
PSBLAS 3.0-beta User’s
guide

A reference guide for the Parallel Sparse BLAS library

by Salvatore Filippone
and Alfredo Buttari

University of Rome “Tor Vergata”.

December 15th, 2011.

2

Contents

1 Introduction 1

2 General overview 2
2.1 Basic Nomenclature . 3
2.2 Library contents . 4
2.3 Application structure . 5
2.4 Programming model . 7

3 Data Structures 9
3.1 Descriptor data structure . 9

3.1.1 Named Constants . 11
3.2 Sparse Matrix data structure . 12

3.2.1 Named Constants . 14
3.3 Dense Vector Data Structure . 14
3.4 Preconditioner data structure . 15
3.5 Data structure query routines . 15

get local rows . 15
get local cols . 15
get global rows . 16
get global cols . 17
get context . 17
psb cd get large threshold . 17
psb cd set large threshold . 18
get nrows . 18
get ncols . 18
get nnzeros . 19

4 Computational routines 20
psb geaxpby . 21
psb gedot . 23
psb gedots . 25
psb geamax . 27
psb geamaxs . 28
psb geasum . 29
psb geasums . 30
psb geasums . 32
psb genrm2s . 33
psb spnrmi . 34
psb spmm . 35
psb spsm . 37

5 Communication routines 40
psb halo . 41
psb ovrl . 44
psb gather . 48
psb scatter . 50

i

6 Data management routines 52
psb cdall . 52
psb cdins . 56
psb cdasb . 57
psb cdcpy . 58
psb cdfree . 59
psb cdbldext . 60
psb spall . 62
psb spins . 63
psb spasb . 65
psb spfree . 67
psb sprn . 68
psb geall . 69
psb geins . 70
psb geasb . 72
psb gefree . 73
psb gelp . 74
psb glob to loc . 75
psb loc to glob . 77
psb is owned . 78
psb owned index . 79
psb is local . 80
psb local index . 81
psb get boundary . 82
psb get overlap . 83
psb sp getrow . 84
psb sizeof . 86
Sorting utilities . 87

7 Parallel environment routines 89
psb init . 90
psb info . 91
psb exit . 92
psb get mpicomm . 93
psb get rank . 94
psb wtime . 95
psb barrier . 96
psb abort . 97
psb bcast . 98
psb sum . 99
psb max . 100
psb min . 101
psb amx . 102
psb amn . 103
psb snd . 104
psb rcv . 105

ii

8 Error handling 106
psb errpush . 108
psb error . 109
psb set errverbosity . 110
psb set erraction . 111

9 Utilities 112
hb read . 113
hb write . 114
mm mat read . 115
mm vet read . 116
mm mat write . 117

10 Preconditioner routines 118
psb precinit . 119
psb precbld . 120
psb precaply . 121
psb precdescr . 122

11 Iterative Methods 123
krylov . 124

iii

iv

1 Introduction

The PSBLAS library, developed with the aim to facilitate the parallelization of
computationally intensive scientific applications, is designed to address parallel
implementation of iterative solvers for sparse linear systems through the dis-
tributed memory paradigm. It includes routines for multiplying sparse matrices
by dense matrices, solving block diagonal systems with triangular diagonal en-
tries, preprocessing sparse matrices, and contains additional routines for dense
matrix operations. The current implementation of PSBLAS addresses a dis-
tributed memory execution model operating with message passing.

The PSBLAS library version 3 is internally implemented in the Fortran 2003 [16]
programming language, with reuse and/or adaptation of some existing For-
tran 77 software, and a handful of C routines.

The use of Fortran 2003 offers a number of advantages over Fortran 95,
mostly in the handling of requirements for evolution and adaptation of the
library to new computing architectures and integration of new algorithms. For
a detailed discussion of our design see [11]; other works discussing advanced
programming in Fortran 2003 include [1, 17]; sufficient support for Fortran 2003
is now available from many compilers, including the GNU Fortran compiler from
the Free Software Foundation (as of version 4.6).

Previous approaches have been based on mixing Fortran 95, with its support
for object-based design, with other languages; these have been advocated by a
number of authors, e.g. [15]. Moreover, the Fortran 95 facilities for dynamic
memory management and interface overloading greatly enhance the usability
of the PSBLAS subroutines. In this way, the library can take care of runtime
memory requirements that are quite difficult or even impossible to predict at
implementation or compilation time.

The presentation of the PSBLAS library follows the general structure of the
proposal for serial Sparse BLAS [8, 9], which in its turn is based on the proposal
for BLAS on dense matrices [14, 5, 6].

The applicability of sparse iterative solvers to many different areas causes
some terminology problems because the same concept may be denoted through
different names depending on the application area. The PSBLAS features pre-
sented in this document will be discussed referring to a finite difference dis-
cretization of a Partial Differential Equation (PDE). However, the scope of the
library is wider than that: for example, it can be applied to finite element dis-
cretizations of PDEs, and even to different classes of problems such as nonlinear
optimization, for example in optimal control problems.

The design of a solver for sparse linear systems is driven by many con-
flicting objectives, such as limiting occupation of storage resources, exploiting
regularities in the input data, exploiting hardware characteristics of the par-
allel platform. To achieve an optimal communication to computation ratio on
distributed memory machines it is essential to keep the data locality as high
as possible; this can be done through an appropriate data allocation strategy.
The choice of the preconditioner is another very important factor that affects
efficiency of the implemented application. Optimal data distribution require-
ments for a given preconditioner may conflict with distribution requirements
of the rest of the solver. Finding the optimal trade-off may be very difficult
because it is application dependent. Possible solutions to these problems and
other important inputs to the development of the PSBLAS software package

1

have come from an established experience in applying the PSBLAS solvers to
computational fluid dynamics applications.

2 General overview

The PSBLAS library is designed to handle the implementation of iterative
solvers for sparse linear systems on distributed memory parallel computers.
The system coefficient matrix A must be square; it may be real or complex,
nonsymmetric, and its sparsity pattern needs not to be symmetric. The serial
computation parts are based on the serial sparse BLAS, so that any extension
made to the data structures of the serial kernels is available to the parallel ver-
sion. The overall design and parallelization strategy have been influenced by
the structure of the ScaLAPACK parallel library. The layered structure of the
PSBLAS library is shown in figure 1; lower layers of the library indicate an
encapsulation relationship with upper layers. The ongoing discussion focuses
on the Fortran 2003 layer immediately below the application layer. The serial
parts of the computation on each process are executed through calls to the serial
sparse BLAS subroutines. In a similar way, the inter-process message exchanges
are encapsulated in an applicaiton layer that has been strongly inspired by the
Basic Linear Algebra Communication Subroutines (BLACS) library [7]. Usually
there is no need to deal directly with MPI; however, in some cases, MPI routines
are used directly to improve efficiency. For further details on our communication
layer see Sec. 7.

S
erial S

p
arse

B
L

A
S

A
p

p
licatio

n

P
S

B
L

A
S

In
terface

In
n

er

In
terface

M
essag

e P
assin

g

M
P

I

F
o

rtran
 2

0
0

3

Figure 1: PSBLAS library components hierarchy.

The type of linear system matrices that we address typically arise in the
numerical solution of PDEs; in such a context, it is necessary to pay special
attention to the structure of the problem from which the application originates.
The nonzero pattern of a matrix arising from the discretization of a PDE is in-
fluenced by various factors, such as the shape of the domain, the discretization
strategy, and the equation/unknown ordering. The matrix itself can be inter-
preted as the adjacency matrix of the graph associated with the discretization
mesh.

The distribution of the coefficient matrix for the linear system is based on the
“owner computes” rule: the variable associated to each mesh point is assigned
to a process that will own the corresponding row in the coefficient matrix and

2

will carry out all related computations. This allocation strategy is equivalent to
a partition of the discretization mesh into sub-domains. Our library supports
any distribution that keeps together the coefficients of each matrix row; there
are no other constraints on the variable assignment. This choice is consistent
with simple data distributions such as CYCLIC(N) and BLOCK, as well as com-
pletely arbitrary assignments of equation indices to processes. In particular it
is consistent with the usage of graph partitioning tools commonly available in
the literature, e.g. METIS [13]. Dense vectors conform to sparse matrices, that
is, the entries of a vector follow the same distribution of the matrix rows.

We assume that the sparse matrix is built in parallel, where each process
generates its own portion. We never require that the entire matrix be available
on a single node. However, it is possible to hold the entire matrix in one process
and distribute it explicitly1, even though the resulting bottleneck would make
this option unattractive in most cases.

2.1 Basic Nomenclature

Our computational model implies that the data allocation on the parallel dis-
tributed memory machine is guided by the structure of the physical model, and
specifically by the discretization mesh of the PDE.

Each point of the discretization mesh will have (at least) one associated
equation/variable, and therefore one index. We say that point i depends on
point j if the equation for a variable associated with i contains a term in j,
or equivalently if aij 6= 0. After the partition of the discretization mesh into
sub-domains assigned to the parallel processes, we classify the points of a given
sub-domain as following.

Internal. An internal point of a given domain depends only on points of the
same domain. If all points of a domain are assigned to one process, then a
computational step (e.g., a matrix-vector product) of the equations asso-
ciated with the internal points requires no data items from other domains
and no communications.

Boundary. A point of a given domain is a boundary point if it depends on
points belonging to other domains.

Halo. A halo point for a given domain is a point belonging to another do-
main such that there is a boundary point which depends on it. Whenever
performing a computational step, such as a matrix-vector product, the
values associated with halo points are requested from other domains. A
boundary point of a given domain is usually a halo point for some other
domain2; therefore the cardinality of the boundary points set denotes the
amount of data sent to other domains.

Overlap. An overlap point is a boundary point assigned to multiple domains.
Any operation that involves an overlap point has to be replicated for each
assignment.

1In our prototype implementation we provide sample scatter/gather routines.
2This is the normal situation when the pattern of the sparse matrix is symmetric, which is

equivalent to say that the interaction between two variables is reciprocal. If the matrix pattern
is non-symmetric we may have one-way interactions, and these could cause a situation in which
a boundary point is not a halo point for its neighbour.

3

Overlap points do not usually exist in the basic data distributions; however they
are a feature of Domain Decomposition Schwarz preconditioners which are the
subject of related research work [4, 3].

We denote the sets of internal, boundary and halo points for a given subdo-
main by I, B and H. Each subdomain is assigned to one process; each process
usually owns one subdomain, although the user may choose to assign more than
one subdomain to a process. If each process i owns one subdomain, the number
of rows in the local sparse matrix is |Ii|+ |Bi|, and the number of local columns
(i.e. those for which there exists at least one non-zero entry in the local rows)
is |Ii|+ |Bi|+ |Hi|.

Internal

Boundary

Halo

Domain 2

Domain 1

Figure 2: Point classfication.

This classification of mesh points guides the naming scheme that we adopted
in the library internals and in the data structures. We explicitly note that
“Halo” points are also often called “ghost” points in the literature.

2.2 Library contents

The PSBLAS library consists of various classes of subroutines:

Computational routines comprising:

• Sparse matrix by dense matrix product;

• Sparse triangular systems solution for block diagonal matrices;

• Vector and matrix norms;

• Dense matrix sums;

• Dot products.

Communication routines handling halo and overlap communications;

Data management and auxiliary routines including:

• Parallel environment management

4

• Communication descriptors allocation;

• Dense and sparse matrix allocation;

• Dense and sparse matrix build and update;

• Sparse matrix and data distribution preprocessing.

Preconditioner routines

Iterative methods a subset of Krylov subspace iterative methods

The following naming scheme has been adopted for all the symbols internally
defined in the PSBLAS software package:

• all the symbols (i.e. subroutine names, data types...) are prefixed by psb_

• all the data type names are suffixed by _type

• all the constant values are suffixed by _

• all the subroutine names follow the rule psb_xxname where xx can be
either:

– ge: the routine is related to dense data,

– sp: the routine is related to sparse data,

– cd: the routine is related to communication descriptor (see 3).

For example the psb_geins, psb_spins and psb_cdins perform the same
action (see 6) on dense matrices, sparse matrices and communication de-
scriptors respectively. Interface overloading allows the usage of the same
subroutine interfaces for both real and complex data.

In the description of the subroutines, arguments or argument entries are classi-
fied as:

global For input arguments, the value must be the same on all processes partici-
pating in the subroutine call; for output arguments the value is guaranteed
to be the same.

local Each process has its own value(s) independently.

To finish our general description, we define a version string with the constant

psb_version_string_

whose current value is 3.0.0

2.3 Application structure

The main underlying principle of the PSBLAS library is that the library objects
are created and exist with reference to a discretized space to which there corre-
sponds an index space and a matrix sparsity pattern. As an example, consider
a cell-centered finite-volume discretization of the Navier-Stokes equations on a
simulation domain; the index space 1 . . . n is isomorphic to the set of cell cen-
ters, whereas the pattern of the associated linear system matrix is isomorphic

5

to the adjacency graph imposed on the discretization mesh by the discretization
stencil.

Thus the first order of business is to establish an index space, and this is
done with a call to psb_cdall in which we specify the size of the index space
n and the allocation of the elements of the index space to the various processes
making up the MPI (virtual) parallel machine.

The index space is partitioned among processes, and this creates a mapping
from the “global” numbering 1 . . . n to a numbering “local” to each process; each
process i will own a certain subset 1 . . . nrowi , each element of which corresponds
to a certain element of 1 . . . n. The user does not set explicitly this mapping;
when the application needs to indicate to which element of the index space a
certain item is related, such as the row and column index of a matrix coefficient,
it does so in the “global” numbering, and the library will translate into the
appropriate “local” numbering.

For a given index space 1 . . . n there are many possible associated topologies,
i.e. many different discretization stencils; thus the description of the index space
is not completed until the user has defined a sparsity pattern, either explicitly
through psb_cdins or implicitly through psb_spins. The descriptor is finalized
with a call to psb_cdasb and a sparse matrix with a call to psb_spasb. After
psb_cdasb each process i will have defined a set of “halo” (or “ghost”) indices
nrowi + 1 . . . ncoli

, denoting elements of the index space that are not assigned
to process i; however the variables associated with them are needed to complete
computations associated with the sparse matrix A, and thus they have to be
fetched from (neighbouring) processes. The descriptor of the index space is
built exactly for the purpose of properly sequencing the communication steps
required to achieve this objective.

A simple application structure will walk through the index space allocation,
matrix/vector creation and linear system solution as follows:

1. Initialize parallel environment with psb_init

2. Initialize index space with psb_cdall

3. Allocate sparse matrix and dense vectors with psb_spall and psb_geall

4. Loop over all local rows, generate matrix and vector entries, and insert
them with psb_spins and psb_geins

5. Assemble the various entities:

(a) psb_cdasb

(b) psb_spasb

(c) psb_geasb

6. Choose the preconditioner to be used with psb_precset and build it with
psb_precbld

7. Call the iterative method of choice, e.g. psb_bicgstab

This is the structure of the sample program test/pargen/ppde90.f90.
For a simulation in which the same discretization mesh is used over multiple

time steps, the following structure may be more appropriate:

6

1. Initialize parallel environment with psb_init

2. Initialize index space with psb_cdall

3. Loop over the topology of the discretization mesh and build the descriptor
with psb_cdins

4. Assemble the descriptor with psb_cdasb

5. Allocate the sparse matrices and dense vectors with psb_spall and psb_geall

6. Loop over the time steps:

(a) If after first time step, reinitialize the sparse matrix with psb_sprn;
also zero out the dense vectors;

(b) Loop over the mesh, generate the coefficients and insert/update them
with psb_spins and psb_geins

(c) Assemble with psb_spasb and psb_geasb

(d) Choose and build preconditioner with psb_precset and psb_precbld

(e) Call the iterative method of choice, e.g. psb_bicgstab

The insertion routines will be called as many times as needed; they only need
to be called on the data that is actually allocated to the current process, i.e.
each process generates its own data.

In principle there is no specific order in the calls to psb_spins, nor is there
a requirement to build a matrix row in its entirety before calling the routine;
this allows the application programmer to walk through the discretization mesh
element by element, generating the main part of a given matrix row but also
contributions to the rows corresponding to neighbouring elements.

