!!$  
!!$              Parallel Sparse BLAS  version 2.3.1
!!$    (C) Copyright 2006, 2007, 2008, 2009, 2010
!!$                       Salvatore Filippone    University of Rome Tor Vergata
!!$                       Alfredo Buttari        CNRS-IRIT, Toulouse
!!$ 
!!$  Redistribution and use in source and binary forms, with or without
!!$  modification, are permitted provided that the following conditions
!!$  are met:
!!$    1. Redistributions of source code must retain the above copyright
!!$       notice, this list of conditions and the following disclaimer.
!!$    2. Redistributions in binary form must reproduce the above copyright
!!$       notice, this list of conditions, and the following disclaimer in the
!!$       documentation and/or other materials provided with the distribution.
!!$    3. The name of the PSBLAS group or the names of its contributors may
!!$       not be used to endorse or promote products derived from this
!!$       software without specific written permission.
!!$ 
!!$  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
!!$  ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
!!$  TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
!!$  PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE PSBLAS GROUP OR ITS CONTRIBUTORS
!!$  BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
!!$  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
!!$  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
!!$  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
!!$  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
!!$  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
!!$  POSSIBILITY OF SUCH DAMAGE.
!!$ 
!!$  
! File: ppde.f90
!
! Program: ppde
! This sample program solves a linear system obtained by discretizing a
! PDE with Dirichlet BCs. 
! 
!
! The PDE is a general second order equation in 3d
!
!   b1 dd(u)  b2 dd(u)    b3 dd(u)    a1 d(u)   a2 d(u)  a3 d(u)  
! -   ------ -  ------ -  ------ -  -----  -  ------  -  ------ + a4 u  = 0
!      dxdx     dydy       dzdz        dx       dy         dz   
!
! with Dirichlet boundary conditions, on the unit cube  0<=x,y,z<=1.
!
! Example taken from:
!    C.T.Kelley
!    Iterative Methods for Linear and Nonlinear Equations
!    SIAM 1995
!
! In this sample program the index space of the discretized
! computational domain is first numbered sequentially in a standard way, 
! then the corresponding vector is distributed according to a BLOCK
! data distribution.
!
! Boundary conditions are set in a very simple way, by adding 
! equations of the form
!
!   u(x,y) = exp(-x^2-y^2-z^2)
!
! Note that if a1=a2=a3=a4=0., the PDE is the well-known Laplace equation.
!
program pdgen
  use psb_base_mod
  use psb_util_mod
  implicit none

  ! input parameters
  character(len=20) :: kmethd, ptype
  character(len=5)  :: afmt
  integer(psb_ipk_) :: idim

  ! miscellaneous 
  real(psb_dpk_), parameter :: one = 1.d0
  real(psb_dpk_) :: t1, t2, tprec, flops, tflops, tt1, tt2, bdwdth

  ! sparse matrix and preconditioner
  type(psb_dspmat_type) :: a
  ! descriptor
  type(psb_desc_type)   :: desc_a, desc_b
  ! dense matrices
  type(psb_d_vect_type)  :: xxv,bv, vtst
  real(psb_dpk_), allocatable :: tst(:)
  ! blacs parameters
  integer(psb_ipk_) :: ictxt, iam, np

  ! solver parameters
  integer(psb_ipk_) :: iter, itmax,itrace, istopc, irst, nr
  integer(psb_long_int_k_) :: amatsize, precsize, descsize, d2size, annz, nbytes
  real(psb_dpk_)   :: err, eps
  integer(psb_ipk_), parameter :: times=10

  ! other variables
  integer(psb_ipk_) :: info, i
  character(len=20)  :: name,ch_err
  character(len=40)  :: fname

  info=psb_success_

  
  call psb_init(ictxt)
  call psb_info(ictxt,iam,np)

  if (iam < 0) then 
    ! This should not happen, but just in case
    call psb_exit(ictxt)
    stop
  endif
  if(psb_get_errstatus() /= 0) goto 9999
  name='pde90'
  call psb_set_errverbosity(2)
  !
  ! Hello world
  !
  if (iam == psb_root_) then 
    write(*,*) 'Welcome to PSBLAS version: ',psb_version_string_
    write(*,*) 'This is the ',trim(name),' sample program'
  end if
  !
  !  get parameters
  !
  call get_parms(ictxt,afmt,idim)

