for communications.
Scope: local
Type: required
Specified as: a structured data of type psb desc type.

66

itmax The maximum number of iterations to perform.
Scope: global
Type: optional
Default: itmax = 1000.
Specified as: an integer variable itmax ≥ 1.

itrace If > 0 print out a convergence message every itrace iterations.
Scope: global
Type: optional

irst An integer specifying the restarting iteration.
Scope: global
Type: optional

istop An integer specifying the stopping criterion.
Scope: global
Type: optional

On Return

x The computed solution.
Scope: local
Type: required
Specified as: a rank one array.

iter The number of iterations performed.
Scope: global
Type: optional
Returned as: an integer variable.

err The error estimate on exit.
Scope: global
Type: optional
Returned as: a real number.

info An error code.
Scope: global
Type: optional
Returned as: an integer variable.

67

psb gmres —GMRES Iterative Method

This subroutine implements the GMRES method with restarting. The stopping
criterion is the normwise backward error, in the infinity norm, i.e. the iteration
is stopped when

‖r‖
(‖A‖‖x‖+ ‖b‖)

< eps

or
‖ri‖
‖b‖2

< eps

according to the value passed through the istop argument (see later).

Syntax

call psb gmres (a,prec,b,x,eps,desc a,info,itmax,iter,err,itrace,irst,istop)

On Entry

a the local portion of global sparse matrix A.
Scope: local
Type: required
Specified as: a structured data of type psb spmat type.

prec The data structure containing the preconditioner.
Scope: local
Type: required
Specified as: a structured data of type psb prec type.

b The RHS vector.
Scope: local
Type: required
Specified as: a rank one array.

x The initial guess.
Scope: local
Type: required
Specified as: a rank one array.

eps The stopping tolerance.
Scope: global
Type: required
Specified as: a real number.

desc a contains data structures for communications.
Scope: local
Type: required
Specified as: a structured data of type psb desc type.

68

itmax The maximum number of iterations to perform.
Scope: global
Type: optional
Default: itmax = 1000.
Specified as: an integer variable itmax ≥ 1.

itrace If > 0 print out a convergence message every itrace iterations.
Scope: global
Type: optional

irst An integer specifying the restart iteration.
Scope: global
Type: optional

istop An integer specifying the stopping criterion.
Scope: global
Type: optional

On Return

x The computed solution.
Scope: local
Type: required
Specified as: a rank one array.

iter The number of iterations performed.
Scope: global
Type: optional
Returned as: an integer variable.

err The error estimate on exit.
Scope: global
Type: optional
Returned as: a real number.

info An error code.
Scope: global
Type: optional
Returned as: an integer variable.

69

8 Preconditioner routines

PSBLAS contains the implementation of many preconditioning techniques some
of which are very flexible thanks to the presence of many parameters that is
possible to adjust to fit the user’s needs:

• Diagonal Scaling

• Block Jacobi with ILU(0) factorization

• Additive Schwarz with the Restricted Additive Schwarz and Additive
Schwarz with Harmonic extensions;

• Two-Level Additive Schwarz; this is actually a family of preconditioners
since there is the possibility to choose between many variants.

70

psb precset—Sets the precodntioner type

Syntax

call psb precset (prec, ptype, iv, rs, rv, ierr)

On Entry

prec Scope: global
Type: required
Specified as: e pronditioner data structure psb prec type.

ptype the type of preconditioner. Scope: global
Type: required
Specified as: a string.

iv integer parameters for the precondtioner. Scope: global
Type: required
Specified as: an integer array.

rs Scope:
Type:
Specified as: .

rv Scope:
Type:
Specified as: .

ierr Scope:
Type:
Specified as: .

71

psb precbld—Builds a preconditioner

Syntax

call psb precbld (a, desc a, prec, info, upd)

On Entry

a the system sparse matrix. Scope: global
Type: required
Specified as: a sparse matrix data structure psb spmat type.

desc a the problem communication descriptor. Scope: global
Type: required
Specified as: a communication descriptor data structure psb desc type.

upd Scope: global
Type: optional
Specified as: a character.

On Return

prec the precodntioner.
Scope: global
Type: required
Specified as: a precondtioner data structure psb prec type

info the return error code.
Scope: local
Type: required
Specified as: an integer.

72

psb precaply—Preconditioner application
routine

Syntax

call psb precaply (prec,x,y,desc a,info,trans,work)

Syntax

call psb precaply (prec,x,desc a,info,trans)

On Entry

prec the preconditioner. Scope: global
Type: required
Specified as: a preconditioner data structure psb prec type.

x the source vector. Scope: global
Type: require
Specified as: a double precision array.

desc a the problem communication descriptor. Scope: global
Type: required
Specified as: a communication data structure psb desc type.

trans Scope:
Type: optional
Specified as: a character.

work an optional work space Scope: local
Type: optional
Specified as: a double precision array.

On Return

y the destination vector. Scope: global
Type: required
Specified as: a double precision array.

info the return error code.
Scope: local
Type: required
Specified as: an integer.

