\section{Communication routines} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % HALO DATA COMMUNICATION % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% The routines in this chapter implement various global communication operators on vectors associated with a discretization mesh. For auxiliary communication routines not tied to a discretization space see~\ref{sec:toolsrout}. \clearpage\subsection*{psb\_halo --- Halo Data Communication} \addcontentsline{toc}{subsection}{psb\_halo} These subroutines gathers the values of the halo elements, and (optionally) scale the result: \[ x \leftarrow \alpha x \] where: \begin{description} \item[$x$] is a global dense submatrix. \end{description} \begin{table}[h] \begin{center} \begin{tabular}{ll} \hline $\alpha$, $x$ & {\bf Subroutine}\\ \hline Integer & psb\_halo \\ Short Precision Real & psb\_halo \\ Long Precision Real & psb\_halo \\ Short Precision Complex & psb\_halo \\ Long Precision Complex & psb\_halo \\ \hline \end{tabular} \end{center} \caption{Data types\label{tab:f90halo}} \end{table} \begin{verbatim} call psb_halo(x, desc_a, info) call psb_halo(x, desc_a, info, alpha, work, data) \end{verbatim} \begin{description} \item[Type:] Synchronous. \item[\bf On Entry] \item[x] global dense matrix $x$.\\ Scope: {\bf local} \\ Type: {\bf required} \\ Intent: {\bf inout}.\\ Specified as: a rank one or two array or an object of type \vdata\ containing numbers of type specified in Table~\ref{tab:f90halo}. \item[desc\_a] contains data structures for communications.\\ Scope: {\bf local} \\ Type: {\bf required}\\ Intent: {\bf in}.\\ Specified as: a structured data of type \descdata. \item[alpha] the scalar $\alpha$.\\ Scope: {\bf global} \\ Type: {\bf optional} \\ Intent: {\bf in}.\\ Default: $alpha = 1 $\\ Specified as: a number of the data type indicated in Table~\ref{tab:f90halo}. \item[work] the work array. \\ Scope: {\bf local} \\ Type: {\bf optional}\\ Intent: {\bf inout}.\\ Specified as: a rank one array of the same type of $x$. \item[data] index list selector.\\ Scope: {\bf global} \\ Type: {\bf optional} \\ Specified as: an integer. Values:\verb|psb_comm_halo_|,\verb|psb_comm_mov_|, \verb|psb_comm_ext_|, default: \verb|psb_comm_halo_|. Chooses the index list on which to base the data exchange. \item[\bf On Return] \item[x] global dense result matrix $x$.\\ Scope: {\bf local} \\ Type: {\bf required} \\ Intent: {\bf inout}.\\ Returned as: a rank one or two array containing numbers of type specified in Table~\ref{tab:f90halo}. \item[info] the local portion of result submatrix $y$.\\ Scope: {\bf local} \\ Type: {\bf required} \\ Intent: {\bf out}.\\ An integer value that contains an error code. \end{description} \begin{figure}[h] \begin{center} \ifcase\pdfoutput \includegraphics[scale=0.45]{figures/try8x8.eps} \or \rotatebox{-90}{\includegraphics[scale=0.45]{figures/try8x8}} \fi \end{center} \caption{Sample discretization mesh.\label{fig:try8x8}} \end{figure} {\par\noindent\large\bfseries Usage Example} Consider the discretization mesh depicted in fig.