From a functional point of view it is even possible to execute one call for
each nonzero coefficient; however this would have a substantial computational
overhead. It is therefore advisable to pack a certain amount of data into each call
to the insertion routine, say touching on a few tens of rows; the best performng
value would depend on both the architecture of the computer being used and
on the problem structure. At the opposite extreme, it would be possible to
generate the entire part of a coefficient matrix residing on a process and pass it
in a single call to psb_spins; this, however, would entail a doubling of memory
occupation, and thus would be almost always far from optimal.

2.4 Programming model

The PSBLAS librarary is based on the Single Program Multiple Data (SPMD)
programming model: each process participating in the computation performs
the same actions on a chunk of data. Parallelism is thus data-driven.

Because of this structure, many subroutines coordinate their action across
the various processes, thus providing an implicit synchronization point, and
therefore must be called simultaneously by all processes participating in the
computation. This is certainly true for the data allocation and assembly rou-
tines, for all the computational routines and for some of the tools routines.

However there are many cases where no synchronization, and indeed no
communication among processes, is implied; for instance, all the routines in

7

sec. 3.5 are only acting on the local data structures, and thus may be called
independently. The most important case is that of the coefficient insertion
routines: since the number of coefficients in the sparse and dense matrices varies
among the processors, and since the user is free to choose an arbitrary order in
builiding the matrix entries, these routines cannot imply a synchronization.

Throughout this user’s guide each subroutine will be clearly indicated as:

Synchronous: must be called simultaneously by all the processes in the rele-
vant communication context;

Asynchronous: may be called in a totally independent manner.

8

3 Data Structures

In this chapter we illustrate the data structures used for definition of routines
interfaces. They include data structures for sparse matrices, communication
descriptors and preconditioners.

All the data types and the basic subroutine interfaces are defined in the
module psb_base_mod; this will have to be included by every user subroutine
that makes use of the library.

Real and complex data types are parametrized with a kind type defined in
the library as follows:

psb spk Kind parameter for short precision real and complex data; corre-
sponds to a REAL declaration and is normally 4 bytes.

psb dpk Kind parameter for long precision real and complex data; corre-
sponds to a DOUBLE PRECISION declaration and is normally 8 bytes.

Moreover, the library defines a long integer kind psb_long_int_k_ which nor-
mally corresponds to 64-bit integers; it is only used for the psb_sizeof utility.

3.1 Descriptor data structure

All the general matrix informations and elements to be exchanged among pro-
cesses are stored within a data structure of the type psb desc type. Every
structure of this type is associated with a discretization pattern and enables
data communications and other operations that are necessary for implementing
the various algorithms of interest to us.

The data structure itself psb_desc_type can be treated as an opaque object
handled via the tools routines of Sec. 6 and 3.5; nevertheless we include here a
description for the curious reader.

First we describe the psb_indx_map type. This is a data structure that keeps
track of a certain number of basic issues such as:

• The value of the communication/MPI context;

• The number of indices in the index space, i.e. global number of rows and
columns of a sparse matrix;

• The local set of indices, including:

– The number of local indices (and local rows);

– The number of halo indices (and therefore local columns);

– The global indices corresponding to the local ones.

There are many different schemes for storing these data; therefore there are a
number of types extending the base one, and the descriptor structure holds a
polymorphic object whose dynamic type can be any of the extended types. The
methods associated with this data type answer the following queries:

• For a given set of local indices, find the corresponding indices in the global
numbering;

• For a given set of global indices, find the corresponding indices in the local
numbering, if any, or return an invalid

9

• Add a global index to the set of halo indices;

• Find the process owner of each member of a set of global indices.

All methods but the last are purely local; the last method potentially requires
communication among processes, and thus is a synchronous method. The choice
of a specific dynamic type for the index map is made at the time the descriptor
is initially allocated, according to the mode of initialization (see also 6).

The descriptor contents are as follows:

indxmap A polymorphic variable of a type that is any extension of the indx map
type described above.

halo index A list of the halo and boundary elements for the current process
to be exchanged with other processes; for each processes with which it is
necessary to communicate:

1. Process identifier;

2. Number of points to be received;

3. Indices of points to be received;

4. Number of points to be sent;

5. Indices of points to be sent;

The list may contain an arbitrary number of groups; its end is marked by
a -1.
Specified as: an allocatable integer array of rank one.

ext index A list of element indices to be exchanged to implement the mapping
between a base descriptor and a descriptor with overlap.

ovrlap index A list of the overlap elements for the current process, organized
in groups like the previous vector:

1. Process identifier;

2. Number of points to be received;

3. Indices of points to be received;

4. Number of points to be sent;

5. Indices of points to be sent;

The list may contain an arbitrary number of groups; its end is marked by
a -1.
Specified as: an allocatable integer array of rank one.

ovr mst idx A list to retrieve the value of each overlap element from the re-
spective master process.
Specified as: an allocatable integer array of rank one.

ovrlap elem For all overlap points belonging to th ecurrent process:

1. Overlap point index;

2. Number of processes sharing that overlap points;

10

3. Index of a “master” process:

Specified as: an allocatable integer array of rank two.

bnd elem A list of all boundary points, i.e. points that have a connection with
other processes.

The Fortran 2003 declaration for psb_desc_type structures is as follows:

type psb_desc_type
class(psb_indx_map), allocatable :: indxmap
integer, allocatable :: halo_index(:)
integer, allocatable :: ext_index(:)
integer, allocatable :: ovrlap_index(:)
integer, allocatable :: ovrlap_elem(:,:)
integer, allocatable :: ovr_mst_idx(:)
integer, allocatable :: bnd_elem(:)

end type psb_desc_type

Figure 3: The PSBLAS defined data type that contains the communication
descriptor.

A communication descriptor associated with a sparse matrix has a state,
which can take the following values:

Build: State entered after the first allocation, and before the first assembly; in
this state it is possible to add communication requirements among different
processes.

Assembled: State entered after the assembly; computations using the associ-
ated sparse matrix, such as matrix-vector products, are only possible in
this state.

3.1.1 Named Constants

psb none Generic no-op;

psb nohalo Do not fetch halo elements;

psb halo Fetch halo elements from neighbouring processes;

psb sum Sum overlapped elements

psb avg Average overlapped elements

psb comm halo Exchange data based on the halo_index list;

psb comm ext Exchange data based on the ext_index list;

psb comm ovr Exchange data based on the ovrlap_index list;

psb comm mov Exchange data based on the ovr_mst_idx list;

11

3.2 Sparse Matrix data structure

The psb spmat type data structure contains all information about the local
portion of the sparse matrix and its storage mode. Most of these fields are set
by the tools routines when inserting a new sparse matrix; the user needs only
choose, if he/she so whishes, a specific matrix storage mode.

The

aspk Contains values of the local distributed sparse matrix.
Specified as: an allocatable array of rank one of type corresponding to
matrix entries type.

ia1 Holds integer information on distributed sparse matrix. Actual information
will depend on data format used.
Specified as: an allocatable integer array of rank one.

ia2 Holds integer information on distributed sparse matrix. Actual information
will depend on data format used.
Specified as: an allocatable integer array of rank one.

infoa On entry can hold auxiliary information on distributed sparse matrix.
Actual information will depend on data format used.
Specified as: an integer array of length psb_ifasize_.

fida Defines the format of the distributed sparse matrix.
Specified as: a string of length 5

descra Describe the characteristic of the distributed sparse matrix.
Specified as: array of character of length 9.

pl Specifies the local row permutation of distributed sparse matrix. If pl(1) is
equal to 0, then there isn’t row permutation.
Specified as: an allocatable integer array of dimension equal to number of
local row (matrix data[psb n row])

pr Specifies the local column permutation of distributed sparse matrix. If
PR(1) is equal to 0, then there isn’t columnm permutation.
Specified as: an allocatable integer array of dimension equal to number of
local row (matrix data[psb n col])

m Number of rows; if row indices are stored explicitly, as in Coordinate Storage,
should be greater than or equal to the maximum row index actually present
in the sparse matrix. Specified as: integer variable.

k Number of columns; if column indices are stored explicitly, as in Coordinate
Storage or Compressed Sparse Rows, should be greater than or equal to the
maximum column index actually present in the sparse matrix. Specified
as: integer variable.

The Fortran 95 interface for distributed sparse matrices containing double pre-
cision real entries is defined as shown in figure 4. The definitions for single
precision and complex data are identical except for the real declaration and for
the kind type parameter.

The following two cases are among the most commonly used:

12

type psb_sspmat_type
integer :: m, k
character :: fida(5)
character :: descra(10)
integer :: infoa(psb_ifa_size_)
real(psb_spk_), allocatable :: aspk(:)
integer, allocatable :: ia1(:), ia2(:)
integer, allocatable :: pr(:), pl(:)

end type psb_sspmat_type

type psb_dspmat_type
integer :: m, k
character :: fida(5)
character :: descra(10)
integer :: infoa(psb_ifa_size_)
real(psb_dpk_), allocatable :: aspk(:)
integer, allocatable :: ia1(:), ia2(:)
integer, allocatable :: pr(:), pl(:)

end type psb_dspmat_type

type psb_cspmat_type
integer :: m, k
character :: fida(5)
character :: descra(10)
integer :: infoa(psb_ifa_size_)
complex(psb_spk_), allocatable :: aspk(:)
integer, allocatable :: ia1(:), ia2(:)
integer, allocatable :: pr(:), pl(:)

end type psb_cspmat_type

type psb_zspmat_type
integer :: m, k
character :: fida(5)
character :: descra(10)
integer :: infoa(psb_ifa_size_)
complex(psb_dpk_), allocatable :: aspk(:)
integer, allocatable :: ia1(:), ia2(:)
integer, allocatable :: pr(:), pl(:)

end type psb_zspmat_type

Figure 4: The PSBLAS defined data type that contains a sparse matrix.

fida=“CSR” Compressed storage by rows. In this case the following should
hold:

1. ia2(i) contains the index of the first element of row i; the last

13

element of the sparse matrix is thus stored at index ia2(m+1)−1. It
should contain m+1 entries in nondecreasing order (strictly increasing,
if there are no empty rows).

2. ia1(j) contains the column index and aspk(j) contains the corre-
sponding coefficient value, for all ia2(1) ≤ j ≤ ia2(m+ 1)− 1.

fida=“COO” Coordinate storage. In this case the following should hold:

1. infoa(1) contains the number of nonzero elements in the matrix;

2. For all 1 ≤ j ≤ infoa(1), the coefficient, row index and column index
are stored into apsk(j), ia1(j) and ia2(j) respectively.

A sparse matrix has an associated state, which can take the following values:

Build: State entered after the first allocation, and before the first assembly; in
this state it is possible to add nonzero entries.

Assembled: State entered after the assembly; computations using the sparse
matrix, such as matrix-vector products, are only possible in this state;

Update: State entered after a reinitalization; this is used to handle applications
in which the same sparsity pattern is used multiple times with different
coefficients. In this state it is only possible to enter coefficients for already
existing nonzero entries.

3.2.1 Named Constants

psb dupl ovwrt Duplicate coefficients should be overwritten (i.e. ignore du-
plications)

psb dupl add Duplicate coefficients should be added;

psb dupl err Duplicate coefficients should trigger an error conditino

psb upd dflt Default update strategy for matrix coefficients;

psb upd srch Update strategy based on search into the data structure;

psb upd perm Update strategy based on additional permutation data (see
tools routine description).

3.3 Dense Vector Data Structure

The psb vect type data structure contains all information about local portion
of the sparse matrix and its storage mode. Most of these fields are set by the
tools routines when inserting a new sparse matrix; the user needs only choose,
if he/she so whishes, a specific matrix storage mode.

14

3.4 Preconditioner data structure

Our base library offers support for simple well known preconditioners like Di-
agonal Scaling or Block Jacobi with incomplete factorization ILU(0).

A preconditioner is held in the psb prec type data structure reported in
figure 5. The psb_prec_type data type may contain a simple preconditioning
matrix with the associated communication descriptor.The values contained in
the iprcparm and rprcparm define tha type of preconditioner along with all the
parameters related to it; thus, iprcparm and rprcparm define how the other
records have to be interpreted. This data structure is the basis of more complex
preconditioning strategies, which are the subject of further research.

3.5 Data structure query routines

get local rows — Get number of local rows

nr = desc%get_local_rows()

Type: Asynchronous.

On Entry

desc the communication descriptor.
Scope: local.
Type: required.
Intent: in.
Specified as: a structured data of type psb desc type.

On Return

Function value The number of local rows, i.e. the number of rows owned
by the current process; as explained in 1, it is equal to |Ii| + |Bi|. The
returned value is specific to the calling process.

get local cols — Get number of local cols

nc = desc%get_local_cols()

On Entry

Type: Asynchronous.

desc the communication descriptor.
Scope: local.
Type: required.
Intent: in.
Specified as: a structured data of type psb desc type.

On Return

Function value The number of local cols, i.e. the number of indices used by
the current process, including both local and halo indices; as explained
in 1, it is equal to |Ii|+ |Bi|+ |Hi|. The returned value is specific to the
calling process.

15

type psb_sprec_type

type(psb_sspmat_type), allocatable :: av(:)

real(psb_spk_), allocatable :: d(:)

type(psb_desc_type) :: desc_data

integer, allocatable :: iprcparm(:)

real(psb_spk_), allocatable :: rprcparm(:)

integer, allocatable :: perm(:), invperm(:)

integer :: prec, base_prec

end type psb_sprec_type

type psb_dprec_type

type(psb_dspmat_type), allocatable :: av(:)

real(psb_dpk_), allocatable :: d(:)

type(psb_desc_type) :: desc_data

integer, allocatable :: iprcparm(:)

real(psb_dpk_), allocatable :: rprcparm(:)

integer, allocatable :: perm(:), invperm(:)

integer :: prec, base_prec

end type psb_dprec_type

type psb_cprec_type

type(psb_cspmat_type), allocatable :: av(:)

complex(psb_spk_), allocatable :: d(:)

type(psb_desc_type) :: desc_data

integer, allocatable :: iprcparm(:)

real(psb_spk_), allocatable :: rprcparm(:)

integer, allocatable :: perm(:), invperm(:)

integer :: prec, base_prec

end type psb_cprec_type

type psb_zprec_type

type(psb_zspmat_type), allocatable :: av(:)

complex(psb_dpk_), allocatable :: d(:)

type(psb_desc_type) :: desc_data

integer, allocatable :: iprcparm(:)

real(psb_dpk_), allocatable :: rprcparm(:)

integer, allocatable :: perm(:), invperm(:)

integer :: prec, base_prec

end type psb_zprec_type

Figure 5: The PSBLAS defined data type that contains a preconditioner.

get global rows — Get number of global rows

nr = desc%get_global_rows()

On Entry

Type: Asynchronous.

16

desc the communication descriptor.
Scope: local.
Type: required.
Intent: in.
Specified as: a structured data of type psb desc type.

On Return

Function value The number of global rows in the mesh

get global cols — Get number of global cols

nr = desc%get_global_cols()

Type: Asynchronous.

On Entry

desc the communication descriptor.
Scope: local.
Type: required.
Intent: in.
Specified as: a structured data of type psb desc type.

On Return

Function value The number of global cols in the mesh

get context—Get communication context

ictxt = desc%get_context()

Type: Asynchronous.

On Entry

desc the communication descriptor.
Scope: local.
Type: required.
Intent: in.
Specified as: a structured data of type psb desc type.

On Return

Function value The communication context.

psb cd get large threshold — Get threshold for index mapping switch

ith = psb_cd_get_large_threshold()

Type: Asynchronous.

On Return

Function value The current value for the size threshold.

17

psb cd set large threshold — Set threshold for index mapping switch

call psb_cd_set_large_threshold(ith)

Type: Asynchronous.

On Entry

ith the new threshold for communication descriptors.
Scope: global.
Type: required.
Intent: in.
Specified as: an integer value greater than zero.

Note: the threshold value is only queried by the library at the time a call
to psb_cdall is executed, therefore changing the threshold has no effect on
communication descriptors that have already been initialized.

get nrows — Get number of rows in a sparse matrix

nr = a%get_nrows()

Type: Asynchronous.