  !
  !  allocate and fill in the coefficient matrix, rhs and initial guess 
  !
  call psb_barrier(ictxt)
  t1 = psb_wtime()
  call create_matrix(idim,a,bv,xxv,desc_a,ictxt,afmt,info)  
  call psb_barrier(ictxt)
  t2 = psb_wtime() - t1
  if(info /= psb_success_) then
    info=psb_err_from_subroutine_
    ch_err='create_matrix'
    call psb_errpush(info,name,a_err=ch_err)
    goto 9999
  end if
  if (iam == psb_root_) write(psb_out_unit,'("Overall matrix creation time : ",es12.5)')t2
  if (iam == psb_root_) write(psb_out_unit,'(" ")')
!!$  write(fname,'(a,i0,a)') 'pde-',idim,'.hb'
!!$  call hb_write(a,info,filename=fname,rhs=b,key='PDEGEN',mtitle='MLD2P4 pdegen Test matrix  ')
!!$  write(fname,'(a,i2.2,a,i2.2,a)') 'amat-',iam,'-',np,'.mtx'
!!$  call a%print(fname)
!!$  call psb_cdprt(20+iam,desc_a,short=.false.)
!!$  call psb_cdcpy(desc_a,desc_b,info)
!!$  call psb_set_debug_level(9999)

  call psb_cdbldext(a,desc_a,2,desc_b,info,extype=psb_ovt_asov_)
  if (info /= 0) then 
    write(0,*) 'Error from bldext'
    call psb_abort(ictxt)
  end if


  call xxv%set(done)

  call psb_barrier(ictxt)
  t1 = psb_wtime()
  do i=1,times 
    call psb_spmm(done,a,xxv,dzero,bv,desc_a,info,'n')
  end do
  call psb_barrier(ictxt)
  t2 = psb_wtime() - t1
  call psb_amx(ictxt,t2)

  ! FIXME: cache flush needed here
  call psb_barrier(ictxt)
  tt1 = psb_wtime()
  do i=1,times 
    call psb_spmm(done,a,xxv,dzero,bv,desc_a,info,'t')
  end do
  call psb_barrier(ictxt)
  tt2 = psb_wtime() - tt1
  call psb_amx(ictxt,tt2)

  call psb_amx(ictxt,t2)
  nr       = desc_a%get_global_rows() 
  annz     = a%get_nzeros()
  amatsize = a%sizeof()
  descsize = psb_sizeof(desc_a)
  call psb_sum(ictxt,annz)
  call psb_sum(ictxt,amatsize)
  call psb_sum(ictxt,descsize)

  if (iam == psb_root_) then
    flops = 1.d1*2*annz
    tflops=flops
    write(psb_out_unit,'("Matrix: ell1 ",i0)') idim
    write(psb_out_unit,'("Test on                          : ",i20," processors")') np
    write(psb_out_unit,'("Size of matrix                   : ",i20,"           ")') nr
    write(psb_out_unit,'("Number of nonzeros               : ",i20,"           ")') annz
    write(psb_out_unit,'("Memory occupation                : ",i20,"           ")') amatsize
    write(psb_out_unit,'("Number of flops (",i0," prod)        : ",F20.0,"           ")') times,flops
    flops = flops / (t2)
    tflops = tflops / (tt2)
    write(psb_out_unit,'("Time for ",i0," products (s)         : ",F20.3)')times, t2
    write(psb_out_unit,'("Time per product    (ms)         : ",F20.3)') t2*1.d3/(1.d0*times)
    write(psb_out_unit,'("MFLOPS                           : ",F20.3)') flops/1.d6

    write(psb_out_unit,'("Time for ",i0," products (s) (trans.): ",F20.3)') times,tt2
    write(psb_out_unit,'("Time per product    (ms) (trans.): ",F20.3)') tt2*1.d3/(1.d0*times)
    write(psb_out_unit,'("MFLOPS                   (trans.): ",F20.3)') tflops/1.d6