~\ref{fig:try8x8}, partitioned among two processes as shown by the dashed line; the data distribution is such that each process will own 32 entries in the index space, with a halo made of 8 entries placed at local indices 33 through 40. If process 0 assigns an initial value of 1 to its entries in the $x$ vector, and process 1 assigns a value of 2, then after a call to \verb|psb_halo| the contents of the local vectors will be the following: \begin{table} \begin{center} \small\begin{tabular}{rrr@{\hspace{6\tabcolsep}}rrr} \multicolumn{3}{c}{Process 0}& \multicolumn{3}{c}{Process 1}\\ I & GLOB(I) & X(I) & I & GLOB(I) & X(I) \\ 1 & 1 & 1.0 & 1 & 33 & 2.0 \\ 2 & 2 & 1.0 & 2 & 34 & 2.0 \\ 3 & 3 & 1.0 & 3 & 35 & 2.0 \\ 4 & 4 & 1.0 & 4 & 36 & 2.0 \\ 5 & 5 & 1.0 & 5 & 37 & 2.0 \\ 6 & 6 & 1.0 & 6 & 38 & 2.0 \\ 7 & 7 & 1.0 & 7 & 39 & 2.0 \\ 8 & 8 & 1.0 & 8 & 40 & 2.0 \\ 9 & 9 & 1.0 & 9 & 41 & 2.0 \\ 10 & 10 & 1.0 & 10 & 42 & 2.0 \\ 11 & 11 & 1.0 & 11 & 43 & 2.0 \\ 12 & 12 & 1.0 & 12 & 44 & 2.0 \\ 13 & 13 & 1.0 & 13 & 45 & 2.0 \\ 14 & 14 & 1.0 & 14 & 46 & 2.0 \\ 15 & 15 & 1.0 & 15 & 47 & 2.0 \\ 16 & 16 & 1.0 & 16 & 48 & 2.0 \\ 17 & 17 & 1.0 & 17 & 49 & 2.0 \\ 18 & 18 & 1.0 & 18 & 50 & 2.0 \\ 19 & 19 & 1.0 & 19 & 51 & 2.0 \\ 20 & 20 & 1.0 & 20 & 52 & 2.0 \\ 21 & 21 & 1.0 & 21 & 53 & 2.0 \\ 22 & 22 & 1.0 & 22 & 54 & 2.0 \\ 23 & 23 & 1.0 & 23 & 55 & 2.0 \\ 24 & 24 & 1.0 & 24 & 56 & 2.0 \\ 25 & 25 & 1.0 & 25 & 57 & 2.0 \\ 26 & 26 & 1.0 & 26 & 58 & 2.0 \\ 27 & 27 & 1.0 & 27 & 59 & 2.0 \\ 28 & 28 & 1.0 & 28 & 60 & 2.0 \\ 29 & 29 & 1.0 & 29 & 61 & 2.0 \\ 30 & 30 & 1.0 & 30 & 62 & 2.0 \\ 31 & 31 & 1.0 & 31 & 63 & 2.0 \\ 32 & 32 & 1.0 & 32 & 64 & 2.0 \\ 33 & 33 & 2.0 & 33 & 25 & 1.0 \\ 34 & 34 & 2.0 & 34 & 26 & 1.0 \\ 35 & 35 & 2.0 & 35 & 27 & 1.0 \\ 36 & 36 & 2.0 & 36 & 28 & 1.0 \\ 37 & 37 & 2.0 & 37 & 29 & 1.0 \\ 38 & 38 & 2.0 & 38 & 30 & 1.0 \\ 39 & 39 & 2.0 & 39 & 31 & 1.0 \\ 40 & 40 & 2.0 & 40 & 32 & 1.0 \\ \end{tabular} \end{center} \end{table} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % OVERLAP UPDATE % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \clearpage\subsection*{psb\_ovrl --- Overlap Update} \addcontentsline{toc}{subsection}{psb\_ovrl} These subroutines applies an overlap operator to the input vector: \[ x \leftarrow Q x \] where: \begin{description} \item[$x$] is the global dense submatrix $x$ \item[$Q$] is the overlap operator; it is the composition of two operators $ P_a$ and $ P^{T}$. \end{description} \begin{table}[h] \begin{center} \begin{tabular}{ll} \hline $x$ & {\bf Subroutine}\\ \hline Short Precision Real & psb\_ovrl \\ Long Precision Real & psb\_ovrl \\ Short Precision Complex & psb\_ovrl \\ Long Precision Complex & psb\_ovrl \\ \hline \end{tabular} \end{center} \caption{Data types\label{tab:f90ovrl}} \end{table} \begin{verbatim} call psb_ovrl(x, desc_a, info) call psb_ovrl(x, desc_a, info, update=update_type, work=work) \end{verbatim} \begin{description} \item[Type:] Synchronous. \item[\bf On Entry] \item[x] global dense matrix $x$.\\ Scope: {\bf local} \\ Type: {\bf required} \\ Intent: {\bf inout}.\\ Specified as: a rank one or two array or an object of type \vdata\ containing numbers of type specified in Table~\ref{tab:f90ovrl}. \item[desc\_a] contains data structures for communications.\\ Scope: {\bf local} \\ Type: {\bf required}\\ Intent: {\bf in}.\\ Specified as: a structured data of type \descdata. \item[update] Update operator. \\ \begin{description} \item[update = psb\_none\_] Do nothing; \item[update = psb\_add\_] Sum overlap entries, i.e. apply $P^T$; \item[update = psb\_avg\_] Average overlap entries, i.e. apply $P_aP^T$; %% \item[update = psb\_square\_root\_] square root update $\sqrt{P_a}$; \end{description} Scope: {\bf global} \\ Intent: {\bf in}.\\ Default: $update\_type = psb\_avg\_ $\\ Scope: {\bf global} \\ Specified as: a integer variable. \item[work] the work array. \\ Scope: {\bf local} \\ Type: {\bf optional}\\ Intent: {\bf inout}.\\ Specified as: a one dimensional array of the same type of $x$. \item[\bf On Return] \item[x] global dense result matrix $x$.