On Entry

a the sparse matrix
Scope: local
Type: required
Intent: in.
Specified as: a structured data of type psb spmat type.

On Return

Function value The number of rows of sparse matrix a.

get ncols — Get number of columns in a sparse matrix

nr = a%get_ncols()

Type: Asynchronous.

On Entry

a the sparse matrix
Scope: local
Type: required
Intent: in.
Specified as: a structured data of type psb spmat type.

On Return

Function value The number of columns of sparse matrix a.

18

get nnzeros — Get number of nonzero elements in a sparse matrix

nr = a%get_nnzeros()

Type: Asynchronous.

On Entry

a the sparse matrix
Scope: local
Type: required
Intent: in.
Specified as: a structured data of type psb spmat type.

On Return

Function value The number of nonzero elements stored in sparse matrix a.

Notes

1. The function value is specific to the storage format of matrix a; some
storage formats employ padding, thus the returned value for the same
matrix may be different for different storage choices.

19

4 Computational routines

20

psb geaxpby — General Dense Matrix Sum

This subroutine is an interface to the computational kernel for dense matrix
sum:

y ← α x+ βy

call psb_geaxpby(alpha, x, beta, y, desc_a, info)

x, y, α, β Subroutine
Short Precision Real psb geaxpby
Long Precision Real psb geaxpby
Short Precision Complex psb geaxpby
Long Precision Complex psb geaxpby

Table 1: Data types

Type: Synchronous.

On Entry

alpha the scalar α.
Scope: global
Type: required
Intent: in.
Specified as: a number of the data type indicated in Table 1.

x the local portion of global dense matrix x.
Scope: local
Type: required
Intent: in.
Specified as: a rank one or two array containing numbers of type specified
in Table 1. The rank of x must be the same of y.

beta the scalar β.
Scope: global
Type: required
Intent: in.
Specified as: a number of the data type indicated in Table 1.

y the local portion of the global dense matrix y.
Scope: local
Type: required
Intent: inout.
Specified as: a rank one or two array containing numbers of the type
indicated in Table 1. The rank of y must be the same of x.

desc a contains data structures for communications.
Scope: local
Type: required
Intent: in.
Specified as: a structured data of type psb desc type.

21

On Return

y the local portion of result submatrix y.
Scope: local
Type: required
Intent: inout.
Specified as: a rank one or two array containing numbers of the type
indicated in Table 1.

info Error code.
Scope: local
Type: required
Intent: out.
An integer value; 0 means no error has been detected.

22

psb gedot — Dot Product

This function computes dot product between two vectors x and y.
If x and y are real vectors it computes dot-product as:

dot← xT y

Else if x and y are complex vectors then it computes dot-product as:

dot← xHy

psb_gedot(x, y, desc_a, info)

dot, x, y Function
Short Precision Real psb gedot
Long Precision Real psb gedot
Short Precision Complex psb gedot
Long Precision Complex psb gedot

Table 2: Data types

Type: Synchronous.

On Entry

x the local portion of global dense matrix x.
Scope: local
Type: required
Intent: in.
Specified as: an array of rank one or two containing numbers of type
specified in Table 2. The rank of x must be the same of y.

y the local portion of global dense matrix y.
Scope: local
Type: required
Intent: in.
Specified as: an array of rank one or two containing numbers of type
specified in Table 2. The rank of y must be the same of x.

desc a contains data structures for communications.
Scope: local
Type: required
Intent: in.
Specified as: a structured data of type psb desc type.

On Return

Function value is the dot product of subvectors x and y.
Scope: global
Specified as: a number of the data type indicated in Table 2.

23

info Error code.
Scope: local
Type: required
Intent: out.
An integer value; 0 means no error has been detected.

24

psb gedots — Generalized Dot Product

This subroutine computes a series of dot products among the columns of two
dense matrices x and y:

res(i)← x(:, i)T y(:, i)

If the matrices are complex, then the usual convention applies, i.e. the conjugate
transpose of x is used. If x and y are of rank one, then res is a scalar, else it is
a rank one array.

call psb_gedots(res, x, y, desc_a, info)

res, x, y Subroutine
Short Precision Real psb gedots
Long Precision Real psb gedots
Short Precision Complex psb gedots
Long Precision Complex psb gedots

Table 3: Data types

Type: Synchronous.

On Entry

x the local portion of global dense matrix x.
Scope: local
Type: required
Intent: in.
Specified as: an array of rank one or two containing numbers of type
specified in Table 3. The rank of x must be the same of y.

y the local portion of global dense matrix y.
Scope: local
Type: required
Intent: in.
Specified as: an array of rank one or two containing numbers of type
specified in Table 3. The rank of y must be the same of x.

desc a contains data structures for communications.
Scope: local
Type: required
Intent: in.
Specified as: a structured data of type psb desc type.

On Return

res is the dot product of subvectors x and y.
Scope: global
Intent: out.
Specified as: a number or a rank-one array of the data type indicated in
Table 2.

25

info Error code.
Scope: local
Type: required
Intent: out.
An integer value; 0 means no error has been detected.

26

psb geamax — Infinity-Norm of Vector

This function computes the infinity-norm of a vector x.
If x is a real vector it computes infinity norm as:

amax← max
i
|xi|

else if x is a complex vector then it computes infinity-norm as:

amax← max
i

(|re(xi)|+ |im(xi)|)

psb_geamax(x, desc_a, info)

amax x Function
Short Precision Real Short Precision Real psb geamax
Long Precision Real Long Precision Real psb geamax
Short Precision Real Short Precision Complex psb geamax
Long Precision Real Long Precision Complex psb geamax

Table 4: Data types

Type: Synchronous.

On Entry

x the local portion of global dense matrix x.
Scope: local
Type: required
Intent: in.
Specified as: a rank one or two array containing numbers of type specified
in Table 4.

desc a contains data structures for communications.
Scope: local
Type: required
Intent: in.
Specified as: a structured data of type psb desc type.

On Return

Function value is the infinity norm of subvector x.
Scope: global
Specified as: a long precision real number.

info Error code.
Scope: local
Type: required
Intent: out.
An integer value; 0 means no error has been detected.

27

psb geamaxs — Generalized Infinity Norm

This subroutine computes a series of infinity norms on the columns of a dense
matrix x:

res(i)← max
k
|x(k, i)|

call psb_geamaxs(res, x, desc_a, info)

res x Subroutine
Short Precision Real Short Precision Real psb geamaxs
Long Precision Real Long Precision Real psb geamaxs
Short Precision Real Short Precision Complex psb geamaxs
Long Precision Real Long Precision Complex psb geamaxs

Table 5: Data types

Type: Synchronous.

On Entry

x the local portion of global dense matrix x.
Scope: local
Type: required
Intent: in.
Specified as: a rank one or two array containing numbers of type specified
in Table 5.

desc a contains data structures for communications.
Scope: local
Type: required
Intent: in.
Specified as: a structured data of type psb desc type.

On Return

res is the infinity norm of the columns of x.
Scope: global
Intent: out.
Specified as: a number or a rank-one array of long precision real numbers.

info Error code.
Scope: local
Type: required
Intent: out.
An integer value; 0 means no error has been detected.

28

psb geasum — 1-Norm of Vector

This function computes the 1-norm of a vector x.
If x is a real vector it computes 1-norm as:

asum← ‖xi‖

else if x is a vector then it computes 1-norm as:

asum← ‖re(x)‖1 + ‖im(x)‖1

psb_geasum(x, desc_a, info)

asum x Function
Short Precision Real Short Precision Real psb geasum
Long Precision Real Long Precision Real psb geasum
Short Precision Real Short Precision Complex psb geasum
Long Precision Real Long Precision Complex psb geasum

Table 6: Data types

Type: Synchronous.

On Entry

x the local portion of global dense matrix x.
Scope: local
Type: required
Intent: in.
Specified as: a rank one or two array containing numbers of type specified
in Table 6.

desc a contains data structures for communications.
Scope: local
Type: required
Intent: in.
Specified as: a structured data of type psb desc type.

On Return

Function value is the 1-norm of vector x.
Scope: global
Specified as: a long precision real number.

info Error code.
Scope: local
Type: required
Intent: out.
An integer value; 0 means no error has been detected.

29

psb geasums — Generalized 1-Norm of Vector

This subroutine computes a series of 1-norms on the columns of a dense matrix
x:

res(i)← max
k
|x(k, i)|

This function computes the 1-norm of a vector x.
If x is a real vector it computes 1-norm as:

res(i)← ‖xi‖

else if x is a complex vector then it computes 1-norm as:

res(i)← ‖re(x)‖1 + ‖im(x)‖1

call psb_geasums(res, x, desc_a, info)

res x Subroutine
Short Precision Real Short Precision Real psb geasums
Long Precision Real Long Precision Real psb geasums
Short Precision Real Short Precision Complex psb geasums
Long Precision Real Long Precision Complex psb geasums

Table 7: Data types

Type: Synchronous.

On Entry

x the local portion of global dense matrix x.
Scope: local
Type: required
Intent: in.
Specified as: a rank one or two array containing numbers of type specified
in Table 7.

desc a contains data structures for communications.
Scope: local
Type: required
Intent: in.
Specified as: a structured data of type psb desc type.

On Return

res contains the 1-norm of (the columns of) x.
Scope: global
Intent: out.
Short as: a long precision real number. Specified as: a long precision real
number.

30

info Error code.
Scope: local
Type: required
Intent: out.
An integer value; 0 means no error has been detected.

31

psb genrm2 — 2-Norm of Vector

This function computes the 2-norm of a vector x.
If x is a double precision real vector it computes 2-norm as:

nrm2←
√
xTx

else if x is double precision complex vector then it computes 2-norm as:

nrm2←
√
xHx

nrm2 x Function
Short Precision Real Short Precision Real psb genrm2
Long Precision Real Long Precision Real psb genrm2
Short Precision Real Short Precision Complex psb genrm2
Long Precision Real Long Precision Complex psb genrm2

Table 8: Data types

psb_genrm2(x, desc_a, info)

Type: Synchronous.

On Entry

x the local portion of global dense matrix x.
Scope: local
Type: required
Intent: in.
Specified as: a rank one or two array containing numbers of type specified
in Table 8.

desc a contains data structures for communications.
Scope: local
Type: required
Intent: in.
Specified as: a structured data of type psb desc type.

On Return

Function Value is the 2-norm of subvector x.
Scope: global
Type: required
Specified as: a long precision real number.

info Error code.
Scope: local
Type: required
Intent: out.
An integer value; 0 means no error has been detected.

32

psb genrm2s — Generalized 2-Norm of Vector

This subroutine computes a series of 2-norms on the columns of a dense matrix
x:

res(i)← ‖x(:, i)‖2

call psb_genrm2s(res, x, desc_a, info)

res x Subroutine
Short Precision Real Short Precision Real psb genrm2s
Long Precision Real Long Precision Real psb genrm2s
Short Precision Real Short Precision Complex psb genrm2s
Long Precision Real Long Precision Complex psb genrm2s

Table 9: Data types

Type: Synchronous.

On Entry

x the local portion of global dense matrix x.
Scope: local
Type: required
Intent: in.
Specified as: a rank one or two array containing numbers of type specified
in Table 9.

desc a contains data structures for communications.
Scope: local
Type: required
Intent: in.
Specified as: a structured data of type psb desc type.

On Return

res contains the 1-norm of (the columns of) x.
Scope: global
Intent: out.
Specified as: a long precision real number.

info Error code.
Scope: local
Type: required
Intent: out.
An integer value; 0 means no error has been detected.

33

psb spnrmi — Infinity Norm of Sparse Matrix

This function computes the infinity-norm of a matrix A:

nrmi← ‖A‖∞

where:

A represents the global matrix A

A Function
Short Precision Real psb spnrmi
Long Precision Real psb spnrmi
Short Precision Complex psb spnrmi
Long Precision Complex psb spnrmi

Table 10: Data types

psb_spnrmi(A, desc_a, info)

Type: Synchronous.

On Entry

a the local portion of the global sparse matrix A.
Scope: local
Type: required
Intent: in.
Specified as: a structured data of type psb spmat type.

desc a contains data structures for communications.
Scope: local
Type: required
Intent: in.
Specified as: a structured data of type psb desc type.

On Return

Function value is the infinity-norm of sparse submatrix A.
Scope: global
Specified as: a long precision real number.

info Error code.
Scope: local
Type: required
Intent: out.
An integer value; 0 means no error has been detected.

34

psb spmm — Sparse Matrix by Dense Matrix Product

This subroutine computes the Sparse Matrix by Dense Matrix Product:

y ← αPrAPcx+ βy (1)

y ← αPrA
TPcx+ βy (2)

y ← αPrA
HPcx+ βy (3)

where:

x is the global dense submatrix x:,:

y is the global dense submatrix y:,:

A is the global sparse submatrix A

Pr, Pc are the permutation matrices.

A, x, y, α, β Subroutine
Short Precision Real psb spmm
Long Precision Real psb spmm
Short Precision Complex psb spmm
Long Precision Complex psb spmm

Table 11: Data types

call psb_spmm(alpha, a, x, beta, y, desc_a, info)
call psb_spmm(alpha, a, x, beta, y,desc_a, info, &

& trans, work)

Type: Synchronous.

On Entry

alpha the scalar α.
Scope: global
Type: required
Intent: in.
Specified as: a number of the data type indicated in Table 11.

a the local portion of the sparse matrix A.
Scope: local
Type: required
Intent: in.
Specified as: a structured data of type psb spmat type.

x the local portion of global dense matrix x.
Scope: local
Type: required
Intent: in.
Specified as: a rank one or two array containing numbers of type specified
in Table 11. The rank of x must be the same of y.

35

beta the scalar β.
Scope: global
Type: required
Intent: in.
Specified as: a number of the data type indicated in Table 11.

y the local portion of global dense matrix y.
Scope: local
Type: required
Intent: inout.
Specified as: a rank one or two array containing numbers of type specified
in Table 11. The rank of y must be the same of x.

desc a contains data structures for communications.
Scope: local
Type: required
Intent: in.
Specified as: a structured data of type psb desc type.

trans indicate what kind of operation to perform.

trans = N the operation is specified by equation 1

trans = T the operation is specified by equation 2

trans = C the operation is specified by equation 3

Scope: global
Type: optional
Intent: in.
Default: trans = N
Specified as: a character variable.

work work array.
Scope: local
Type: optional
Intent: inout.
Specified as: a rank one array of the same type of x and y with the
TARGET attribute.

On Return

y the local portion of result submatrix y.
Scope: local
Type: required
Intent: inout.
Specified as: an array of rank one or two containing numbers of type
specified in Table 11.

info Error code.
Scope: local
Type: required
Intent: out.
An integer value; 0 means no error has been detected.

36

psb spsm — Triangular System Solve

This subroutine computes the Triangular System Solve:

y ← αPrT
−1Pcx+ βy

y ← αDPrT
−1Pcx+ βy

y ← αPrT
−1PcDx+ βy

y ← αPrT
−TPcx+ βy

y ← αDPrT
−TPcx+ βy

y ← αPrT
−TPcDx+ βy

y ← αPrT
−HPcx+ βy

y ← αDPrT
−HPcx+ βy

y ← αPrT
−HPcDx+ βy

where:

x is the global dense submatrix x:,:

y is the global dense submatrix y:,:

T is the global sparse block triangular submatrix T

D is the scaling diagonal matrix.

Pr, Pc are the permutation matrices.

call psb_spsm(alpha, t, x, beta, y, desc_a, info)
call psb_spsm(alpha, t, x, beta, y, desc_a, info,&

& trans, unit, choice, diag, work)

T , x, y, D, α, β Subroutine
Short Precision Real psb spsm
Long Precision Real psb spsm
Short Precision Complex psb spsm
Long Precision Complex psb spsm

Table 12: Data types

Type: Synchronous.

On Entry

alpha the scalar α.
Scope: global
Type: required
Intent: in.
Specified as: a number of the data type indicated in Table 12.