    !
    ! This computation is valid for CSR
    !
    nbytes = nr*(2*psb_sizeof_dp + psb_sizeof_int)+&
         & annz*(psb_sizeof_dp + psb_sizeof_int)
    bdwdth = times*nbytes/(t2*1.d6)
    write(psb_out_unit,*)
    write(psb_out_unit,'("MBYTES/S                         : ",F20.3)') bdwdth
    bdwdth = times*nbytes/(tt2*1.d6)
    write(psb_out_unit,'("MBYTES/S                  (trans): ",F20.3)') bdwdth
    write(psb_out_unit,'("Storage type for DESC_A: ",a)') desc_a%indxmap%get_fmt()
    write(psb_out_unit,'("Total memory occupation for DESC_A: ",i12)')descsize
    write(psb_out_unit,'("Storage type for DESC_A: ",a)') desc_a%indxmap%get_fmt()
    write(psb_out_unit,'("Storage type for DESC_B: ",a)') desc_b%indxmap%get_fmt()
    
  end if
!!$    write(psb_out_unit,'(" ")')
!!$    write(psb_out_unit,'("Time to solve matrix          : ",es12.5)')t2
!!$    write(psb_out_unit,'("Time per iteration            : ",es12.5)')t2/iter
!!$    write(psb_out_unit,'("Number of iterations          : ",i0)')iter
!!$    write(psb_out_unit,'("Convergence indicator on exit : ",es12.5)')err
!!$    write(psb_out_unit,'("Info  on exit                 : ",i0)')info
!!$    write(psb_out_unit,'("Total memory occupation for A:      ",i12)')amatsize
!!$    write(psb_out_unit,'("Total memory occupation for PREC:   ",i12)')precsize    
!!$    write(psb_out_unit,'("Total memory occupation for DESC_A: ",i12)')descsize
!!$    write(psb_out_unit,'("Storage type for DESC_A: ",a)') desc_a%indxmap%get_fmt()
!!$    write(psb_out_unit,'("Storage type for DESC_B: ",a)') desc_b%indxmap%get_fmt()
  

  !  
  !  cleanup storage and exit
  !
  call psb_gefree(bv,desc_a,info)
  call psb_gefree(xxv,desc_a,info)
  call psb_spfree(a,desc_a,info)
  call psb_cdfree(desc_a,info)
  if(info /= psb_success_) then
    info=psb_err_from_subroutine_
    ch_err='free routine'
    call psb_errpush(info,name,a_err=ch_err)
    goto 9999
  end if

9999 continue
  if(info /= psb_success_) then
    call psb_error(ictxt)
  end if
  call psb_exit(ictxt)
  stop

contains
  !
  ! get iteration parameters from standard input
  !
  subroutine  get_parms(ictxt,afmt,idim)
    integer(psb_ipk_) :: ictxt
    character(len=*) :: afmt
    integer(psb_ipk_) :: idim
    integer(psb_ipk_) :: np, iam
    integer(psb_ipk_) :: intbuf(10), ip

    call psb_info(ictxt, iam, np)

    if (iam == 0) then
      read(psb_inp_unit,*) afmt
      read(psb_inp_unit,*) idim
    endif
    call psb_bcast(ictxt,afmt)
    call psb_bcast(ictxt,idim)
    
    if (iam == 0) then
      write(psb_out_unit,'("Testing matrix       : ell1")')      
      write(psb_out_unit,'("Grid dimensions      : ",i4,"x",i4,"x",i4)')idim,idim,idim
      write(psb_out_unit,'("Number of processors : ",i0)')np
      write(psb_out_unit,'("Data distribution    : BLOCK")')
      write(psb_out_unit,'(" ")')
    end if
    return

  end subroutine get_parms
  !
  !  print an error message 
  !  
  subroutine pr_usage(iout)
    integer(psb_ipk_) :: iout
    write(iout,*)'incorrect parameter(s) found'
    write(iout,*)' usage:  pde90 methd prec dim &
         &[istop itmax itrace]'  
    write(iout,*)' where:'
    write(iout,*)'     methd:    cgstab cgs rgmres bicgstabl' 
    write(iout,*)'     prec :    bjac diag none'
    write(iout,*)'     dim       number of points along each axis'
    write(iout,*)'               the size of the resulting linear '
    write(iout,*)'               system is dim**3'
    write(iout,*)'     istop     stopping criterion  1, 2  '
    write(iout,*)'     itmax     maximum number of iterations [500] '
    write(iout,*)'     itrace    <=0  (no tracing, default) or '  
    write(iout,*)'               >= 1 do tracing every itrace'
    write(iout,*)'               iterations ' 
  end subroutine pr_usage