\\ Scope: {\bf local} \\ Type: {\bf required} \\ Intent: {\bf inout}.\\ Specified as: an array of rank one or two containing numbers of type specified in Table~\ref{tab:f90ovrl}. \item[info] Error code.\\ Scope: {\bf local} \\ Type: {\bf required} \\ Intent: {\bf out}.\\ An integer value; 0 means no error has been detected. \end{description} {\par\noindent\large\bfseries Notes} \begin{enumerate} \item If there is no overlap in the data distribution associated with the descriptor, no operations are performed; \item The operator $P^{T}$ performs the reduction sum of overlap elements; it is a ``prolongation'' operator $P^T$ that replicates overlap elements, accounting for the physical replication of data; \item The operator $P_a$ performs a scaling on the overlap elements by the amount of replication; thus, when combined with the reduction operator, it implements the average of replicated elements over all of their instances. %% \item The square root update option makes it possible to applythe %% following operator: %% \[ x\leftarrow \sqrt{P_a} P^{T} K^{-1} P \sqrt{P_a} x\] %% In the case of a symmetric $K$, this preserves simmetry of the overall %% preconditioner, which would otherwise be destroyed. \end{enumerate} \begin{figure}[h] \begin{center} \ifcase\pdfoutput \includegraphics[scale=0.65]{figures/try8x8_ov.eps} \or \rotatebox{-90}{\includegraphics[scale=0.65]{figures/try8x8_ov}} \fi \end{center} \caption{Sample discretization mesh.\label{fig:try8x8_ov}} \end{figure} {\par\noindent\large\bfseries Example of use} Consider the discretization mesh depicted in fig.~\ref{fig:try8x8_ov}, partitioned among two processes as shown by the dashed lines, with an overlap of 1 extra layer with respect to the partition of fig.~\ref{fig:try8x8}; the data distribution is such that each process will own 40 entries in the index space, with an overlap of 16 entries placed at local indices 25 through 40; the halo will run from local index 41 through local index 48.. If process 0 assigns an initial value of 1 to its entries in the $x$ vector, and process 1 assigns a value of 2, then after a call to \verb|psb_ovrl| with \verb|psb_avg_| and a call to \verb|psb_halo_| the contents of the local vectors will be the following (showing a transition among the two subdomains) \begin{table} \begin{center} \footnotesize \begin{tabular}{rrr@{\hspace{6\tabcolsep}}rrr} \multicolumn{3}{c}{Process 0}& \multicolumn{3}{c}{Process 1}\\ I & GLOB(I) & X(I) & I & GLOB(I) & X(I) \\ 1 & 1 & 1.0 & 1 & 33 & 1.5 \\ 2 & 2 & 1.0 & 2 & 34 & 1.5 \\ 3 & 3 & 1.0 & 3 & 35 & 1.5 \\ 4 & 4 & 1.0 & 4 & 36 & 1.5 \\ 5 & 5 & 1.0 & 5 & 37 & 1.5 \\ 6 & 6 & 1.0 & 6 & 38 & 1.5 \\ 7 & 7 & 1.0 & 7 & 39 & 1.5 \\ 8 & 8 & 1.0 & 8 & 40 & 1.5 \\ 9 & 9 & 1.0 & 9 & 41 & 2.0 \\ 10 & 10 & 1.0 & 10 & 42 & 2.0 \\ 11 & 11 & 1.0 & 11 & 43 & 2.0 \\ 12 & 12 & 1.0 & 12 & 44 & 2.0 \\ 13 & 13 & 1.0 & 13 & 45 & 2.0 \\ 14 & 14 & 1.0 & 14 & 46 & 2.0 \\ 15 & 15 & 1.0 & 15 & 47 & 2.0 \\ 16 & 16 & 1.0 & 16 & 48 & 2.0 \\ 17 & 17 & 1.0 & 17 & 49 & 2.0 \\ 18 & 18 & 1.0 & 18 & 50 & 2.0 \\ 19 & 19 & 1.0 & 19 & 51 & 2.0 \\ 20 & 20 & 1.0 & 20 & 52 & 2.0 \\ 21 & 21 & 1.0 & 21 & 53 & 2.0 \\ 22 & 22 & 1.0 & 22 & 54 & 2.0 \\ 23 & 23 & 1.0 & 23 & 55 & 2.0 \\ 24 & 24 & 1.0 & 24 & 56 & 2.0 \\ 25 & 25 & 1.5 & 25 & 57 & 2.0 \\ 26 & 26 & 1.5 & 26 & 58 & 2.0 \\ 27 & 27 & 1.5 & 27 & 59 & 2.0 \\ 28 & 28 & 1.5 & 28 & 60 & 2.0 \\ 29 & 29 & 1.5 & 29 & 61 & 2.0 \\ 30 & 30 & 1.5 & 30 & 62 & 2.0 \\ 31 & 31 & 1.5 & 31 & 63 & 2.0 \\ 32 & 32 & 1.5 & 32 & 64 & 2.0 \\ 