37

t the global portion of the sparse matrix T .
Scope: local
Type: required
Intent: in.
Specified as: a structured data type specified in § 3.

x the local portion of global dense matrix x.
Scope: local
Type: required
Intent: in.
Specified as: a rank one or two array containing numbers of type specified
in Table 12. The rank of x must be the same of y.

beta the scalar β.
Scope: global
Type: required
Intent: in.
Specified as: a number of the data type indicated in Table 12.

y the local portion of global dense matrix y.
Scope: local
Type: required
Intent: inout.
Specified as: a rank one or two array containing numbers of type specified
in Table 12. The rank of y must be the same of x.

desc a contains data structures for communications.
Scope: local
Type: required
Intent: in.
Specified as: a structured data of type psb desc type.

trans specify with unitd the operation to perform.

trans = ’N’ the operation is with no transposed matrix

trans = ’T’ the operation is with transposed matrix.

trans = ’C’ the operation is with conjugate transposed matrix.

Scope: global
Type: optional
Intent: in.
Default: trans = N
Specified as: a character variable.

unitd specify with trans the operation to perform.

unitd = ’U’ the operation is with no scaling

unitd = ’L’ the operation is with left scaling

unitd = ’R’ the operation is with right scaling.

38

Scope: global
Type: optional
Intent: in.
Default: unitd = U
Specified as: a character variable.

choice specifies the update of overlap elements to be performed on exit:

psb_none_

psb_sum_

psb_avg_

psb_square_root_

Scope: global
Type: optional
Intent: in.
Default: psb_avg_
Specified as: an integer variable.

diag the diagonal scaling matrix.
Scope: local
Type: optional
Intent: in.
Default: diag(1) = 1(noscaling)
Specified as: a rank one array containing numbers of the type indicated
in Table 12.

work a work array.
Scope: local
Type: optional
Intent: inout.
Specified as: a rank one array of the same type of x with the TARGET
attribute.

On Return

y the local portion of global dense matrix y.
Scope: local
Type: required
Intent: inout.
Specified as: an array of rank one or two containing numbers of type
specified in Table 12.

info Error code.
Scope: local
Type: required
Intent: out.
An integer value; 0 means no error has been detected.

39

5 Communication routines

The routines in this chapter implement various global communication operators
on vectors associated with a discretization mesh. For auxiliary communication
routines not tied to a discretization space see 6.

40

psb halo — Halo Data Communication

These subroutines gathers the values of the halo elements, and (optionally) scale
the result:

x← αx

where:

x is a global dense submatrix.

α, x Subroutine
Integer psb halo
Short Precision Real psb halo
Long Precision Real psb halo
Short Precision Complex psb halo
Long Precision Complex psb halo

Table 13: Data types

call psb_halo(x, desc_a, info)
call psb_halo(x, desc_a, info, alpha, work, data)

Type: Synchronous.

On Entry

x global dense matrix x.
Scope: local
Type: required
Intent: inout.
Specified as: a rank one or two array with the TARGET attribute con-
taining numbers of type specified in Table 13.

desc a contains data structures for communications.
Scope: local
Type: required
Intent: in.
Specified as: a structured data of type psb desc type.

alpha the scalar α.
Scope: global
Type: optional
Intent: in.
Default: alpha = 1
Specified as: a number of the data type indicated in Table 13.

work the work array.
Scope: local
Type: optional
Intent: inout.
Specified as: a rank one array of the same type of x with the POINTER
attribute.

41

data index list selector.
Scope: global
Type: optional
Specified as: an integer. Values:psb_comm_halo_,psb_comm_mov_, psb_comm_ext_,
default: psb_comm_halo_. Chooses the index list on which to base the
data exchange.

On Return

x global dense result matrix x.
Scope: local
Type: required
Intent: inout.
Returned as: a rank one or two array containing numbers of type specified
in Table 13.

info the local portion of result submatrix y.
Scope: local
Type: required
Intent: out.
An integer value that contains an error code.

1 2 3 4 5 6 7 8

6463626160595857

3225

27 40

P1

P0

Figure 6: Sample discretization mesh.

Usage Example Consider the discretization mesh depicted in fig. 6, parti-
tioned among two processes as shown by the dashed line; the data distribution
is such that each process will own 32 entries in the index space, with a halo
made of 8 entries placed at local indices 33 through 40. If process 0 assigns an
initial value of 1 to its entries in the x vector, and process 1 assigns a value
of 2, then after a call to psb_halo the contents of the local vectors will be the
following:

42

Process 0 Process 1
I GLOB(I) X(I) I GLOB(I) X(I)
1 1 1.0 1 33 2.0
2 2 1.0 2 34 2.0
3 3 1.0 3 35 2.0
4 4 1.0 4 36 2.0
5 5 1.0 5 37 2.0
6 6 1.0 6 38 2.0
7 7 1.0 7 39 2.0
8 8 1.0 8 40 2.0
9 9 1.0 9 41 2.0

10 10 1.0 10 42 2.0
11 11 1.0 11 43 2.0
12 12 1.0 12 44 2.0
13 13 1.0 13 45 2.0
14 14 1.0 14 46 2.0
15 15 1.0 15 47 2.0
16 16 1.0 16 48 2.0
17 17 1.0 17 49 2.0
18 18 1.0 18 50 2.0
19 19 1.0 19 51 2.0
20 20 1.0 20 52 2.0
21 21 1.0 21 53 2.0
22 22 1.0 22 54 2.0
23 23 1.0 23 55 2.0
24 24 1.0 24 56 2.0
25 25 1.0 25 57 2.0
26 26 1.0 26 58 2.0
27 27 1.0 27 59 2.0
28 28 1.0 28 60 2.0
29 29 1.0 29 61 2.0
30 30 1.0 30 62 2.0
31 31 1.0 31 63 2.0
32 32 1.0 32 64 2.0
33 33 2.0 33 25 1.0
34 34 2.0 34 26 1.0
35 35 2.0 35 27 1.0
36 36 2.0 36 28 1.0
37 37 2.0 37 29 1.0
38 38 2.0 38 30 1.0
39 39 2.0 39 31 1.0
40 40 2.0 40 32 1.0

43

psb ovrl — Overlap Update

These subroutines applies an overlap operator to the input vector:

x← Qx

where:

x is the global dense submatrix x

Q is the overlap operator; it is the composition of two operators Pa and PT .

x Subroutine
Short Precision Real psb ovrl
Long Precision Real psb ovrl
Short Precision Complex psb ovrl
Long Precision Complex psb ovrl

Table 14: Data types

call psb_ovrl(x, desc_a, info)
call psb_ovrl(x, desc_a, info, update=update_type, work=work)

Type: Synchronous.

On Entry

x global dense matrix x.
Scope: local
Type: required
Intent: inout.
Specified as: a rank one or two array containing numbers of type specified
in Table 14.

desc a contains data structures for communications.
Scope: local
Type: required
Intent: in.
Specified as: a structured data of type psb desc type.

update Update operator.

update = psb none Do nothing;

update = psb add Sum overlap entries, i.e. apply PT ;

update = psb avg Average overlap entries, i.e. apply PaP
T ;

Scope: global
Intent: in.
Default: update type = psb avg
Scope: global
Specified as: a integer variable.

44

work the work array.
Scope: local
Type: optional
Intent: inout.
Specified as: a one dimensional array of the same type of x.

On Return

x global dense result matrix x.
Scope: local
Type: required
Intent: inout.
Specified as: an array of rank one or two containing numbers of type
specified in Table 14.

info Error code.
Scope: local
Type: required
Intent: out.
An integer value; 0 means no error has been detected.

Notes

1. If there is no overlap in the data distribution associated with the descrip-
tor, no operations are performed;

2. The operator PT performs the reduction sum of overlap elements; it is a
“prolongation” operator PT that replicates overlap elements, accounting
for the physical replication of data;

3. The operator Pa performs a scaling on the overlap elements by the amount
of replication; thus, when combined with the reduction operator, it imple-
ments the average of replicated elements over all of their instances.

Example of use Consider the discretization mesh depicted in fig. 7, parti-
tioned among two processes as shown by the dashed lines, with an overlap of 1
extra layer with respect to the partition of fig. 6; the data distribution is such
that each process will own 40 entries in the index space, with an overlap of 16
entries placed at local indices 25 through 40; the halo will run from local index
41 through local index 48.. If process 0 assigns an initial value of 1 to its entries
in the x vector, and process 1 assigns a value of 2, then after a call to psb_ovrl
with psb_avg_ and a call to psb_halo_ the contents of the local vectors will be
the following (showing a transition among the two subdomains)

45

Process 0 Process 1
I GLOB(I) X(I) I GLOB(I) X(I)
1 1 1.0 1 33 1.5
2 2 1.0 2 34 1.5
3 3 1.0 3 35 1.5
4 4 1.0 4 36 1.5
5 5 1.0 5 37 1.5
6 6 1.0 6 38 1.5
7 7 1.0 7 39 1.5
8 8 1.0 8 40 1.5
9 9 1.0 9 41 2.0

10 10 1.0 10 42 2.0
11 11 1.0 11 43 2.0
12 12 1.0 12 44 2.0
13 13 1.0 13 45 2.0
14 14 1.0 14 46 2.0
15 15 1.0 15 47 2.0
16 16 1.0 16 48 2.0
17 17 1.0 17 49 2.0
18 18 1.0 18 50 2.0
19 19 1.0 19 51 2.0
20 20 1.0 20 52 2.0
21 21 1.0 21 53 2.0
22 22 1.0 22 54 2.0
23 23 1.0 23 55 2.0
24 24 1.0 24 56 2.0
25 25 1.5 25 57 2.0
26 26 1.5 26 58 2.0
27 27 1.5 27 59 2.0
28 28 1.5 28 60 2.0
29 29 1.5 29 61 2.0
30 30 1.5 30 62 2.0
31 31 1.5 31 63 2.0
32 32 1.5 32 64 2.0
33 33 1.5 33 25 1.5
34 34 1.5 34 26 1.5
35 35 1.5 35 27 1.5
36 36 1.5 36 28 1.5
37 37 1.5 37 29 1.5
38 38 1.5 38 30 1.5
39 39 1.5 39 31 1.5
40 40 1.5 40 32 1.5
41 41 2.0 41 17 1.0
42 42 2.0 42 18 1.0
43 43 2.0 43 19 1.0
44 44 2.0 44 20 1.0
45 45 2.0 45 21 1.0
46 46 2.0 46 22 1.0
47 47 2.0 47 23 1.0
48 48 2.0 48 24 1.0

46

1 2 3 4 5 6 7 8

6463626160595857

3225

27 40

P1

P0

Figure 7: Sample discretization mesh.

47

psb gather — Gather Global Dense Matrix

These subroutines collect the portions of global dense matrix distributed over
all process into one single array stored on one process.

glob x← collect(loc xi)

where:

glob x is the global submatrix glob x1:m,1:n

loc xi is the local portion of global dense matrix on process i.

collect is the collect function.

xi, y Subroutine
Integer psb gather
Short Precision Real psb gather
Long Precision Real psb gather
Short Precision Complex psb gather
Long Precision Complex psb gather

Table 15: Data types

call psb_gather(glob_x, loc_x, desc_a, info, root)
call psb_gather(glob_x, loc_x, desc_a, info, root)

Type: Synchronous.

On Entry

loc x the local portion of global dense matrix glob x.
Scope: local
Type: required
Intent: in.
Specified as: a rank one or two array containing numbers of the type
indicated in Table 15.

desc a contains data structures for communications.
Scope: local
Type: required
Intent: in.
Specified as: a structured data of type psb desc type.

root The process that holds the global copy. If root = −1 all the processes will
have a copy of the global vector.
Scope: global
Type: optional
Intent: in.
Specified as: an integer variable −1 ≤ root ≤ np− 1, default −1.

On Return

48

glob x The array where the local parts must be gathered.
Scope: global
Type: required
Intent: out.
Specified as: a rank one or two array.

info Error code.
Scope: local
Type: required
Intent: out.
An integer value; 0 means no error has been detected.

49

psb scatter — Scatter Global Dense Matrix

These subroutines scatters the portions of global dense matrix owned by a pro-
cess to all the processes in the processes grid.

loc xi ← scatter(glob x)

where:

glob x is the global matrix glob x1:m,1:n

loc xi is the local portion of global dense matrix on process i.

scatter is the scatter function.

xi, y Subroutine
Integer psb scatter
Short Precision Real psb scatter
Long Precision Real psb scatter
Short Precision Complex psb scatter
Long Precision Complex psb scatter

Table 16: Data types

call psb_scatter(glob_x, loc_x, desc_a, info, root)
call psb_scatter(glob_x, loc_x, desc_a, info, root)

Type: Synchronous.

On Entry

glob x The array that must be scattered into local pieces.
Scope: global
Type: required
Intent: in.
Specified as: a rank one or two array.

desc a contains data structures for communications.
Scope: local
Type: required
Intent: in.
Specified as: a structured data of type psb desc type.

root The process that holds the global copy. If root = −1 all the processes
have a copy of the global vector.
Scope: global
Type: optional
Intent: in.
Specified as: an integer variable −1 ≤ root ≤ np− 1, default −1.

On Return

50

loc x the local portion of global dense matrix glob x.
Scope: local
Type: required
Intent: out.
Specified as: a rank one or two array containing numbers of the type
indicated in Table 16.

info Error code.
Scope: local
Type: required
Intent: out.
An integer value; 0 means no error has been detected.

51

6 Data management routines

psb cdall — Allocates a communication descriptor

call psb_cdall(icontxt, desc_a, info,mg=mg,parts=parts)
call psb_cdall(icontxt, desc_a, info,vg=vg,[mg=mg,flag=flag])
call psb_cdall(icontxt, desc_a, info,vl=vl,[nl=nl,globalcheck=.true.])
call psb_cdall(icontxt, desc_a, info,nl=nl)
call psb_cdall(icontxt, desc_a, info,mg=mg,repl=.true.)

This subroutine initializes the communication descriptor associated with an
index space. One of the optional arguments parts, vg, vl, nl or repl must be
specified, thereby choosing the specific initialization strategy.

On Entry

Type: Synchronous.

icontxt the communication context.
Scope:global.
Type:required.
Intent: in.
Specified as: an integer value.

vg Data allocation: each index i ∈ {1 . . .mg} is allocated to process vg(i).
Scope:global.
Type:optional.
Intent: in.
Specified as: an integer array.

flag Specifies whether entries in vg are zero- or one-based.
Scope:global.
Type:optional.
Intent: in.
Specified as: an integer value 0, 1, default 0.

mg the (global) number of rows of the problem.
Scope:global.
Type:optional.
Intent: in.
Specified as: an integer value. It is required if parts or repl is specified,
it is optional if vg is specified.

parts the subroutine that defines the partitioning scheme.
Scope:global.
Type:required.
Specified as: a subroutine.

vl Data allocation: the set of global indices vl(1 : nl) belonging to the calling
process.
Scope:local.
Type:optional.
Intent: in.
Specified as: an integer array.

52

nl Data allocation: in a generalized block-row distribution the number of indices
belonging to the current process.
Scope:local.
Type:optional.
Intent: in.
Specified as: an integer value. May be specified together with vl.

repl Data allocation: build a replicated index space (i.e. all processes own all
indices).
Scope:global.
Type:optional.
Intent: in.
Specified as: the logical value .true.

globalcheck Data allocation: do global checks on the local index lists vl
Scope:global.
Type:optional.
Intent: in.
Specified as: a logical value, default: .true.

On Return

desc a the communication descriptor.
Scope:local.
Type:required.
Intent: out.
Specified as: a structured data of type psb desc type.

info Error code.
Scope: local
Type: required
Intent: out.
An integer value; 0 means no error has been detected.