  !
  !  subroutine to allocate and fill in the coefficient matrix and
  !  the rhs. 
  !
  subroutine create_matrix(idim,a,bv,xxv,desc_a,ictxt,afmt,info)
    !
    !   discretize the partial diferential equation
    ! 
    !   b1 dd(u)  b2 dd(u)    b3 dd(u)    a1 d(u)   a2 d(u)  a3 d(u)  
    ! -   ------ -  ------ -  ------ -  -----  -  ------  -  ------ + a4 u 
    !      dxdx     dydy       dzdz        dx       dy         dz   
    !
    ! with Dirichlet boundary conditions, on the unit cube  0<=x,y,z<=1.
    !
    ! Boundary conditions are set in a very simple way, by adding 
    ! equations of the form
    !
    !   u(x,y) = exp(-x^2-y^2-z^2)
    !
    ! Note that if a1=a2=a3=a4=0., the PDE is the well-known Laplace equation.
    !
    use psb_base_mod
    use psb_mat_mod
    implicit none
    integer(psb_ipk_) :: idim
    integer(psb_ipk_), parameter          :: nb=20
    type(psb_d_vect_type)       :: xxv,bv
    type(psb_desc_type)         :: desc_a
    integer(psb_ipk_) :: ictxt, info
    character                   :: afmt*5
    type(psb_dspmat_type)       :: a
    type(psb_d_csc_sparse_mat)  :: acsc
    type(psb_d_coo_sparse_mat)  :: acoo
    type(psb_d_csr_sparse_mat)  :: acsr
    real(psb_dpk_)           :: zt(nb),x,y,z
    integer(psb_ipk_) :: m,n,nnz,glob_row,nlr,i,ii,ib,k
    integer(psb_ipk_) :: ix,iy,iz,ia,indx_owner
    integer(psb_ipk_) :: np, iam, nr, nt
    integer(psb_ipk_) :: element
    integer(psb_ipk_), allocatable     :: irow(:),icol(:),myidx(:)
    real(psb_dpk_), allocatable :: val(:)
    ! deltah dimension of each grid cell
    ! deltat discretization time
    real(psb_dpk_)            :: deltah, deltah2
    real(psb_dpk_), parameter :: rhs=0.d0,one=1.d0,zero=0.d0
    real(psb_dpk_)   :: t0, t1, t2, t3, tasb, talc, ttot, tgen 
    real(psb_dpk_)   :: a1, a2, a3, a4, b1, b2, b3 
    external           :: a1, a2, a3, a4, b1, b2, b3
    integer(psb_ipk_) :: err_act

    character(len=20)  :: name, ch_err,tmpfmt

    info = psb_success_
    name = 'create_matrix'
    call psb_erractionsave(err_act)

    call psb_info(ictxt, iam, np)

    deltah  = 1.d0/(idim-1)
    deltah2 = deltah*deltah

    ! initialize array descriptor and sparse matrix storage. provide an
    ! estimate of the number of non zeroes 

    m   = idim*idim*idim
    n   = m
    nnz = ((n*9)/(np))
    if(iam == psb_root_) write(psb_out_unit,'("Generating Matrix (size=",i0,")...")')n

    !
    ! Using a simple BLOCK distribution.
    !
    nt = (m+np-1)/np
    nr = max(0,min(nt,m-(iam*nt)))

    nt = nr
    call psb_sum(ictxt,nt) 
    if (nt /= m) write(psb_err_unit,*) iam, 'Initialization error ',nr,nt,m
    call psb_barrier(ictxt)
    t0 = psb_wtime()
    call psb_cdall(ictxt,desc_a,info,nl=nr)
    if (info == psb_success_) call psb_spall(a,desc_a,info,nnz=nnz)
    ! define  rhs from boundary conditions; also build initial guess 
    if (info == psb_success_) call psb_geall(xxv,desc_a,info)
    if (info == psb_success_) call psb_geall(bv,desc_a,info)
    nlr = desc_a%get_local_rows()
    call psb_barrier(ictxt)
    talc = psb_wtime()-t0

    if (info /= psb_success_) then
      info=psb_err_from_subroutine_
      ch_err='allocation rout.'
      call psb_errpush(info,name,a_err=ch_err)
      goto 9999
    end if

    ! we build an auxiliary matrix consisting of one row at a
    ! time; just a small matrix. might be extended to generate 
    ! a bunch of rows per call. 
    ! 
    allocate(val(20*nb),irow(20*nb),&
         &icol(20*nb),myidx(nlr),stat=info)
    if (info /= psb_success_ ) then 
      info=psb_err_alloc_dealloc_
      call psb_errpush(info,name)
      goto 9999
    endif

    do i=1,nlr
      myidx(i) = i
    end do


    call psb_loc_to_glob(myidx,desc_a,info)

