! ! Parallel Sparse BLAS version 3.5 ! (C) Copyright 2006-2018 ! Salvatore Filippone ! Alfredo Buttari ! ! Redistribution and use in source and binary forms, with or without ! modification, are permitted provided that the following conditions ! are met: ! 1. Redistributions of source code must retain the above copyright ! notice, this list of conditions and the following disclaimer. ! 2. Redistributions in binary form must reproduce the above copyright ! notice, this list of conditions, and the following disclaimer in the ! documentation and/or other materials provided with the distribution. ! 3. The name of the PSBLAS group or the names of its contributors may ! not be used to endorse or promote products derived from this ! software without specific written permission. ! ! THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ! ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED ! TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR ! PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE PSBLAS GROUP OR ITS CONTRIBUTORS ! BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR ! CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF ! SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS ! INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN ! CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ! ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE ! POSSIBILITY OF SUCH DAMAGE. ! ! module psi_z_collective_mod use psi_penv_mod use psb_desc_const_mod interface psb_gather module procedure psb_zgather_s, psb_zgather_v end interface psb_gather interface psb_gatherv module procedure psb_zgatherv_v end interface interface psb_sum module procedure psb_zsums, psb_zsumv, psb_zsumm end interface interface psb_amx module procedure psb_zamxs, psb_zamxv, psb_zamxm end interface interface psb_amn module procedure psb_zamns, psb_zamnv, psb_zamnm end interface interface psb_bcast module procedure psb_zbcasts, psb_zbcastv, psb_zbcastm end interface psb_bcast interface psb_scan_sum module procedure psb_zscan_sums, psb_zscan_sumv end interface psb_scan_sum interface psb_exscan_sum module procedure psb_zexscan_sums, psb_zexscan_sumv end interface psb_exscan_sum interface psb_simple_a2av module procedure psb_z_simple_a2av end interface psb_simple_a2av interface psb_simple_triad_a2av module procedure psb_z_e_simple_triad_a2av, psb_z_m_simple_triad_a2av end interface psb_simple_triad_a2av contains ! !!!!!!!!!!!!!!!!!!!!!! ! ! Reduction operations ! ! !!!!!!!!!!!!!!!!!!!!!! ! ! gather ! subroutine psb_zgather_s(ctxt,dat,resv,root,mode,request) #ifdef MPI_MOD use mpi #endif implicit none #ifdef MPI_H include 'mpif.h' #endif type(psb_ctxt_type), intent(in) :: ctxt complex(psb_dpk_), intent(inout) :: dat, resv(:) integer(psb_mpk_), intent(in), optional :: root integer(psb_ipk_), intent(in), optional :: mode integer(psb_mpk_), intent(inout), optional :: request integer(psb_mpk_) :: root_ integer(psb_mpk_) :: iam, np, info integer(psb_mpk_) :: icomm integer(psb_mpk_) :: status(mpi_status_size) logical :: collective_start, collective_end, collective_sync #if defined(SERIAL_MPI) resv(1) = dat #else call psb_info(ctxt,iam,np) if (present(root)) then root_ = root else root_ = -1 endif icomm = psb_get_mpi_comm(ctxt) if (present(mode)) then collective_sync = .false. collective_start = iand(mode,psb_collective_start_) /= 0 collective_end = iand(mode,psb_collective_end_) /= 0 if (.not.present(request)) then collective_sync = .true. collective_start = .false. collective_end = .false. end if else collective_sync = .true. collective_start = .false. collective_end = .false. end if if (collective_sync) then if (root_ == -1) then call mpi_allgather(dat,1,psb_mpi_c_dpk_,& & resv,1,psb_mpi_c_dpk_,icomm,info) else call mpi_gather(dat,1,psb_mpi_c_dpk_,& & resv,1,psb_mpi_c_dpk_,root_,icomm,info) endif else if (collective_start) then if (root_ == -1) then call mpi_iallgather(dat,1,psb_mpi_c_dpk_,& & resv,1,psb_mpi_c_dpk_,icomm,request,info) else call mpi_igather(dat,1,psb_mpi_c_dpk_,& & resv,1,psb_mpi_c_dpk_,root_,icomm,request,info) endif else if (collective_end) then call mpi_wait(request,status,info) end if end if #endif end subroutine psb_zgather_s subroutine psb_zgather_v(ctxt,dat,resv,root,mode,request) #ifdef MPI_MOD use mpi #endif implicit none #ifdef MPI_H include 'mpif.h' #endif type(psb_ctxt_type), intent(in) :: ctxt complex(psb_dpk_), intent(inout) :: dat(:), resv(:) integer(psb_mpk_), intent(in), optional :: root integer(psb_ipk_), intent(in), optional :: mode integer(psb_mpk_), intent(inout), optional :: request integer(psb_mpk_) :: root_ integer(psb_mpk_) :: iam, np, info integer(psb_mpk_) :: icomm integer(psb_mpk_) :: status(mpi_status_size) logical :: collective_start, collective_end, collective_sync #if defined(SERIAL_MPI) resv(:) = dat(:) #else call psb_info(ctxt,iam,np) if (present(root)) then root_ = root else root_ = -1 endif icomm = psb_get_mpi_comm(ctxt) if (present(mode)) then collective_sync = .false. collective_start = iand(mode,psb_collective_start_) /= 0 collective_end = iand(mode,psb_collective_end_) /= 0 if (.not.present(request)) then collective_sync = .true. collective_start = .false. collective_end = .false. end if else collective_sync = .true. collective_start = .false. collective_end = .false. end if if (collective_sync) then if (root_ == -1) then call mpi_allgather(dat,size(dat),psb_mpi_c_dpk_,& & resv,size(dat),psb_mpi_c_dpk_,icomm,info) else call mpi_gather(dat,size(dat),psb_mpi_c_dpk_,& & resv,size(dat),psb_mpi_c_dpk_,root_,icomm,info) endif else if (collective_start) then if (root_ == -1) then call mpi_iallgather(dat,size(dat),psb_mpi_c_dpk_,& & resv,size(dat),psb_mpi_c_dpk_,icomm,request,info) else call mpi_igather(dat,size(dat),psb_mpi_c_dpk_,& & resv,size(dat),psb_mpi_c_dpk_,root_,icomm,request,info) endif else if (collective_end) then call mpi_wait(request,status,info) end if end if #endif end subroutine psb_zgather_v subroutine psb_zgatherv_v(ctxt,dat,resv,szs,root,mode,request) #ifdef MPI_MOD use mpi #endif implicit none #ifdef MPI_H include 'mpif.h' #endif type(psb_ctxt_type), intent(in) :: ctxt complex(psb_dpk_), intent(inout) :: dat(:), resv(:) integer(psb_mpk_), intent(in), optional :: root integer(psb_mpk_), intent(in), optional :: szs(:) integer(psb_ipk_), intent(in), optional :: mode integer(psb_mpk_), intent(inout), optional :: request integer(psb_mpk_) :: root_ integer(psb_mpk_) :: iam, np, info,i integer(psb_mpk_) :: icomm integer(psb_mpk_) :: status(mpi_status_size) integer(psb_mpk_), allocatable :: displs(:) logical :: collective_start, collective_end, collective_sync #if defined(SERIAL_MPI) resv(:) = dat(:) #else call