73

9 Error handling

The PSBLAS library error handling policy has been completely rewritten in
version 2.0. The idea behind the design of this new error handling strategy
is to keep error messages on a stack allowing the user to trace back up to
the point where the first error message has been generated. Every routine in
the PSBLAS-2.0 library has, as last non-optional argument, an integer info
variable; whenever, inside the routine, en error is detected, this variable is set
to a value corresponding to a specific error code. Then this error code is also
pushed on the error stack and then either control is returned to the caller routine
or the execution is aborted, depending on the users choice. At the time when
the execution is aborted, an error message is printed on standard output with
a level of verbosity than can be chosen by the user. If the execution is not
aborted, then, the caller routine checks the value returned in the info variable
and, if not zero, an error condition is raised. This process continues on all the
levels of nested calls until the level where the user decides to abort the program
execution.

Figure 5 shows the layout of a generic psb_foo routine with respect to the
PSBLAS-2.0 error handling policy. It is possible to see how, whenever an error
condition is detected, the info variable is set to the corresponding error code
which is, then, pushed on top of the stack by means of the psb_errpush. An
error condition may be directly detected inside a routine or indirectly checking
the error code returned returned by a called routine. Whenever an error is
encountered, after it has been pushed on stack, the program execution skips
to a point where the error condition is handled; the error condition is handled
either by returning control to the caller routine or by calling the psb_error
routine which prints the content of the error stack and aborts the program
execution.

Figure 6 reports a sample error message generated by the PSBLAS-2.0 li-
brary. This error has been generated by the fact that the user has chosen the
invalid “FOO” storage format to represent the sparse matrix. From this error
message it is possible to see that the error has been detected inside the psb_cest
subroutine called by psb_spasb ... by process 0 (i.e. the root process).

74

subroutine psb_foo(some args, info)

...

if(error detected) then

info=errcode1

call psb_errpush(’psb_foo’, errcode1)

goto 9999

end if

...

call psb_bar(some args, info)

if(info .ne. zero) then

info=errcode2

call psb_errpush(’psb_foo’, errcode2)

goto 9999

end if

...

9999 continue

if (err_act .eq. act_abort) then

call psb_error(icontxt)

return

else

return

end if

end subroutine psb_foo

Figure 5: The layout of a generic psb foo routine with respect to PSBLAS-2.0
error handling policy.

==
Process: 0. PSBLAS Error (4010) in subroutine: df_sample
Error from call to subroutine mat dist
==
Process: 0. PSBLAS Error (4010) in subroutine: mat_distv
Error from call to subroutine psb_spasb
==
Process: 0. PSBLAS Error (4010) in subroutine: psb_spasb
Error from call to subroutine psb_cest
==
Process: 0. PSBLAS Error (136) in subroutine: psb_cest
Format FOO is unknown
==
Aborting...

Figure 6: A sample PSBLAS-2.0 error message. Process 0 detected an error
condition inside the psb cest subroutine

75

psb errpush—Pushes an error code onto the
error stack

Syntax

call psb errpush (err c, r name, i err, a err)

On Entry

err c the error code
Scope: local
Type: required
Specified as: an integer.

r name the soutine where the error has been caught.
Scope: local
Type: required
Specified as: a string.

i err addional info for error code
Scope: local
Type: optional
Specified as: an integer array

a err addional info for error code
Scope: local
Type: optional
Specified as: a string.

76

psb error—Prints the error stack content and
aborts execution

Syntax

call psb error (icontxt)

On Entry

icontxt the communication context.
Scope: global
Type: optional
Specified as: an integer.

77

psb set errverbosity—Sets the verbosity of error
messages.

Syntax

call psb set errverbosity (v)

On Entry

v the verbosity level
Scope: global
Type: required
Specified as: an integer.

78

psb set erraction—Set the type of action to be
taken upon error condition.

Syntax

call psb set erraction (err act)

On Entry

err act the type of action.
Scope: global
Type: required
Specified as: an integer.

79

psb errcomm—Error communication routine

Syntax

call psb errcomm (icontxt, err)

On Entry

icontxt the communication context.
Scope: global
Type: required
Specified as: an integer.

err the error code to be communicated
Scope: global
Type: required
Specified as: an integer.

80

	PSBLAS-v2.0 User's Guide
	1 Introduction
	2 General overview
	3 Data Structures
	3.1 Sparse Matrix data structure
	3.1.1 Named Constants

	3.2 Descriptor data structure
	3.2.1 Named Constants

	3.3 Preconditioner data structure
	3.3.1 Named Constants

	4 Algebraic routines
	psb_geaxpby
	psb_gedot
	psb_gedot
	psb_geamax
	psb_geamax
	psb_geasum
	psb_genrm2
	psb_spnrmi
	psb_spmm
	psb_spsm

	5 Communication routines
	psb_halo
	psb_ovrl
	psb_gather
	psb_scatter

	6 Data management and initialization routines
	psb_cdall
	psb_cdins
	psb_cdasb
	psb_cdcpy
	psb_cdfree
	psb_spall
	psb_spins
	psb_spasb
	psb_spfree
	psb_sprn
	psb_geall
	psb_geins
	psb_geasb
	psb_gefree
	psb_gelp
	psb_glob_to_loc
	psb_loc_to_glob

	7 Iterative Methods
	psb_cg
	psb_cgs
	psb_bicg
	psb_bicgstab
	psb_bicgstabl
	psb_gmres

	8 Preconditioner routines
	psb_precset
	psb_precbld
	psb_precaply

	9 Error handling
	psb_errpush
	psb_error
	psb_set_errverbosity
	psb_set_erraction
	psb_errcomm