    ! loop over rows belonging to current process in a block
    ! distribution.

    call psb_barrier(ictxt)
    t1 = psb_wtime()
    do ii=1, nlr,nb
      ib = min(nb,nlr-ii+1) 
      element = 1
      do k=1,ib
        i=ii+k-1
        ! local matrix pointer 
        glob_row=myidx(i)
        ! compute gridpoint coordinates
        if (mod(glob_row,(idim*idim)) == 0) then
          ix = glob_row/(idim*idim)
        else
          ix = glob_row/(idim*idim)+1
        endif
        if (mod((glob_row-(ix-1)*idim*idim),idim) == 0) then
          iy = (glob_row-(ix-1)*idim*idim)/idim
        else
          iy = (glob_row-(ix-1)*idim*idim)/idim+1
        endif
        iz = glob_row-(ix-1)*idim*idim-(iy-1)*idim
        ! x, y, x coordinates
        x = ix*deltah
        y = iy*deltah
        z = iz*deltah

        ! check on boundary points 
        zt(k) = 0.d0
        ! internal point: build discretization
        !   
        !  term depending on   (x-1,y,z)
        !
        if (ix == 1) then 
          val(element) = -b1(x,y,z)/deltah2-a1(x,y,z)/deltah
          zt(k) = exp(-x**2-y**2-z**2)*(-val(element))
        else
          val(element)  = -b1(x,y,z)/deltah2-a1(x,y,z)/deltah
          icol(element) = (ix-2)*idim*idim+(iy-1)*idim+(iz)
          irow(element) = glob_row
          element       = element+1
        endif
        !  term depending on     (x,y-1,z)
        if (iy == 1) then 
          val(element)  = -b2(x,y,z)/deltah2-a2(x,y,z)/deltah
          zt(k) = exp(-x**2-y**2-z**2)*exp(-x)*(-val(element))  
        else
          val(element)  = -b2(x,y,z)/deltah2-a2(x,y,z)/deltah
          icol(element) = (ix-1)*idim*idim+(iy-2)*idim+(iz)
          irow(element) = glob_row
          element       = element+1
        endif
        !  term depending on     (x,y,z-1)
        if (iz == 1) then 
          val(element)=-b3(x,y,z)/deltah2-a3(x,y,z)/deltah
          zt(k) = exp(-x**2-y**2-z**2)*exp(-x)*(-val(element))  
        else
          val(element)=-b3(x,y,z)/deltah2-a3(x,y,z)/deltah
          icol(element) = (ix-1)*idim*idim+(iy-1)*idim+(iz-1)
          irow(element) = glob_row
          element       = element+1
        endif
        !  term depending on     (x,y,z)
        val(element)=(2*b1(x,y,z) + 2*b2(x,y,z) + 2*b3(x,y,z))/deltah2&
             & + (a1(x,y,z) + a2(x,y,z) + a3(x,y,z)+ a4(x,y,z))/deltah
        icol(element) = (ix-1)*idim*idim+(iy-1)*idim+(iz)
        irow(element) = glob_row
        element       = element+1                  
        !  term depending on     (x,y,z+1)
        if (iz == idim) then 
          val(element)=-b1(x,y,z)/deltah2
          zt(k) = exp(-x**2-y**2-z**2)*exp(-x)*(-val(element))  
        else
          val(element)=-b1(x,y,z)/deltah2
          icol(element) = (ix-1)*idim*idim+(iy-1)*idim+(iz+1)
          irow(element) = glob_row
          element       = element+1
        endif
        !  term depending on     (x,y+1,z)
        if (iy == idim) then 
          val(element)=-b2(x,y,z)/deltah2
          zt(k) = exp(-x**2-y**2-z**2)*exp(-x)*(-val(element))  
        else
          val(element)=-b2(x,y,z)/deltah2
          icol(element) = (ix-1)*idim*idim+(iy)*idim+(iz)
          irow(element) = glob_row
          element       = element+1
        endif
        !  term depending on     (x+1,y,z)
        if (ix==idim) then 
          val(element)=-b3(x,y,z)/deltah2
          zt(k) = exp(-y**2-z**2)*exp(-x)*(-val(element))  
        else
          val(element)=-b3(x,y,z)/deltah2
          icol(element) = (ix)*idim*idim+(iy-1)*idim+(iz)
          irow(element) = glob_row
          element       = element+1
        endif