33 & 33 & 1.5 & 33 & 25 & 1.5 \\ 34 & 34 & 1.5 & 34 & 26 & 1.5 \\ 35 & 35 & 1.5 & 35 & 27 & 1.5 \\ 36 & 36 & 1.5 & 36 & 28 & 1.5 \\ 37 & 37 & 1.5 & 37 & 29 & 1.5 \\ 38 & 38 & 1.5 & 38 & 30 & 1.5 \\ 39 & 39 & 1.5 & 39 & 31 & 1.5 \\ 40 & 40 & 1.5 & 40 & 32 & 1.5 \\ 41 & 41 & 2.0 & 41 & 17 & 1.0 \\ 42 & 42 & 2.0 & 42 & 18 & 1.0 \\ 43 & 43 & 2.0 & 43 & 19 & 1.0 \\ 44 & 44 & 2.0 & 44 & 20 & 1.0 \\ 45 & 45 & 2.0 & 45 & 21 & 1.0 \\ 46 & 46 & 2.0 & 46 & 22 & 1.0 \\ 47 & 47 & 2.0 & 47 & 23 & 1.0 \\ 48 & 48 & 2.0 & 48 & 24 & 1.0 \\ \end{tabular} \end{center} \end{table} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % GATHER GLOBAL DENSE MATRIX % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \clearpage\subsection*{psb\_gather --- Gather Global Dense Matrix} \addcontentsline{toc}{subsection}{psb\_gather} These subroutines collect the portions of global dense matrix distributed over all process into one single array stored on one process. \[ glob\_x \leftarrow collect(loc\_x_i) \] where: \begin{description} \item[$glob\_x$] is the global submatrix $glob\_x_{1:m,1:n}$ \item[$loc\_x_i$] is the local portion of global dense matrix on process $i$. \item[$collect$] is the collect function. \end{description} \begin{table}[h] \begin{center} \begin{tabular}{ll} \hline $x_i, y$ & {\bf Subroutine}\\ \hline Integer & psb\_gather \\ Short Precision Real & psb\_gather \\ Long Precision Real & psb\_gather \\ Short Precision Complex & psb\_gather \\ Long Precision Complex & psb\_gather \\ \hline \end{tabular} \end{center} \caption{Data types\label{tab:gather}} \end{table} \begin{verbatim} call psb_gather(glob_x, loc_x, desc_a, info, root) call psb_gather(glob_x, loc_x, desc_a, info, root) \end{verbatim} \begin{description} \item[Type:] Synchronous. \item[\bf On Entry] \item[loc\_x] the local portion of global dense matrix $glob\_x$. \\ Scope: {\bf local} \\ Type: {\bf required}\\ Intent: {\bf in}.\\ Specified as: a rank one or two array or an object of type \vdata\ indicated in Table~\ref{tab:gather}. \item[desc\_a] contains data structures for communications.\\ Scope: {\bf local} \\ Type: {\bf required}\\ Intent: {\bf in}.\\ Specified as: a structured data of type \descdata. \item[root] The process that holds the global copy. If $root=-1$ all the processes will have a copy of the global vector.\\ Scope: {\bf global} \\ Type: {\bf optional}\\ Intent: {\bf in}.\\ Specified as: an integer variable $-1\le root\le np-1$, default $-1$. %% \item[iglobx] Row index to define a submatrix in glob\_x into which %% gather the local pieces.\\ %% Scope: {\bf global} \\ %% Type: {\bf optional}\\ %% Specified as: an integer variable $1\le ix\le matrix\_data(psb\_m\_)$. %% \item[jglobx] Column index to define a submatrix in glob\_x into which %% gather the local pieces.\\ %% Scope: {\bf global} \\ %% Type: {\bf optional}\\ %% Specified as: an integer variable. %% \item[ilocx] Row index to define a submatrix in loc\_x that has to %% be gathered into glob\_x.\\ %% Scope: {\bf local} \\ %% Type: {\bf optional}\\ %% Specified as: an integer variable. %% \item[jlocx] Columns index to define a submatrix in loc\_x that has %% to be gathered into glob\_x.\\ %% Scope: {\bf global} \\ %% Type: {\bf optional}\\ %% Specified as: an integer variable. %% \item[k] The number of columns to gather.\\ %% Scope: {\bf global} \\ %% Type: {\bf optional}\\ %% Specified as: an integer variable. \item[\bf On Return] \item[glob\_x] The array where the local parts must be gathered.\\ Scope: {\bf global} \\ Type: {\bf required}\\ Intent: {\bf out}.