psb_info(ctxt,iam,np) if (present(root)) then root_ = root else root_ = -1 endif icomm = psb_get_mpi_comm(ctxt) if (present(mode)) then collective_sync = .false. collective_start = iand(mode,psb_collective_start_) /= 0 collective_end = iand(mode,psb_collective_end_) /= 0 if (.not.present(request)) then collective_sync = .true. collective_start = .false. collective_end = .false. end if else collective_sync = .true. collective_start = .false. collective_end = .false. end if if (collective_sync) then if (root_ == -1) then if (size(szs) < np) write(0,*) 'Error: bad input sizes' allocate(displs(np)) displs(1) = 0 do i=2, np displs(i) = displs(i-1) + szs(i-1) end do call mpi_allgatherv(dat,size(dat),psb_mpi_c_dpk_,& & resv,szs,displs,psb_mpi_c_dpk_,icomm,info) else if (iam == root_) then if (size(szs) < np) write(0,*) 'Error: bad input sizes' allocate(displs(np)) displs(1) = 0 do i=2, np displs(i) = displs(i-1) + szs(i-1) end do else allocate(displs(0)) end if call mpi_gatherv(dat,size(dat),psb_mpi_c_dpk_,& & resv,szs,displs,psb_mpi_c_dpk_,root_,icomm,info) endif else if (collective_start) then if (root_ == -1) then if (size(szs) < np) write(0,*) 'Error: bad input sizes' allocate(displs(np)) displs(1) = 0 do i=2, np displs(i) = displs(i-1) + szs(i-1) end do call mpi_iallgatherv(dat,size(dat),psb_mpi_c_dpk_,& & resv,szs,displs,psb_mpi_c_dpk_,icomm,request,info) else if (iam == root_) then if (size(szs) < np) write(0,*) 'Error: bad input sizes' allocate(displs(np)) displs(1) = 0 do i=2, np displs(i) = displs(i-1) + szs(i-1) end do else allocate(displs(0)) end if call mpi_igatherv(dat,size(dat),psb_mpi_c_dpk_,& & resv,szs,displs,psb_mpi_c_dpk_,root_,icomm,request,info) endif else if (collective_end) then call mpi_wait(request,status,info) end if end if #endif end subroutine psb_zgatherv_v ! ! SUM ! subroutine psb_zsums(ctxt,dat,root,mode,request) #ifdef MPI_MOD use mpi #endif implicit none #ifdef MPI_H include 'mpif.h' #endif type(psb_ctxt_type), intent(in) :: ctxt complex(psb_dpk_), intent(inout) :: dat integer(psb_mpk_), intent(in), optional :: root integer(psb_ipk_), intent(in), optional :: mode integer(psb_mpk_), intent(inout), optional :: request integer(psb_mpk_) :: root_ integer(psb_mpk_) :: iam, np, info integer(psb_mpk_) :: icomm integer(psb_mpk_) :: status(mpi_status_size) logical :: collective_start, collective_end, collective_sync #if !defined(SERIAL_MPI) call psb_info(ctxt,iam,np) if (present(root)) then root_ = root else root_ = -1 endif icomm = psb_get_mpi_comm(ctxt) if (present(mode)) then collective_sync = .false. collective_start = iand(mode,psb_collective_start_) /= 0 collective_end = iand(mode,psb_collective_end_) /= 0 if (.not.present(request)) then collective_sync = .true. collective_start = .false. collective_end = .false. end if else collective_sync = .true. collective_start = .false. collective_end = .false. end if if (collective_sync) then if (root_ == -1) then call mpi_allreduce(mpi_in_place,dat,1,& & psb_mpi_c_dpk_,mpi_sum,icomm,info) else if(iam==root_) then call mpi_reduce(mpi_in_place,dat,1,& & psb_mpi_c_dpk_,mpi_sum,root_,icomm,info) else call mpi_reduce(dat,dat,1,& & psb_mpi_c_dpk_,mpi_sum,root_,icomm,info) end if endif else if (collective_start) then if (root_ == -1) then call mpi_iallreduce(mpi_in_place,dat,1,& & psb_mpi_c_dpk_,mpi_sum,icomm,request,info) else