      end do
      call psb_spins(element-1,irow,icol,val,a,desc_a,info)
      if(info /= psb_success_) exit
      call psb_geins(ib,myidx(ii:ii+ib-1),zt(1:ib),bv,desc_a,info)
      if(info /= psb_success_) exit
      zt(:)=0.d0
      call psb_geins(ib,myidx(ii:ii+ib-1),zt(1:ib),xxv,desc_a,info)
      if(info /= psb_success_) exit
    end do

    tgen = psb_wtime()-t1
    if(info /= psb_success_) then
      info=psb_err_from_subroutine_
      ch_err='insert rout.'
      call psb_errpush(info,name,a_err=ch_err)
      goto 9999
    end if

    deallocate(val,irow,icol)

    call psb_barrier(ictxt)
    t1 = psb_wtime()
    call psb_cdasb(desc_a,info)
    if (info == psb_success_) &
         & call psb_spasb(a,desc_a,info,dupl=psb_dupl_err_,afmt=afmt)
    call psb_barrier(ictxt)
    if(info /= psb_success_) then
      info=psb_err_from_subroutine_
      ch_err='asb rout.'
      call psb_errpush(info,name,a_err=ch_err)
      goto 9999
    end if
    if (info == psb_success_) call psb_geasb(xxv,desc_a,info)
    if (info == psb_success_) call psb_geasb(bv,desc_a,info)
    if(info /= psb_success_) then
      info=psb_err_from_subroutine_
      ch_err='asb rout.'
      call psb_errpush(info,name,a_err=ch_err)
      goto 9999
    end if
    tasb = psb_wtime()-t1
    call psb_barrier(ictxt)
    ttot = psb_wtime() - t0 

    call psb_amx(ictxt,talc)
    call psb_amx(ictxt,tgen)
    call psb_amx(ictxt,tasb)
    call psb_amx(ictxt,ttot)
    if(iam == psb_root_) then
      tmpfmt = a%get_fmt()
      write(psb_out_unit,'("The matrix has been generated and assembled in ",a3," format.")')&
           &   tmpfmt
      write(psb_out_unit,'("-allocation  time : ",es12.5)') talc
      write(psb_out_unit,'("-coeff. gen. time : ",es12.5)') tgen
      write(psb_out_unit,'("-assembly    time : ",es12.5)') tasb
      write(psb_out_unit,'("-total       time : ",es12.5)') ttot

    end if
    call psb_erractionrestore(err_act)
    return

9999 continue
    call psb_erractionrestore(err_act)
    if (err_act == psb_act_abort_) then
      call psb_error(ictxt)
      return
    end if
    return
  end subroutine create_matrix
end program pdgen
!
! functions parametrizing the differential equation 
!  
function a1(x,y,z)
  use psb_base_mod, only : psb_dpk_
  real(psb_dpk_) :: a1
  real(psb_dpk_) :: x,y,z
  a1=1.d0
end function a1
function a2(x,y,z)
  use psb_base_mod, only : psb_dpk_
  real(psb_dpk_) ::  a2
  real(psb_dpk_) :: x,y,z
  a2=2.d1*y
end function a2
function a3(x,y,z)
  use psb_base_mod, only : psb_dpk_
  real(psb_dpk_) ::  a3
  real(psb_dpk_) :: x,y,z      
  a3=1.d0
end function a3
function a4(x,y,z)
  use psb_base_mod, only : psb_dpk_
  real(psb_dpk_) ::  a4
  real(psb_dpk_) :: x,y,z      
  a4=1.d0
end function a4
function b1(x,y,z)
  use psb_base_mod, only : psb_dpk_
  real(psb_dpk_) ::  b1   
  real(psb_dpk_) :: x,y,z
  b1=1.d0
end function b1
function b2(x,y,z)
  use psb_base_mod, only : psb_dpk_
  real(psb_dpk_) ::  b2
  real(psb_dpk_) :: x,y,z
  b2=1.d0
end function b2
function b3(x,y,z)
  use psb_base_mod, only : psb_dpk_
  real(psb_dpk_) ::  b3
  real(psb_dpk_) :: x,y,z
  b3=1.d0
end function b3