Notes

1. One of the optional arguments parts, vg, vl, nl or repl must be specified,
thereby choosing the initialization strategy as follows:

parts In this case we have a subroutine specifying the mapping between
global indices and process/local index pairs. If this optional argument
is specified, then it is mandatory to specify the argument mg as well.
The subroutine must conform to the following interface:

interface
subroutine psb_parts(glob_index,mg,np,pv,nv)
integer, intent (in) :: glob_index,np,mg
integer, intent (out) :: nv, pv(*)

end subroutine psb_parts
end interface

The input arguments are:

glob index The global index to be mapped;

53

np The number of processes in the mapping;
mg The total number of global rows in the mapping;

The output arguments are:

nv The number of entries in pv;
pv A vector containing the indices of the processes to which the

global index should be assigend; each entry must satisfy 0 ≤
pv(i) < np; if nv > 1 we have an index assigned to multiple
processes, i.e. we have an overlap among the subdomains.

vg In this case the association between an index and a process is spec-
ified via an integer vector vg(1:mg); each index i ∈ {1 . . .mg} is
assigned to process vg(i). The vector vg must be identical on all
calling processes; its entries may have the ranges (0 . . . np − 1) or
(1 . . . np) according to the value of flag. The size mg may be spec-
ified via the optional argument mg; the default is to use the entire
vector vg, thus having mg=size(vg).

vl In this case we are specifying the list of indices vl(1:nl) assigned to
the current process; thus, the global problem size mg is given by
the range of the aggregate of the individual vectors vl specified in
the calling processes. The size may be specified via the optional
argument nl; the default is to use the entire vector vl, thus having
nl=size(vl). If globalcheck=.true. the subroutine will check how
many times each entry in the global index space (1 . . .mg) is specified
in the input lists vl, thus allowing for the presence of overlap in the
input, and checking for “orphan” indices. If globalcheck=.false.,
the subroutine will not check for overlap, and may be significantly
faster, but the user is implicitly guaranteeing that there are neither
orphan nor overlap indices.

nl If this argument is specified alone (i.e. without vl) the result is a gen-
eralized row-block distribution in which each process I gets assigned
a consecutive chunk of NI = nl global indices.

repl This arguments specifies to replicate all indices on all processes. This
is a special purpose data allocation that is useful in the construction
of some multilevel preconditioners.

2. On exit from this routine the descriptor is in the build state.

3. Calling the routine with vg or parts implies that every process will scan
the entire index space to figure out the local indices.

4. Overlapped indices are possible with both parts and vl invocations.

5. When the subroutine is invoked with vl in conjunction with globalcheck=.true.,
it will perform a scan of the index space to search for overlap or orphan
indices.

6. When the subroutine is invoked with vl in conjunction with globalcheck=.false.,
no index space scan will take place. Thus it is the responsibility of the
user to make sure that the indices specified in vl have neither orphans
nor overlaps; if this assumption fails, results will be unpredictable.

54

7. Orphan and overlap indices are impossible by construction when the sub-
routine is invoked with nl (alone), or vg.

55

psb cdins — Communication descriptor insert routine

call psb_cdins(nz, ia, ja, desc_a, info)

This subroutine examines the edges of the graph associated with the dis-
cretization mesh (and isomorphic to the sparsity pattern of a linear system
coefficient matrix), storing them as necessary into the communication descrip-
tor.

Type: Asynchronous.

On Entry

nz the number of points being inserted.
Scope: local.
Type: required.
Intent: in.
Specified as: an integer value.

ia the indices of the starting vertex of the edges being inserted.
Scope: local.
Type: required.
Intent: in.
Specified as: an integer array of length nz.

ja the indices of the end vertex of the edges being inserted.
Scope: local.
Type: required.
Intent: in.
Specified as: an integer array of length nz.

On Return

desc a the updated communication descriptor.
Scope:local.
Type:required.
Intent: inout.
Specified as: a structured data of type psb desc type.

info Error code.
Scope: local
Type: required
Intent: out.
An integer value; 0 means no error has been detected.

Notes

1. This routine may only be called if the descriptor is in the build state;

2. This routine automatically ignores edges that do not insist on the current
process, i.e. edges for which neither the starting nor the end vertex belong
to the current process.

56

psb cdasb — Communication descriptor assembly routine

call psb_cdasb(desc_a, info)

Type: Synchronous.

On Entry

desc a the communication descriptor.
Scope:local.
Type:required.
Intent: inout.
Specified as: a structured data of type psb desc type.

On Return

desc a the communication descriptor.
Scope:local.
Type:required.
Intent: inout.
Specified as: a structured data of type psb desc type.

info Error code.
Scope: local
Type: required
Intent: out.
An integer value; 0 means no error has been detected.

Notes

1. On exit from this routine the descriptor is in the assembled state.

57

psb cdcpy — Copies a communication descriptor

call psb_cdcpy(desc_in, desc_out, info)

Type: Asynchronous.

On Entry

desc in the communication descriptor.
Scope:local.
Type:required.
Intent: in.
Specified as: a structured data of type psb desc type.

On Return

desc out the communication descriptor copy.
Scope:local.
Type:required.
Intent: out.
Specified as: a structured data of type psb desc type.

info Error code.
Scope: local
Type: required
Intent: out.
An integer value; 0 means no error has been detected.

58

psb cdfree — Frees a communication descriptor

call psb_cdfree(desc_a, info)

Type: Synchronous.

On Entry

desc a the communication descriptor to be freed.
Scope:local.
Type:required.
Intent: inout.
Specified as: a structured data of type psb desc type.

On Return

info Error code.
Scope: local
Type: required
Intent: out.
An integer value; 0 means no error has been detected.

59

psb cdbldext — Build an extended communication descrip-
tor

call psb_cdbldext(a,desc_a,nl,desc_out, info, extype)

This subroutine builds an extended communication descriptor, based on the
input descriptor desc_a and on the stencil specified through the input sparse
matrix a.

Type: Synchronous.

On Entry

a A sparse matrix Scope:local.
Type:required.
Intent: in.
Specified as: a structured data type.

desc a the communication descriptor.
Scope:local.
Type:required.
Intent: in.
Specified as: a structured data of type psb spmat type.

nl the number of additional layers desired.
Scope:global.
Type:required.
Intent: in.
Specified as: an integer value nl ≥ 0.

extype the kind of estension required.
Scope:global.
Type:optional .
Intent: in.
Specified as: an integer value psb_ovt_xhal_, psb_ovt_asov_, default:
psb_ovt_xhal_

On Return

desc out the extended communication descriptor.
Scope:local.
Type:required.
Intent: inout.
Specified as: a structured data of type psb desc type.

info Error code.
Scope: local
Type: required
Intent: out.
An integer value; 0 means no error has been detected.

Notes

60

1. Specifying psb_ovt_xhal_ for the extype argument the user will obtain a
descriptor for a domain partition in which the additional layers are fetched
as part of an (extended) halo; however the index-to-process mapping is
identical to that of the base descriptor;

2. Specifying psb_ovt_asov_ for the extype argument the user will obtain
a descriptor with an overlapped decomposition: the additional layer is
aggregated to the local subdomain (and thus is an overlap), and a new
halo extending beyond the last additional layer is formed.

61

psb spall — Allocates a sparse matrix

call psb_spall(a, desc_a, info, nnz)

Type: Synchronous.

On Entry

desc a the communication descriptor.
Scope:local.
Type:required.
Intent: in.
Specified as: a structured data of type psb desc type.

nnz An estimate of the number of nonzeroes in the local part of the assembled
matrix.
Scope: global.
Type: optional.
Intent: in.
Specified as: an integer value.

On Return

a the matrix to be allocated.
Scope:local
Type:required
Intent: out.
Specified as: a structured data of type psb spmat type.

info Error code.
Scope: local
Type: required
Intent: out.
An integer value; 0 means no error has been detected.

Notes

1. On exit from this routine the sparse matrix is in the build state.

2. The descriptor may be in either the build or assembled state.

3. Providing a good estimate for the number of nonzeroes nnz in the assem-
bled matrix may substantially improve performance in the matrix build
phase, as it will reduce or eliminate the need for (potentially multiple)
data reallocations.

62

psb spins — Insert a cloud of elements into a sparse matrix

call psb_spins(nz, ia, ja, val, a, desc_a, info)

Type: Asynchronous.

On Entry

nz the number of elements to be inserted.
Scope:local.
Type:required.
Intent: in.
Specified as: an integer scalar.

ia the row indices of the elements to be inserted.
Scope:local.
Type:required.
Intent: in.
Specified as: an integer array of size nz.

ja the column indices of the elements to be inserted.
Scope:local.
Type:required.
Intent: in.
Specified as: an integer array of size nz.

val the elements to be inserted.
Scope:local.
Type:required.
Intent: in.
Specified as: an array of size nz. Must be of the same type and kind of
the aspk component of the sparse matrix a.

desc a The communication descriptor.
Scope: local.
Type: required.
Intent: inout.
Specified as: a variable of type psb desc type.

On Return

a the matrix into which elements will be inserted.
Scope:local
Type:required
Intent: inout.
Specified as: a structured data of type psb spmat type.

desc a The communication descriptor.
Scope: local.
Type: required.
Intent: inout.
Specified as: a variable of type psb desc type.

63

info Error code.
Scope: local
Type: required
Intent: out.
An integer value; 0 means no error has been detected.

Notes

1. On entry to this routine the descriptor may be in either the build or
assembled state.

2. On entry to this routine the sparse matrix may be in either the build or
update state.

3. If the descriptor is in the build state, then the sparse matrix must also be in
the build state; the action of the routine is to (implicitly) call psb_cdins
to add entries to the sparsity pattern; each sparse matrix entry implic-
itly defines a graph edge, that is passed to the descriptor routine for the
appropriate processing.

4. Any coefficients from matrix rows not assigned to the calling process are
silently ignored;

5. If the descriptor is in the assembled state, then any entries in the sparse
matrix that would generate additional communication requirements will
be ignored;

6. If the matrix is in the update state, any entries in positions that were not
present in the original matrix will be ignored.

64

psb spasb — Sparse matrix assembly routine

call psb_spasb(a, desc_a, info, afmt, upd, dupl)

Type: Synchronous.

On Entry

desc a the communication descriptor.
Scope:local.
Type:required.
Intent: in.
Specified as: a structured data of type psb desc type.

afmt the storage format for the sparse matrix.
Scope: global.
Type: optional.
Intent: in.
Specified as: an array of characters. Defalt: ’CSR’.

upd Provide for updates to the matrix coefficients.
Scope: global.
Type: optional.
Intent: in.
Specified as: integer, possible values: psb_upd_srch_, psb_upd_perm_

dupl How to handle duplicate coefficients.
Scope: global.
Type: optional.
Intent: in.
Specified as: integer, possible values: psb_dupl_ovwrt_, psb_dupl_add_,
psb_dupl_err_.

On Return

a the matrix to be assembled.
Scope:local
Type:required
Intent: inout.
Specified as: a structured data of type psb spmat type.

info Error code.
Scope: local
Type: required
Intent: out.
An integer value; 0 means no error has been detected.

Notes

1. On entry to this routine the descriptor must be in the assembled state,
i.e. psb_cdasb must already have been called.

2. The sparse matrix may be in either the build or update state;

65

3. Duplicate entries are detected and handled in both build and update state,
with the exception of the error action that is only taken in the build state,
i.e. on the first assembly;

4. If the update choice is psb_upd_perm_, then subsequent calls to psb_spins
to update the matrix must be arranged in such a way as to produce exactly
the same sequence of coefficient values as encountered at the first assembly;

5. On exit from this routine the matrix is in the assembled state, and thus
is suitable for the computational routines.

66

psb spfree — Frees a sparse matrix

call psb_spfree(a, desc_a, info)

Type: Synchronous.

On Entry

a the matrix to be freed.
Scope:local
Type:required
Intent: inout.
Specified as: a structured data of type psb spmat type.

desc a the communication descriptor.
Scope:local.
Type:required.
Intent: in.
Specified as: a structured data of type psb desc type.

On Return

info Error code.
Scope: local
Type: required
Intent: out.
An integer value; 0 means no error has been detected.

67

psb sprn — Reinit sparse matrix structure for psblas rou-
tines.

call psb_sprn(a, decsc_a, info, clear)

Type: Synchronous.

On Entry

a the matrix to be reinitialized.
Scope:local
Type:required
Intent: inout.
Specified as: a structured data of type psb spmat type.

desc a the communication descriptor.
Scope:local.
Type:required.
Intent: in.
Specified as: a structured data of type psb desc type.

clear Choose whether to zero out matrix coefficients
Scope:local.
Type:optional.
Intent: in.
Default: true.

On Return

info Error code.
Scope: local
Type: required
Intent: out.
An integer value; 0 means no error has been detected.

Notes

1. On exit from this routine the sparse matrix is in the update state.

68

psb geall — Allocates a dense matrix

call psb_geall(x, desc_a, info, n, lb)

Type: Synchronous.

On Entry

desc a The communication descriptor.
Scope: local
Type: required
Intent: in.
Specified as: a variable of type psb desc type.

n The number of columns of the dense matrix to be allocated.
Scope: local
Type: optional
Intent: in.
Specified as: Integer scalar, default 1. It is not a valid argument if x is a
rank-1 array.

lb The lower bound for the column index range of the dense matrix to be
allocated.
Scope: local
Type: optional
Intent: in.
Specified as: Integer scalar, default 1. It is not a valid argument if x is a
rank-1 array.

On Return

x The dense matrix to be allocated.
Scope: local
Type: required
Intent: out.
Specified as: a rank one or two array with the ALLOCATABLE attribute,
of type real, complex or integer.

info Error code.
Scope: local
Type: required
Intent: out.
An integer value; 0 means no error has been detected.

69

psb geins — Dense matrix insertion routine

call psb_geins(m, irw, val, x, desc_a, info,dupl)

Type: Asynchronous.

On Entry

m Number of rows in val to be inserted.
Scope:local.
Type:required.
Intent: in.
Specified as: an integer value.

irw Indices of the rows to be inserted. Specifically, row i of val will be in-
serted into the local row corresponding to the global row index irw(i).
Scope:local.
Type:required.
Intent: in.
Specified as: an integer array.

val the dense submatrix to be inserted.
Scope:local.
Type:required.
Intent: in.
Specified as: a rank 1 or 2 array. Specified as: an integer value.

desc a the communication descriptor.
Scope:local.
Type:required.
Intent: in.
Specified as: a structured data of type psb desc type.

dupl How to handle duplicate coefficients.
Scope: global.
Type: optional.
Intent: in.
Specified as: integer, possible values: psb_dupl_ovwrt_, psb_dupl_add_.

On Return

x the output dense matrix.
Scope: local
Type: required
Intent: inout.
Specified as: a rank one or two array with the ALLOCATABLE attribute,
of type real, complex or integer.

info Error code.
Scope: local
Type: required
Intent: out.
An integer value; 0 means no error has been detected.

70

Notes

1. Dense vectors/matrices do not have an associated state;

2. Duplicate entries are either overwritten or added, there is no provision for
raising an error condition.

71

psb geasb — Assembly a dense matrix

call psb_geasb(x, desc_a, info)

Type: Synchronous.

On Entry

desc a The communication descriptor.
Scope: local
Type: required
Intent: in.
Specified as: a variable of type psb desc type.

On Return

x The dense matrix to be assembled.
Scope: local
Type: required
Intent: inout.
Specified as: a rank one or two array with the ALLOCATABLE attribute,
of type real, complex or integer.

info Error code.
Scope: local
Type: required
Intent: out.
An integer value; 0 means no error has been detected.

72

psb gefree — Frees a dense matrix

call psb_gefree(x, desc_a, info)

Type: Synchronous.

On Entry

x The dense matrix to be freed.
Scope: local
Type: required
Intent: inout.
Specified as: a rank one or two array with the ALLOCATABLE attribute,
of type real, complex or integer.

desc a The communication descriptor.
Scope: local
Type: required
Intent: in.
Specified as: a variable of type psb desc type.

On Return

info Error code.
Scope: local
Type: required
Intent: out.
An integer value; 0 means no error has been detected.

73

psb gelp — Applies a left permutation to a dense matrix

call psb_gelp(trans, iperm, x, info)

Type: Asynchronous.

On Entry

trans A character that specifies whether to permute A or AT .
Scope: local
Type: required
Intent: in.
Specified as: a single character with value ’N’ for A or ’T’ for AT .

iperm An integer array containing permutation information.
Scope: local
Type: required
Intent: in.
Specified as: an integer one-dimensional array.

x The dense matrix to be permuted.
Scope: local
Type: required
Intent: inout.
Specified as: a one or two dimensional array.

On Return

info Error code.
Scope: local
Type: required
Intent: out.
An integer value; 0 means no error has been detected.

74

psb glob to loc — Global to local indices convertion

call psb_glob_to_loc(x, y, desc_a, info, iact,owned)
call psb_glob_to_loc(x, desc_a, info, iact,owned)

Type: Asynchronous.

On Entry

x An integer vector of indices to be converted.
Scope: local
Type: required
Intent: in, inout.
Specified as: a rank one integer array.

desc a the communication descriptor.
Scope:local.
Type:required.
Intent: in.
Specified as: a structured data of type psb desc type.

iact specifies action to be taken in case of range errors. Scope: global
Type: optional
Intent: in.
Specified as: a character variable Ignore, Warning or Abort, default Ignore.

owned Specfies valid range of input Scope: global
Type: optional
Intent: in.
If true, then only indices strictly owned by the current process are consid-
ered valid, if false then halo indices are also accepted. Default: false.

On Return

x If y is not present, then x is overwritten with the translated integer indices.
Scope: global
Type: required
Intent: inout.
Specified as: a rank one integer array.

y If y is present, then y is overwritten with the translated integer indices, and
x is left unchanged. Scope: global
Type: optional
Intent: out.
Specified as: a rank one integer array.

info Error code.
Scope: local
Type: required
Intent: out.
An integer value; 0 means no error has been detected.

Notes

75

1. If an input index is out of range, then the corresponding output index is
set to a negative number;

2. The default Ignore means that the negative output is the only action
taken on an out-of-range input.

76

psb loc to glob — Local to global indices conversion

call psb_loc_to_glob(x, y, desc_a, info, iact)
call psb_loc_to_glob(x, desc_a, info, iact)

Type: Asynchronous.

On Entry

x An integer vector of indices to be converted.
Scope: local
Type: required
Intent: in, inout.
Specified as: a rank one integer array.

desc a the communication descriptor.
Scope:local.
Type:required.
Intent: in.
Specified as: a structured data of type psb desc type.

iact specifies action to be taken in case of range errors. Scope: global
Type: optional
Intent: in.
Specified as: a character variable Ignore, Warning or Abort, default Ignore.

On Return

x If y is not present, then x is overwritten with the translated integer indices.
Scope: global
Type: required
Intent: inout.
Specified as: a rank one integer array.

y If y is not present, then y is overwritten with the translated integer indices,
and x is left unchanged. Scope: global
Type: optional
Intent: out.
Specified as: a rank one integer array.

info Error code.
Scope: local
Type: required
Intent: out.
An integer value; 0 means no error has been detected.

77

psb is owned

call psb_is_owned(x, desc_a)

Type: Asynchronous.

On Entry

x Integer index.
Scope: local
Type: required
Intent: in.
Specified as: a scalar integer.

desc a the communication descriptor.
Scope:local.
Type:required.
Intent: in.
Specified as: a structured data of type psb desc type.

On Return

Function value A logical mask which is true if x is owned by the current pro-
cess Scope: local
Type: required
Intent: out.

Notes

1. This routine returns a .true. value for an index that is strictly owned by
the current process, excluding the halo indices

78

psb owned index

call psb_owned_index(y, x, desc_a, info)

Type: Asynchronous.

On Entry

x Integer indices.
Scope: local
Type: required
Intent: in, inout.
Specified as: a scalar or a rank one integer array.

desc a the communication descriptor.
Scope:local.
Type:required.
Intent: in.
Specified as: a structured data of type psb desc type.

iact specifies action to be taken in case of range errors. Scope: global
Type: optional
Intent: in.
Specified as: a character variable Ignore, Warning or Abort, default Ignore.

On Return

y A logical mask which is true for all corresponding entries of x that are owned
by the current process Scope: local
Type: required
Intent: out.
Specified as: a scalar or rank one logical array.

info Error code.
Scope: local
Type: required
Intent: out.
An integer value; 0 means no error has been detected.

Notes

1. This routine returns a .true. value for those indices that are strictly
owned by the current process, excluding the halo indices

79

psb is local

call psb_is_local(x, desc_a)

Type: Asynchronous.

On Entry

x Integer index.
Scope: local
Type: required
Intent: in.
Specified as: a scalar integer.

desc a the communication descriptor.
Scope:local.
Type:required.
Intent: in.
Specified as: a structured data of type psb desc type.

On Return

Function value A logical mask which is true if x is local to the current process
Scope: local
Type: required
Intent: out.

Notes

1. This routine returns a .true. value for an index that is local to the current
process, including the halo indices

80

psb local index

call psb_local_index(y, x, desc_a, info)

Type: Asynchronous.

On Entry

x Integer indices.
Scope: local
Type: required
Intent: in, inout.
Specified as: a scalar or a rank one integer array.

desc a the communication descriptor.
Scope:local.
Type:required.
Intent: in.
Specified as: a structured data of type psb desc type.

iact specifies action to be taken in case of range errors. Scope: global
Type: optional
Intent: in.
Specified as: a character variable Ignore, Warning or Abort, default Ignore.

On Return

y A logical mask which is true for all corresponding entries of x that are local
to the current process Scope: local
Type: required
Intent: out.
Specified as: a scalar or rank one logical array.

info Error code.
Scope: local
Type: required
Intent: out.
An integer value; 0 means no error has been detected.

Notes

1. This routine returns a .true. value for those indices that are local to the
current process, including the halo indices.

81

psb get boundary — Extract list of boundary elements

call psb_get_boundary(bndel, desc, info)

Type: Asynchronous.

On Entry

desc the communication descriptor.
Scope:local.
Type:required.
Intent: in.
Specified as: a structured data of type psb desc type.

On Return

bndel The list of boundary elements on the calling process, in local numbering.
Scope: local
Type: required
Intent: out.
Specified as: a rank one array with the ALLOCATABLE attribute, of
type integer.

info Error code.
Scope: local
Type: required
Intent: out.
An integer value; 0 means no error has been detected.

Notes

1. If there are no boundary elements (i.e., if the local part of the connectivity
graph is self-contained) the output vector is set to the “not allocated”
state.

2. Otherwise the size of bndel will be exactly equal to the number of bound-
ary elements.

82

psb get overlap — Extract list of overlap elements

call psb_get_overlap(ovrel, desc, info)

Type: Asynchronous.

On Entry

desc the communication descriptor.
Scope:local.
Type:required.
Intent: in.
Specified as: a structured data of type psb desc type.

On Return

ovrel The list of overlap elements on the calling process, in local numbering.
Scope: local
Type: required
Intent: out.
Specified as: a rank one array with the ALLOCATABLE attribute, of
type integer.

info Error code.
Scope: local
Type: required
Intent: out.
An integer value; 0 means no error has been detected.

Notes

1. If there are no overlap elements the output vector is set to the “not allo-
cated” state.

2. Otherwise the size of ovrel will be exactly equal to the number of overlap
elements.

83

psb sp getrow — Extract row(s) from a sparse matrix

call psb_sp_getrow(row, a, nz, ia, ja, val, info, &
& append, nzin, lrw)

Type: Asynchronous.

On Entry

row The (first) row to be extracted.
Scope:local
Type:required
Intent: in.
Specified as: an integer > 0.

a the matrix from which to get rows.
Scope:local
Type:required
Intent: in.
Specified as: a structured data of type psb spmat type.

append Whether to append or overwrite existing output.
Scope:local
Type:optional
Intent: in.
Specified as: a logical value default: false (overwrite).

nzin Input size to be appended to.
Scope:local
Type:optional
Intent: in.
Specified as: an integer > 0. When append is true, specifies how many
entries in the output vectors are already filled.

lrw The last row to be extracted.
Scope:local
Type:optional
Intent: in.
Specified as: an integer > 0, default: row.

On Return

nz the number of elements returned by this call.
Scope:local.
Type:required.
Intent: out.
Returned as: an integer scalar.

ia the row indices.
Scope:local.
Type:required.
Intent: inout.
Specified as: an integer array with the ALLOCATABLE attribute.

84

ja the column indices of the elements to be inserted.
Scope:local.
Type:required.
Intent: inout.
Specified as: an integer array with the ALLOCATABLE attribute.

val the elements to be inserted.
Scope:local.
Type:required.
Intent: inout.
Specified as: a real array with the ALLOCATABLE attribute.

info Error code.
Scope: local
Type: required
Intent: out.
An integer value; 0 means no error has been detected.

Notes

1. The output nz is always the size of the output generated by the current
call; thus, if append=.true., the total output size will be nzin+nz, with
the newly extracted coefficients stored in entries nzin+1:nzin+nz of the
array arguments;

2. When append=.true. the output arrays are reallocated as necessary;

3. The row and column indices are returned in the local numbering scheme; if
the global numbering is desired, the user may employ the psb_loc_to_glob
routine on the output.

85

psb sizeof — Memory occupation

This function computes the memory occupation of a PSBLAS object.

isz = psb_sizeof(a)
isz = psb_sizeof(desc_a)
isz = psb_sizeof(prec)

Type: Asynchronous.

On Entry

a A sparse matrix A.
Scope: local
Type: required
Intent: in.
Specified as: a structured data of type psb spmat type.

desc a Communication descriptor.
Scope: local
Type: required
Intent: in.
Specified as: a structured data of type psb desc type.

prec Scope: local
Type: required
Intent: in.
Specified as: a preconditioner data structure psb prec type.

On Return

Function value The memory occupation of the object specified in the calling
sequence, in bytes.
Scope: local
Returned as: an integer(psb_long_int_k_) number.

86

Sorting utilities

psb msort — Sorting by the Merge-sort algorithm
psb qsort — Sorting by the Quicksort algorithm
psb hsort — Sorting by the Heapsort algorithm

call psb_msort(x,ix,dir,flag)
call psb_qsort(x,ix,dir,flag)
call psb_hsort(x,ix,dir,flag)

These serial routines sort a sequence X into ascending or descending order.
The argument meaning is identical for the three calls; the only difference is the
algorithm used to accomplish the task (see Usage Notes below).

Type: Asynchronous.

On Entry

x The sequence to be sorted.
Type:required.
Specified as: an integer, real or complex array of rank 1.

ix A vector of indices.
Type:optional.
Specified as: an integer array of (at least) the same size as X.

dir The desired ordering.
Type:optional.
Specified as: an integer value:

Integer and real data: psb_sort_up_, psb_sort_down_, psb_asort_up_,
psb_asort_down_; default psb_sort_up_.

Complex data: psb_lsort_up_, psb_lsort_down_, psb_asort_up_, psb_asort_down_;
default psb_lsort_up_.

flag Whether to keep the original values in IX.
Type:optional.
Specified as: an integer value psb_sort_ovw_idx_ or psb_sort_keep_idx_;
default psb_sort_ovw_idx_.

On Return

x The sequence of values, in the chosen ordering.
Type:required.
Specified as: an integer, real or complex array of rank 1.

ix A vector of indices.
Type: Optional
An integer array of rank 1, whose entries are moved to the same position
as the corresponding entries in x.

87

Notes

1. For integer or real data the sorting can be performed in the up/down
direction, on the natural or absolute values;

2. For complex data the sorting can be done in a lexicographic order (i.e.:
sort on the real part with ties broken according to the imaginary part) or
on the absolute values;

3. The routines return the items in the chosen ordering; the output difference
is the handling of ties (i.e. items with an equal value) in the original input.
With the merge-sort algorithm ties are preserved in the same relative
order as they had in the original sequence, while this is not guaranteed
for quicksort or heapsort;

4. If flag = psb sort ovw idx then the entries in ix(1 : n) where n is the size
of x are initialized to ix(i) ← i; thus, upon return from the subroutine,
for each index i we have in ix(i) the position that the item x(i) occupied
in the original data sequence;

5. If flag = psb sort keep idx the routine will assume that the entries in
ix(:) have already been initialized by the user;

6. The three sorting algorithms have a similar O(n log n) expected running
time; in the average case quicksort will be the fastest and merge-sort the
slowest. However note that:

(a) The worst case running time for quicksort is O(n2); the algorithm
implemented here follows the well-known median-of-three heuristics,
but the worst case may still apply;

(b) The worst case running time for merge-sort and heap-sort isO(n log n)
as the average case;

(c) The merge-sort algorithm is implemented to take advantage of sub-
sequences that may be already in the desired ordering prior to the
subroutine call; this situation is relatively common when dealing with
groups of indices of sparse matrix entries, thus merge-sort is often the
preferred choice when a sorting is needed by other routines in the li-
brary.

88

7 Parallel environment routines

89

psb init — Initializes PSBLAS parallel environment

call psb_init(icontxt, np, basectxt, ids)

This subroutine initializes the PSBLAS parallel environment, defining a vir-
tual parallel machine.

Type: Synchronous.

On Entry

np Number of processes in the PSBLAS virtual parallel machine.
Scope: global.
Type: optional.
Intent: in.
Specified as: an integer value. Default: use all available processes.

basectxt the initial communication context. The new context will be defined
from the processes participating in the initial one.
Scope: global.
Type: optional.
Intent: in.
Specified as: an integer value. Default: use MPI COMM WORLD.

ids Identities of the processes to use for the new context; the argument is
ignored when np is not specified. This allows the processes in the new
environment to be in an order different from the original one.
Scope: global.
Type: optional.
Intent: in.
Specified as: an integer array. Default: use the indices (0 . . . np− 1).

On Return

icontxt the communication context identifying the virtual parallel machine.
Note that this is always a duplicate of basectxt, so that library commu-
nications are completely separated from other communication operations.
Scope: global.
Type: required.
Intent: out.
Specified as: an integer variable.

Notes

1. A call to this routine must precede any other PSBLAS call.

2. It is an error to specify a value for np greater than the number of processes
available in the underlying base parallel environment.

90

psb info — Return information about PSBLAS parallel en-
vironment

call psb_info(icontxt, iam, np)

This subroutine returns information about the PSBLAS parallel environ-
ment, defining a virtual parallel machine.

Type: Asynchronous.

On Entry

icontxt the communication context identifying the virtual parallel machine.
Scope: global.
Type: required.
Intent: in.
Specified as: an integer variable.

On Return

iam Identifier of current process in the PSBLAS virtual parallel machine.
Scope: local.
Type: required.
Intent: out.
Specified as: an integer value. −1 ≤ iam ≤ np− 1

np Number of processes in the PSBLAS virtual parallel machine.
Scope: global.
Type: required.
Intent: out.
Specified as: an integer variable.

Notes

1. For processes in the virtual parallel machine the identifier will satisfy
0 ≤ iam ≤ np− 1;

2. If the user has requested on psb_init a number of processes less than
the total available in the parallel execution environment, the remaining
processes will have on return iam = −1; the only call involving icontxt
that any such process may execute is to psb_exit.

91

psb exit — Exit from PSBLAS parallel environment

call psb_exit(icontxt)
call psb_exit(icontxt,close)

This subroutine exits from the PSBLAS parallel virtual machine.

Type: Synchronous.

On Entry

icontxt the communication context identifying the virtual parallel machine.
Scope: global.
Type: required.
Intent: in.
Specified as: an integer variable.

close Whether to close all data structures related to the virtual parallel ma-
chine, besides those associated with icontxt.
Scope: global.
Type: optional.
Intent: in.
Specified as: a logical variable, default value: true.

Notes

1. This routine may be called even if a previous call to psb_info has returned
with iam = −1; indeed, it it is the only routine that may be called with
argument icontxt in this situation.

2. A call to this routine with close=.true. implies a call to MPI_Finalize,
after which no parallel routine may be called.

3. If the user whishes to use multiple communication contexts in the same
program, or to enter and exit multiple times into the parallel environ-
ment, this routine may be called to selectively close the contexts with
close=.false., while on the last call it should be called with close=.true.
to shutdown in a clean way the entire parallel environment.

92

psb get mpicomm — Get the MPI communicator

call psb_get_mpicomm(icontxt, icomm)

This subroutine returns the MPI communicator associated with a PSBLAS
context

Type: Asynchronous.

On Entry

icontxt the communication context identifying the virtual parallel machine.
Scope: global.
Type: required.
Intent: in.
Specified as: an integer variable.

On Return

icomm The MPI communicator associated with the PSBLAS virtual parallel
machine.
Scope: global.
Type: required.
Intent: out.