\\ Specified as: a rank one or two array with the \verb|ALLOCATABLE| attribute. \item[info] Error code.\\ Scope: {\bf local} \\ Type: {\bf required} \\ Intent: {\bf out}.\\ An integer value; 0 means no error has been detected. \end{description} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % SCATTER GLOBAL DENSE MATRIX % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \clearpage\subsection*{psb\_scatter --- Scatter Global Dense Matrix} \addcontentsline{toc}{subsection}{psb\_scatter} These subroutines scatters the portions of global dense matrix owned by a process to all the processes in the processes grid. \[ loc\_x_i \leftarrow scatter(glob\_x) \] where: \begin{description} \item[$glob\_x$] is the global matrix $glob\_x_{1:m,1:n}$ \item[$loc\_x_i$] is the local portion of global dense matrix on process $i$. \item[$scatter$] is the scatter function. \end{description} \begin{table}[h] \begin{center} \begin{tabular}{ll} \hline $x_i, y$ & {\bf Subroutine}\\ \hline Integer & psb\_scatter \\ Short Precision Real & psb\_scatter \\ Long Precision Real & psb\_scatter \\ Short Precision Complex & psb\_scatter \\ Long Precision Complex & psb\_scatter \\ \hline \end{tabular} \end{center} \caption{Data types\label{tab:scatter}} \end{table} \begin{verbatim} call psb_scatter(glob_x, loc_x, desc_a, info, root) call psb_scatter(glob_x, loc_x, desc_a, info, root) \end{verbatim} \begin{description} \item[Type:] Synchronous. \item[\bf On Entry] \item[glob\_x] The array that must be scattered into local pieces.\\ Scope: {\bf global} \\ Type: {\bf required}\\ Intent: {\bf in}.\\ Specified as: a rank one or two array. \item[desc\_a] contains data structures for communications.\\ Scope: {\bf local} \\ Type: {\bf required}\\ Intent: {\bf in}.\\ Specified as: a structured data of type \descdata. \item[root] The process that holds the global copy. If $root=-1$ all the processes have a copy of the global vector.\\ Scope: {\bf global} \\ Type: {\bf optional}\\ Intent: {\bf in}.\\ Specified as: an integer variable $-1\le root\le np-1$, default $-1$. %% \item[iglobx] Row index to define a submatrix in glob\_x that has to %% be scattered into local pieces.\\ %% Scope: {\bf global} \\ %% Type: {\bf optional}\\ %% Specified as: an integer variable $1\le ix\le matrix\_data(psb\_m\_)$. %% \item[jglobx] Column index to define a submatrix in glob\_x that has to %% be scattered into local pieces.\\ %% Scope: {\bf global} \\ %% Type: {\bf optional}\\ %% Specified as: an integer variable. %% \item[ilocx] Row index to define a submatrix in loc\_x into which %% scatter the local piece of glob\_x.\\ %% Scope: {\bf local} \\ %% Type: {\bf optional}\\ %% Specified as: an integer variable. %% \item[jlocx] Columns index to define a submatrix in loc\_x into which %% scatter the local piece of glob\_x.\\ %% Scope: {\bf global} \\ %% Type: {\bf optional}\\ %% Specified as: an integer variable. %% \item[k] The number of columns to scatter.\\ %% Scope: {\bf global} \\ %% Type: {\bf optional}\\ %% Specified as: an integer variable. \item[\bf On Return] \item[loc\_x] the local portion of global dense matrix $glob\_x$. \\ Scope: {\bf local} \\ Type: {\bf required}\\ Intent: {\bf out}.\\ Specified as: a rank one or two array containing numbers of the type indicated in Table~\ref{tab:scatter}. \item[info] Error code.\\ Scope: {\bf local} \\ Type: {\bf required} \\ Intent: {\bf out}.\\ An integer value; 0 means no error has been detected. \end{description} %%% Local Variables: %%% mode: latex %%% TeX-master: "userguide" %%% End: