/* * spGPU - Sparse matrices on GPU library. * * Copyright (C) 2010 - 2014 * Davide Barbieri - University of Rome Tor Vergata * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * version 3 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include "cudadebug.h" #include "cudalang.h" #include "cuComplex.h" extern "C" { #include "core.h" #include "vector.h" } #include "debug.h" #define BLOCK_SIZE 512 __global__ void spgpuCaxpby_krn(cuFloatComplex *z, int n, cuFloatComplex beta, cuFloatComplex *y, cuFloatComplex alpha, cuFloatComplex* x) { int id = threadIdx.x + BLOCK_SIZE*blockIdx.x; unsigned int gridSize = blockDim.x * gridDim.x; for ( ; id < n; id +=gridSize) //if (id,n) { // Since z, x and y are accessed with the same offset by the same thread, // and the write to z follows the x and y read, x, y and z can share the same base address (in-place computing). if (cuFloatComplex_isZero(beta)) z[id] = cuCmulf(alpha,x[id]); else z[id] = cuCfmaf(beta, y[id], cuCmulf(alpha, x[id])); } } #if 1 void spgpuCaxpby(spgpuHandle_t handle, __device cuFloatComplex *z, int n, cuFloatComplex beta, __device cuFloatComplex *y, cuFloatComplex alpha, __device cuFloatComplex* x) { int msize = (n+BLOCK_SIZE-1)/BLOCK_SIZE; int num_mp, max_threads_mp, num_blocks_mp, num_blocks; dim3 block(BLOCK_SIZE); cudaDeviceProp deviceProp; cudaGetDeviceProperties(&deviceProp, 0); num_mp = deviceProp.multiProcessorCount; max_threads_mp = deviceProp.maxThreadsPerMultiProcessor; num_blocks_mp = max_threads_mp/BLOCK_SIZE; num_blocks = num_blocks_mp*num_mp; dim3 grid(num_blocks); spgpuCaxpby_krn<<currentStream>>>(z, n, beta, y, alpha, x); } #else void spgpuCaxpby_(spgpuHandle_t handle, __device cuFloatComplex *z, int n, cuFloatComplex beta, __device cuFloatComplex *y, cuFloatComplex alpha, __device cuFloatComplex* x) { int msize = (n+BLOCK_SIZE-1)/BLOCK_SIZE; int num_mp, max_threads_mp, num_blocks_mp, num_blocks; dim3 block(BLOCK_SIZE); cudaDeviceProp deviceProp; cudaGetDeviceProperties(&deviceProp, 0); num_mp = deviceProp.multiProcessorCount; max_threads_mp = deviceProp.maxThreadsPerMultiProcessor; num_blocks_mp = max_threads_mp/BLOCK_SIZE; num_blocks = num_blocks_mp*num_mp; dim3 grid(num_blocks); spgpuCaxpby_krn<<currentStream>>>(z, n, beta, y, alpha, x); } void spgpuCaxpby(spgpuHandle_t handle, __device cuFloatComplex *z, int n, cuFloatComplex beta, __device cuFloatComplex *y, cuFloatComplex alpha, __device cuFloatComplex* x) { int maxNForACall = max(handle->maxGridSizeX, BLOCK_SIZE*handle->maxGridSizeX); while (n > maxNForACall) //managing large vectors { spgpuCaxpby_(handle, z, maxNForACall, beta, y, alpha, x); x = x + maxNForACall; y = y + maxNForACall; z = z + maxNForACall; n -= maxNForACall; } spgpuCaxpby_(handle, z, n, beta, y, alpha, x); cudaCheckError("CUDA error on saxpby"); } #endif void spgpuCmaxpby(spgpuHandle_t handle, __device cuFloatComplex *z, int n, cuFloatComplex beta, __device cuFloatComplex *y, cuFloatComplex alpha, __device cuFloatComplex* x, int count, int pitch) { for (int i=0; i