93

psb get rank — Get the MPI rank

call psb_get_rank(rank, icontxt, id)

This subroutine returns the MPI rank of the PSBLAS process id

Type: Asynchronous.

On Entry

icontxt the communication context identifying the virtual parallel machine.
Scope: global.
Type: required.
Intent: in.
Specified as: an integer variable.

id Identifier of a process in the PSBLAS virtual parallel machine.
Scope: local.
Type: required.
Intent: in.
Specified as: an integer value. 0 ≤ id ≤ np− 1

On Return

rank The MPI rank associated with the PSBLAS process id.
Scope: local.
Type: required.
Intent: out.

94

psb wtime — Wall clock timing

time = psb_wtime()

This function returns a wall clock timer. The resolution of the timer is
dependent on the underlying parallel environment implementation.

Type: Asynchronous.

On Exit

Function value the elapsed time in seconds.
Returned as: a real(psb_dpk_) variable.

95

psb barrier — Sinchronization point parallel environment

call psb_barrier(icontxt)

This subroutine acts as an explicit synchronization point for the PSBLAS
parallel virtual machine.

Type: Synchronous.

On Entry

icontxt the communication context identifying the virtual parallel machine.
Scope: global.
Type: required.
Intent: in.
Specified as: an integer variable.

96

psb abort — Abort a computation

call psb_abort(icontxt)

This subroutine aborts computation on the parallel virtual machine.

Type: Asynchronous.

On Entry

icontxt the communication context identifying the virtual parallel machine.
Scope: global.
Type: required.
Intent: in.
Specified as: an integer variable.

97

psb bcast — Broadcast data

call psb_bcast(icontxt, dat, root)

This subroutine implements a broadcast operation based on the underlying
communication library.

Type: Synchronous.

On Entry

icontxt the communication context identifying the virtual parallel machine.
Scope: global.
Type: required.
Intent: in.
Specified as: an integer variable.

dat On the root process, the data to be broadcast.
Scope: global.
Type: required.
Intent: inout.
Specified as: an integer, real or complex variable, which may be a scalar,
or a rank 1 or 2 array, or a character or logical variable, which may be
a scalar or rank 1 array. Type, kind, rank and size must agree on all
processes.

root Root process holding data to be broadcast.
Scope: global.
Type: optional.
Intent: in.
Specified as: an integer value 0 <= root <= np− 1, default 0

On Return

dat On processes other than root, the data to be broadcast.
Scope: global.
Type: required.
Intent: inout.
Specified as: an integer, real or complex variable, which may be a scalar,
or a rank 1 or 2 array, or a character or logical scalar. Type, kind, rank
and size must agree on all processes.

98

psb sum — Global sum

call psb_sum(icontxt, dat, root)

This subroutine implements a sum reduction operation based on the under-
lying communication library.

Type: Synchronous.

On Entry

icontxt the communication context identifying the virtual parallel machine.
Scope: global.
Type: required.
Intent: in.
Specified as: an integer variable.

dat The local contribution to the global sum.
Scope: global.
Type: required.
Intent: inout.
Specified as: an integer, real or complex variable, which may be a scalar,
or a rank 1 or 2 array. Type, kind, rank and size must agree on all
processes.

root Process to hold the final sum, or −1 to make it available on all processes.
Scope: global.
Type: optional.
Intent: in.
Specified as: an integer value −1 <= root <= np− 1, default -1.

On Return

dat On destination process(es), the result of the sum operation.
Scope: global.
Type: required.
Intent: inout.
Specified as: an integer, real or complex variable, which may be a scalar,
or a rank 1 or 2 array.
Type, kind, rank and size must agree on all processes.

Notes

1. The dat argument is both input and output, and its value may be changed
even on processes different from the final result destination.

2. The dat argument may also be a long integer scalar.

99

psb max — Global maximum

call psb_max(icontxt, dat, root)

This subroutine implements a maximum valuereduction operation based on
the underlying communication library.

Type: Synchronous.

On Entry

icontxt the communication context identifying the virtual parallel machine.
Scope: global.
Type: required.
Intent: in.
Specified as: an integer variable.

dat The local contribution to the global maximum.
Scope: local.
Type: required.
Intent: inout.
Specified as: an integer or real variable, which may be a scalar, or a rank
1 or 2 array. Type, kind, rank and size must agree on all processes.

root Process to hold the final maximum, or −1 to make it available on all pro-
cesses.
Scope: global.
Type: optional.
Intent: in.
Specified as: an integer value −1 <= root <= np− 1, default -1.

On Return

dat On destination process(es), the result of the maximum operation.
Scope: global.
Type: required.
Intent: in.
Specified as: an integer or real variable, which may be a scalar, or a rank
1 or 2 array. Type, kind, rank and size must agree on all processes.

Notes

1. The dat argument is both input and output, and its value may be changed
even on processes different from the final result destination.

2. The dat argument may also be a long integer scalar.

100

psb min — Global minimum

call psb_min(icontxt, dat, root)

This subroutine implements a minimum value reduction operation based on
the underlying communication library.

Type: Synchronous.

On Entry

icontxt the communication context identifying the virtual parallel machine.
Scope: global.
Type: required.
Intent: in.
Specified as: an integer variable.

dat The local contribution to the global minimum.
Scope: local.
Type: required.
Intent: inout.
Specified as: an integer or real variable, which may be a scalar, or a rank
1 or 2 array. Type, kind, rank and size must agree on all processes.

root Process to hold the final value, or −1 to make it available on all processes.
Scope: global.
Type: optional.
Intent: in.
Specified as: an integer value −1 <= root <= np− 1, default -1.

On Return

dat On destination process(es), the result of the minimum operation.
Scope: global.
Type: required.
Intent: inout.
Specified as: an integer or real variable, which may be a scalar, or a rank
1 or 2 array.
Type, kind, rank and size must agree on all processes.

Notes

1. The dat argument is both input and output, and its value may be changed
even on processes different from the final result destination.

2. The dat argument may also be a long integer scalar.

101

psb amx — Global maximum absolute value

call psb_amx(icontxt, dat, root)

This subroutine implements a maximum absolute value reduction operation
based on the underlying communication library.

Type: Synchronous.

On Entry

icontxt the communication context identifying the virtual parallel machine.
Scope: global.
Type: required.
Intent: in.
Specified as: an integer variable.

dat The local contribution to the global maximum.
Scope: local.
Type: required.
Intent: inout.
Specified as: an integer, real or complex variable, which may be a scalar,
or a rank 1 or 2 array. Type, kind, rank and size must agree on all
processes.

root Process to hold the final value, or −1 to make it available on all processes.
Scope: global.
Type: optional.
Intent: in.
Specified as: an integer value −1 <= root <= np− 1, default -1.

On Return

dat On destination process(es), the result of the maximum operation.
Scope: global.
Type: required.
Intent: inout.
Specified as: an integer, real or complex variable, which may be a scalar,
or a rank 1 or 2 array. Type, kind, rank and size must agree on all
processes.

Notes

1. The dat argument is both input and output, and its value may be changed
even on processes different from the final result destination.

2. The dat argument may also be a long integer scalar.

102

psb amn — Global minimum absolute value

call psb_amn(icontxt, dat, root)

This subroutine implements a minimum absolute value reduction operation
based on the underlying communication library.

Type: Synchronous.

On Entry

icontxt the communication context identifying the virtual parallel machine.
Scope: global.
Type: required.
Intent: in.
Specified as: an integer variable.

dat The local contribution to the global minimum.
Scope: local.
Type: required.
Intent: inout.
Specified as: an integer, real or complex variable, which may be a scalar,
or a rank 1 or 2 array. Type, kind, rank and size must agree on all
processes.

root Process to hold the final value, or −1 to make it available on all processes.
Scope: global.
Type: optional.
Intent: in.
Specified as: an integer value −1 <= root <= np− 1, default -1.

On Return

dat On destination process(es), the result of the minimum operation.
Scope: global.
Type: required.
Intent: inout.
Specified as: an integer, real or complex variable, which may be a scalar,
or a rank 1 or 2 array.
Type, kind, rank and size must agree on all processes.

Notes

1. The dat argument is both input and output, and its value may be changed
even on processes different from the final result destination.

2. The dat argument may also be a long integer scalar.

103

psb snd — Send data

call psb_snd(icontxt, dat, dst, m)

This subroutine sends a packet of data to a destination.

Type: Synchronous: see usage notes.

On Entry

icontxt the communication context identifying the virtual parallel machine.
Scope: global.
Type: required.
Intent: in.
Specified as: an integer variable.

dat The data to be sent.
Scope: local.
Type: required.
Intent: in.
Specified as: an integer, real or complex variable, which may be a scalar,
or a rank 1 or 2 array, or a character or logical scalar. Type, kind and
rank must agree on sender and receiver process; if m is not specified, size
must agree as well.

dst Destination process.
Scope: global.
Type: required.
Intent: in.
Specified as: an integer value 0 <= dst <= np− 1.

m Number of rows.
Scope: global.
Type: Optional.
Intent: in.
Specified as: an integer value 0 <= m <= size(dat, 1).
When dat is a rank 2 array, specifies the number of rows to be sent inde-
pendently of the leading dimension size(dat, 1); must have the same value
on sending and receiving processes.

On Return

Notes

1. This subroutine implies a synchronization, but only between the calling
process and the destination process dst.

104

psb rcv — Receive data

call psb_rcv(icontxt, dat, src, m)

This subroutine receives a packet of data to a destination.

Type: Synchronous: see usage notes.

On Entry

icontxt the communication context identifying the virtual parallel machine.
Scope: global.
Type: required.
Intent: in.
Specified as: an integer variable.

src Source process.
Scope: global.
Type: required.
Intent: in.
Specified as: an integer value 0 <= src <= np− 1.

m Number of rows.
Scope: global.
Type: Optional.
Intent: in.
Specified as: an integer value 0 <= m <= size(dat, 1).
When dat is a rank 2 array, specifies the number of rows to be sent inde-
pendently of the leading dimension size(dat, 1); must have the same value
on sending and receiving processes.

On Return

dat The data to be received.
Scope: local.
Type: required.
Intent: inout.
Specified as: an integer, real or complex variable, which may be a scalar,
or a rank 1 or 2 array, or a character or logical scalar. Type, kind and
rank must agree on sender and receiver process; if m is not specified, size
must agree as well.

Notes

1. This subroutine implies a synchronization, but only between the calling
process and the source process src.

105

8 Error handling

The PSBLAS library error handling policy has been completely rewritten in
version 2.0. The idea behind the design of this new error handling strategy
is to keep error messages on a stack allowing the user to trace back up to
the point where the first error message has been generated. Every routine in
the PSBLAS-2.0 library has, as last non-optional argument, an integer info
variable; whenever, inside the routine, an error is detected, this variable is set
to a value corresponding to a specific error code. Then this error code is also
pushed on the error stack and then either control is returned to the caller routine
or the execution is aborted, depending on the users choice. At the time when
the execution is aborted, an error message is printed on standard output with
a level of verbosity than can be chosen by the user. If the execution is not
aborted, then, the caller routine checks the value returned in the info variable
and, if not zero, an error condition is raised. This process continues on all the
levels of nested calls until the level where the user decides to abort the program
execution.

Figure 8 shows the layout of a generic psb_foo routine with respect to the
PSBLAS-2.0 error handling policy. It is possible to see how, whenever an error
condition is detected, the info variable is set to the corresponding error code
which is, then, pushed on top of the stack by means of the psb_errpush. An
error condition may be directly detected inside a routine or indirectly checking
the error code returned returned by a called routine. Whenever an error is
encountered, after it has been pushed on stack, the program execution skips
to a point where the error condition is handled; the error condition is handled
either by returning control to the caller routine or by calling the psb_error
routine which prints the content of the error stack and aborts the program
execution, according to the choice made by the user with psb_set_erraction.
The default is to print the error and terminate the program, but the user may
choose to handle the error explicitly.

Figure 9 reports a sample error message generated by the PSBLAS-2.0 li-
brary. This error has been generated by the fact that the user has chosen the
invalid “FOO” storage format to represent the sparse matrix. From this error
message it is possible to see that the error has been detected inside the psb_cest
subroutine called by psb_spasb ... by process 0 (i.e. the root process).

106

subroutine psb_foo(some args, info)

...

if(error detected) then

info=errcode1

call psb_errpush(’psb_foo’, errcode1)

goto 9999

end if

...

call psb_bar(some args, info)

if(info .ne. zero) then

info=errcode2

call psb_errpush(’psb_foo’, errcode2)

goto 9999

end if

...

9999 continue

if (err_act .eq. act_abort) then

call psb_error(icontxt)

return

else

return

end if

end subroutine psb_foo

Figure 8: The layout of a generic psb foo routine with respect to PSBLAS-2.0
error handling policy.

==
Process: 0. PSBLAS Error (4010) in subroutine: df_sample
Error from call to subroutine mat dist
==
Process: 0. PSBLAS Error (4010) in subroutine: mat_distv
Error from call to subroutine psb_spasb
==
Process: 0. PSBLAS Error (4010) in subroutine: psb_spasb
Error from call to subroutine psb_cest
==
Process: 0. PSBLAS Error (136) in subroutine: psb_cest
Format FOO is unknown
==
Aborting...

Figure 9: A sample PSBLAS-2.0 error message. Process 0 detected an error
condition inside the psb cest subroutine

107

psb errpush — Pushes an error code onto the error stack

call psb_errpush(err_c, r_name, i_err, a_err)

Type: Asynchronous.

On Entry

err c the error code
Scope: local
Type: required
Intent: in.
Specified as: an integer.

r name the soutine where the error has been caught.
Scope: local
Type: required
Intent: in.
Specified as: a string.

i err addional info for error code
Scope: local
Type: optional
Specified as: an integer array

a err addional info for error code
Scope: local
Type: optional
Specified as: a string.

108

psb error — Prints the error stack content and aborts ex-
ecution

call psb_error(icontxt)

Type: Asynchronous.

On Entry

icontxt the communication context.
Scope: global
Type: optional
Intent: in.
Specified as: an integer.

109

psb set errverbosity — Sets the verbosity of error mes-
sages.

call psb_set_errverbosity(v)

Type: Asynchronous.

On Entry

v the verbosity level
Scope: global
Type: required
Intent: in.
Specified as: an integer.

110

psb set erraction — Set the type of action to be taken upon
error condition.

call psb_set_erraction(err_act)

Type: Asynchronous.

On Entry

err act the type of action.
Scope: global
Type: required
Intent: in.
Specified as: an integer. Possible values: psb_act_ret, psb_act_abort.

call psb_errcomm(icontxt, err)

111

9 Utilities

We have some utitlities available for input and output of sparsematrices; the
interfaces to these routines are available in the module psb_util_mod.

112

hb read — Read a sparse matrix from a file in the Harwell–
Boeing format

call hb_read(a, iret, iunit, filename, b, mtitle)

Type: Asynchronous.

On Entry

filename The name of the file to be read.
Type:optional.
Specified as: a character variable containing a valid file name, or -, in
which case the default input unit 5 (i.e. standard input in Unix jargon) is
used. Default: -.

iunit The Fortran file unit number.
Type:optional.
Specified as: an integer value. Only meaningful if filename is not -.

On Return

a the sparse matrix read from file.
Type:required.
Specified as: a structured data of type psb spmat type.

b Rigth hand side(s).
Type: Optional
An array of type real or complex, rank 2 and having the ALLOCATABLE
attribute; will be allocated and filled in if the input file contains a right
hand side, otherwise will be left in the UNALLOCATED state.

mtitle Matrix title.
Type: Optional
A charachter variable of length 72 holding a copy of the matrix title as
specified by the Harwell-Boeing format and contained in the input file.

iret Error code.
Type: required
An integer value; 0 means no error has been detected.

113

hb write — Write a sparse matrix to a file in the Harwell–
Boeing format

call hb_write(a, iret, iunit, filename, key, rhs, mtitle)

Type: Asynchronous.

On Entry

a the sparse matrix to be written.
Type:required.
Specified as: a structured data of type psb spmat type.

b Rigth hand side.
Type: Optional
An array of type real or complex, rank 1 and having the ALLOCATABLE
attribute; will be allocated and filled in if the input file contains a right
hand side.

filename The name of the file to be written to.
Type:optional.
Specified as: a character variable containing a valid file name, or -, in
which case the default output unit 6 (i.e. standard output in Unix jargon)
is used. Default: -.

iunit The Fortran file unit number.
Type:optional.
Specified as: an integer value. Only meaningful if filename is not -.

key Matrix key.
Type: Optional
A charachter variable of length 8 holding the matrix key as specified by
the Harwell-Boeing format and to be written to file.

mtitle Matrix title.
Type: Optional
A charachter variable of length 72 holding the matrix title as specified by
the Harwell-Boeing format and to be written to file.

On Return

iret Error code.
Type: required
An integer value; 0 means no error has been detected.

114

mm mat read — Read a sparse matrix from a file in the
MatrixMarket format

call mm_mat_read(a, iret, iunit, filename)

Type: Asynchronous.

On Entry

filename The name of the file to be read.
Type:optional.
Specified as: a character variable containing a valid file name, or -, in
which case the default input unit 5 (i.e. standard input in Unix jargon) is
used. Default: -.

iunit The Fortran file unit number.
Type:optional.
Specified as: an integer value. Only meaningful if filename is not -.

On Return

a the sparse matrix read from file.
Type:required.
Specified as: a structured data of type psb spmat type.

iret Error code.
Type: required
An integer value; 0 means no error has been detected.

115

mm vet read — Read a dense vector from a file in the Ma-
trixMarket format

call mm_vet_read(b, iret, iunit, filename)

Type: Asynchronous.

On Entry

filename The name of the file to be read.
Type:optional.
Specified as: a character variable containing a valid file name, or -, in
which case the default input unit 5 (i.e. standard input in Unix jargon) is
used. Default: -.

iunit The Fortran file unit number.
Type:optional.
Specified as: an integer value. Only meaningful if filename is not -.

On Return

b Rigth hand side(s).
Type: required
An array of type real or complex, rank 2 and having the ALLOCATABLE
attribute; will be allocated and filled in if the input file contains a right
hand side, otherwise will be left in the UNALLOCATED state.

iret Error code.
Type: required
An integer value; 0 means no error has been detected.

116

mm mat write — Write a sparse matrix to a file in the
MatrixMarket format

call mm_mat_write(a, mtitle, iret, iunit, filename)

Type: Asynchronous.

On Entry

a the sparse matrix to be written.
Type:required.
Specified as: a structured data of type psb spmat type.

mtitle Matrix title.
Type: required
A charachter variable holding a descriptive title for the matrix to be writ-
ten to file.

filename The name of the file to be written to.
Type:optional.
Specified as: a character variable containing a valid file name, or -, in
which case the default output unit 6 (i.e. standard output in Unix jargon)
is used. Default: -.

iunit The Fortran file unit number.
Type:optional.
Specified as: an integer value. Only meaningful if filename is not -.

On Return

iret Error code.
Type: required
An integer value; 0 means no error has been detected.

117

10 Preconditioner routines

The base PSBLAS library contains the implementation of two simple precondi-
tioning techniques:

• Diagonal Scaling

• Block Jacobi with ILU(0) factorization

The supporting data type and subroutine interfaces are defined in the module
psb_prec_mod.

118

psb precinit — Initialize a preconditioner

call psb_precinit(prec, ptype, info)

Type: Asynchronous.

On Entry

ptype the type of preconditioner. Scope: global
Type: required
Intent: in.
Specified as: a character string, see usage notes.

On Exit

prec Scope: local
Type: required
Intent: inout.
Specified as: a preconditioner data structure psb prec type.

info Scope: global
Type: required
Intent: out.
Error code: if no error, 0 is returned.

Notes Legal inputs to this subroutine are interpreted depending on the ptype
string as follows3:

NONE No preconditioning, i.e. the preconditioner is just a copy operator.

DIAG Diagonal scaling; each entry of the input vector is multiplied by the
reciprocal of the sum of the absolute values of the coefficients in the cor-
responding row of matrix A;

BJAC Precondition by a factorization of the block-diagonal of matrix A, where
block boundaries are determined by the data allocation boundaries for
each process; requires no communication. Only the incomplete factoriza-
tion ILU(0) is currently implemented.

3The string is case-insensitive

119

psb precbld — Builds a preconditioner

call psb_precbld(a, desc_a, prec, info)

Type: Synchronous.

On Entry

a the system sparse matrix. Scope: local
Type: required
Intent: in, target.
Specified as: a sparse matrix data structure psb spmat type.

prec the preconditioner.
Scope: local
Type: required
Intent: inout.
Specified as: an already initialized precondtioner data structure psb prec type

desc a the problem communication descriptor. Scope: local
Type: required
Intent: in, target.
Specified as: a communication descriptor data structure psb desc type.

On Return

prec the preconditioner.
Scope: local
Type: required
Intent: inout.
Specified as: a precondtioner data structure psb prec type

info Error code.
Scope: local
Type: required
Intent: out.
An integer value; 0 means no error has been detected.

120

psb precaply — Preconditioner application routine

call psb_precaply(prec,x,y,desc_a,info,trans,work)
call psb_precaply(prec,x,desc_a,info,trans)

Type: Synchronous.

On Entry

prec the preconditioner. Scope: local
Type: required
Intent: in.
Specified as: a preconditioner data structure psb prec type.

x the source vector. Scope: local
Type: required
Intent: inout.
Specified as: a double precision array.

desc a the problem communication descriptor. Scope: local
Type: required
Intent: in.
Specified as: a communication data structure psb desc type.

trans Scope:
Type: optional
Intent: in.
Specified as: a character.

work an optional work space Scope: local
Type: optional
Intent: inout.
Specified as: a double precision array.

On Return

y the destination vector. Scope: local
Type: required
Intent: inout.
Specified as: a double precision array.

info Error code.
Scope: local
Type: required
Intent: out.
An integer value; 0 means no error has been detected.

121

psb precdescr — Prints a description of current precondi-
tioner

call psb_precdescr(prec)
call psb_precdescr(prec, iout)

Type: Asynchronous.

On Entry

prec the preconditioner. Scope: local
Type: required
Intent: in.
Specified as: a preconditioner data structure psb prec type.

iout output unit. Scope: local
Type: optiona
Intent: in.
Specified as: an integer number.

122

11 Iterative Methods

In this chapter we provide routines for preconditioners and iterative meth-
ods. The interfaces for Krylov subspace methods are available in the module
psb_krylov_mod.

123

psb krylov — Krylov Methods Driver Routine

This subroutine is a driver that provides a general interface for all the Krylov-
Subspace family methods implemented in PSBLAS version 2.

The stopping criterion is the normwise backward error, in the infinity norm,
i.e. the iteration is stopped when

err =
‖ri‖

(‖A‖‖xi‖+ ‖b‖)
< eps

or the 2-norm residual reduction

err =
‖ri‖
‖b‖2

< eps

according to the value passed through the istop argument (see later). In the
above formulae, xi is the tentative solution and ri = b−Axi the corresponding
residual at the i-th iteration.

call psb_krylov(method,a,prec,b,x,eps,desc_a,info,&
& itmax,iter,err,itrace,irst,istop,cond)

Type: Synchronous.

On Entry

method a string that defines the iterative method to be used. Supported values
are:

CG: the Conjugate Gradient method;
CGS: the Conjugate Gradient Stabilized method;
BICG: the Bi-Conjugate Gradient method;
BICGSTAB: the Bi-Conjugate Gradient Stabilized method;
BICGSTABL: the Bi-Conjugate Gradient Stabilized method with restart-

ing;
RGMRES: the Generalized Minimal Residual method with restarting.

a the local portion of global sparse matrix A.
Scope: local
Type: required
Intent: in.
Specified as: a structured data of type psb spmat type.

prec The data structure containing the preconditioner.
Scope: local
Type: required
Intent: in.
Specified as: a structured data of type psb prec type.

b The RHS vector.
Scope: local
Type: required
Intent: in.
Specified as: a rank one array.

124

x The initial guess.
Scope: local
Type: required
Intent: inout.
Specified as: a rank one array.

eps The stopping tolerance.
Scope: global
Type: required
Intent: in.
Specified as: a real number.

desc a contains data structures for communications.
Scope: local
Type: required
Intent: in.
Specified as: a structured data of type psb desc type.

itmax The maximum number of iterations to perform.
Scope: global
Type: optional
Intent: in.
Default: itmax = 1000.
Specified as: an integer variable itmax ≥ 1.

itrace If> 0 print out an informational message about convergence every itrace
iterations.
Scope: global
Type: optional
Intent: in.

irst An integer specifying the restart parameter.
Scope: global
Type: optional.
Intent: in.
Values: irst > 0. This is employed for the BiCGSTABL or RGMRES
methods, otherwise it is ignored.

istop An integer specifying the stopping criterion.
Scope: global
Type: optional.
Intent: in.
Values: 1: use the normwise backward error, 2: use the scaled 2-norm of
the residual. Default: 2.

On Return

x The computed solution.
Scope: local
Type: required
Intent: inout.
Specified as: a rank one array.

125

iter The number of iterations performed.
Scope: global
Type: optional
Intent: out.
Returned as: an integer variable.

err The convergence estimate on exit.
Scope: global
Type: optional
Intent: out.
Returned as: a real number.

cond An estimate of the condition number of matrix A; only available with the
CG method.
Scope: global
Type: optional
Intent: out.
Returned as: a real number.

info Error code.
Scope: local
Type: required
Intent: out.
An integer value; 0 means no error has been detected.

126

References

[1] D. Barbieri, V. Cardellini, S. Filippone and D. Rouson Design Patterns
for Scientific Computations on Sparse Matrices, HPSS 2011, Algorithms
and Programming Tools for Next-Generation High-Performance Scientific
Software, Bordeaux, Sep. 2011

[2] G. Bella, S. Filippone, A. De Maio and M. Testa, A Simulation Model for
Forest Fires, in J. Dongarra, K. Madsen, J. Wasniewski, editors, Proceed-
ings of PARA 04 Workshop on State of the Art in Scientific Computing,
pp. 546–553, Lecture Notes in Computer Science, Springer, 2005.

[3] A. Buttari, D. di Serafino, P. D’Ambra, S. Filippone,2LEV-D2P4: a pack-
age of high-performance preconditioners, Applicable Algebra in Engineer-
ing, Communications and Computing, Volume 18, Number 3, May, 2007,
pp. 223-239

[4] P. D’Ambra, S. Filippone, D. Di Serafino On the Development of
PSBLAS-based Parallel Two-level Schwarz Preconditioners Applied Nu-
merical Mathematics, Elsevier Science, Volume 57, Issues 11-12, November-
December 2007, Pages 1181-1196.

[5] Dongarra, J. J., DuCroz, J., Hammarling, S. and Hanson, R., An Ex-
tended Set of Fortran Basic Linear Algebra Subprograms, ACM Trans.
Math. Softw. vol. 14, 1–17, 1988.

[6] Dongarra, J., DuCroz, J., Hammarling, S. and Duff, I., A Set of level 3
Basic Linear Algebra Subprograms, ACM Trans. Math. Softw. vol. 16, 1–
17, 1990.

[7] J. J. Dongarra and R. C. Whaley, A User’s Guide to the BLACS v. 1.1, La-
pack Working Note 94, Tech. Rep. UT-CS-95-281, University of Tennessee,
March 1995 (updated May 1997).

[8] I. Duff, M. Marrone, G. Radicati and C. Vittoli, Level 3 Basic Linear
Algebra Subprograms for Sparse Matrices: a User Level Interface, ACM
Transactions on Mathematical Software, 23(3), pp. 379–401, 1997.

[9] I. Duff, M. Heroux and R. Pozo, An Overview of the Sparse Basic Linear
Algebra Subprograms: the New Standard from the BLAS Technical Forum,
ACM Transactions on Mathematical Software, 28(2), pp. 239–267, 2002.

[10] S. Filippone and M. Colajanni, PSBLAS: A Library for Parallel Linear
Algebra Computation on Sparse Matrices, ACM Transactions on Mathe-
matical Software, 26(4), pp. 527–550, 2000.

[11] S. Filippone and A. Buttari, Object-Oriented Techniques for Sparse Ma-
trix Computations in Fortran 2003, ACM Transactions on Mathematical
Software, to appear.

[12] S. Filippone, P. D’Ambra, M. Colajanni, Using a Parallel Library of Sparse
Linear Algebra in a Fluid Dynamics Applications Code on Linux Clusters,
in G. Joubert, A. Murli, F. Peters, M. Vanneschi, editors, Parallel Com-
puting - Advances & Current Issues, pp. 441–448, Imperial College Press,
2002.

127

[13] Karypis, G. and Kumar, V., METIS: Unstructured Graph Partitioning
and Sparse Matrix Ordering System. Minneapolis, MN 55455: University
of Minnesota, Department of Computer Science, 1995. Internet Address:
http://www.cs.umn.edu/~karypis.

[14] Lawson, C., Hanson, R., Kincaid, D. and Krogh, F., Basic Linear Algebra
Subprograms for Fortran usage, ACM Trans. Math. Softw. vol. 5, 38–329,
1979.

[15] Machiels, L. and Deville, M. Fortran 90: An entry to object-oriented pro-
gramming for the solution of partial differential equations. ACM Trans.
Math. Softw. vol. 23, 32–49.

[16] Metcalf, M., Reid, J. and Cohen, M. Fortran 95/2003 explained. Oxford
University Press, 2004.

[17] Rouson, D.W.I., Xia, J., Xu, X.: Scientific Software Design: The Object-
Oriented Way. Cambridge University Press (2011)

[18] M. Snir, S. Otto, S. Huss-Lederman, D. Walker and J. Dongarra, MPI:
The Complete Reference. Volume 1 - The MPI Core, second edition, MIT
Press, 1998.

128

	PSBLAS-v3.0-beta User's Guide
	1 Introduction
	2 General overview
	2.1 Basic Nomenclature
	2.2 Library contents
	2.3 Application structure
	2.4 Programming model

	3 Data Structures
	3.1 Descriptor data structure
	3.1.1 Named Constants

	3.2 Sparse Matrix data structure
	3.2.1 Named Constants

	3.3 Dense Vector Data Structure
	3.4 Preconditioner data structure
	3.5 Data structure query routines
	get_local_rows
	get_local_cols
	get_global_rows
	get_global_cols
	get_context
	psb_cd_get_large_threshold
	psb_cd_set_large_threshold
	get_nrows
	get_ncols
	get_nnzeros

	4 Computational routines
	psb_geaxpby
	psb_gedot
	psb_gedots
	psb_geamax
	psb_geamaxs
	psb_geasum
	psb_geasums
	psb_geasums
	psb_genrm2s
	psb_spnrmi
	psb_spmm
	psb_spsm

	5 Communication routines
	psb_halo
	psb_ovrl
	psb_gather
	psb_scatter

	6 Data management routines
	psb_cdall
	psb_cdins
	psb_cdasb
	psb_cdcpy
	psb_cdfree
	psb_cdbldext
	psb_spall
	psb_spins
	psb_spasb
	psb_spfree
	psb_sprn
	psb_geall
	psb_geins
	psb_geasb
	psb_gefree
	psb_gelp
	psb_glob_to_loc
	psb_loc_to_glob
	psb_is_owned
	psb_owned_index
	psb_is_local
	psb_local_index
	psb_get_boundary
	psb_get_overlap
	psb_sp_getrow
	psb_sizeof
	Sorting utilities

	7 Parallel environment routines
	psb_init
	psb_info
	psb_exit
	psb_get_mpicomm
	psb_get_rank
	psb_wtime
	psb_barrier
	psb_abort
	psb_bcast
	psb_sum
	psb_max
	psb_min
	psb_amx
	psb_amn
	psb_snd
	psb_rcv

	8 Error handling
	psb_errpush
	psb_error
	psb_set_errverbosity
	psb_set_erraction

	9 Utilities
	hb_read
	hb_write
	mm_mat_read
	mm_vet_read
	mm_mat_write

	10 Preconditioner routines
	psb_precinit
	psb_precbld
	psb_precaply
	psb_precdescr

	11 Iterative Methods
	krylov