if(iam==root_) then call mpi_ireduce(mpi_in_place,dat,1,& & psb_mpi_c_dpk_,mpi_sum,root_,icomm,request,info) else call mpi_ireduce(dat,dat,1,& & psb_mpi_c_dpk_,mpi_sum,root_,icomm,request,info) end if end if else if (collective_end) then call mpi_wait(request,status,info) end if end if #endif end subroutine psb_zsums subroutine psb_zsumv(ctxt,dat,root,mode,request) #ifdef MPI_MOD use mpi #endif implicit none #ifdef MPI_H include 'mpif.h' #endif type(psb_ctxt_type), intent(in) :: ctxt complex(psb_dpk_), intent(inout) :: dat(:) integer(psb_mpk_), intent(in), optional :: root integer(psb_ipk_), intent(in), optional :: mode integer(psb_mpk_), intent(inout), optional :: request integer(psb_mpk_) :: root_ integer(psb_mpk_) :: iam, np, info integer(psb_mpk_) :: icomm integer(psb_mpk_) :: status(mpi_status_size) logical :: collective_start, collective_end, collective_sync #if !defined(SERIAL_MPI) call psb_info(ctxt,iam,np) if (present(root)) then root_ = root else root_ = -1 endif icomm = psb_get_mpi_comm(ctxt) if (present(mode)) then collective_sync = .false. collective_start = iand(mode,psb_collective_start_) /= 0 collective_end = iand(mode,psb_collective_end_) /= 0 if (.not.present(request)) then collective_sync = .true. collective_start = .false. collective_end = .false. end if else collective_sync = .true. collective_start = .false. collective_end = .false. end if if (collective_sync) then if (root_ == -1) then call mpi_allreduce(mpi_in_place,dat,size(dat),& & psb_mpi_c_dpk_,mpi_sum,icomm,info) else if(iam==root_) then call mpi_reduce(mpi_in_place,dat,size(dat),& & psb_mpi_c_dpk_,mpi_sum,root_,icomm,info) else call mpi_reduce(dat,dat,size(dat),& & psb_mpi_c_dpk_,mpi_sum,root_,icomm,info) end if end if else if (collective_start) then if (root_ == -1) then call mpi_iallreduce(mpi_in_place,dat,size(dat),& & psb_mpi_c_dpk_,mpi_sum,icomm,request,info) else if(iam==root_) then call mpi_ireduce(mpi_in_place,dat,size(dat),& & psb_mpi_c_dpk_,mpi_sum,root_,icomm,request,info) else call mpi_ireduce(dat,dat,size(dat),& & psb_mpi_c_dpk_,mpi_sum,root_,icomm,request,info) end if end if else if (collective_end) then call mpi_wait(request,status,info) endif end if #endif end subroutine psb_zsumv subroutine psb_zsumm(ctxt,dat,root,mode,request) #ifdef MPI_MOD use mpi #endif implicit none #ifdef MPI_H include 'mpif.h' #endif type(psb_ctxt_type), intent(in) :: ctxt complex(psb_dpk_), intent(inout) :: dat(:,:) integer(psb_mpk_), intent(in), optional :: root integer(psb_ipk_), intent(in), optional :: mode integer(psb_mpk_), intent(inout), optional :: request integer(psb_mpk_) :: root_ integer(psb_mpk_) :: iam, np, info integer(psb_mpk_) :: icomm integer(psb_mpk_) :: status(mpi_status_size) logical :: collective_start, collective_end, collective_sync #if !defined(SERIAL_MPI) call psb_info(ctxt,iam,np) if (present(root)) then root_ = root else root_ = -1 endif icomm = psb_get_mpi_comm(ctxt) if (present(mode)) then collective_sync = .false. collective_start = iand(mode,psb_collective_start_) /= 0 collective_end = iand(mode,psb_collective_end_) /= 0 if (.not.present(request)) then collective_sync = .true. collective_start = .false. collective_end = .false. end if else collective_sync = .true. collective_start = .false. collective_end = .false. end if if (collective_sync) then if (root_ == -1) then call mpi_allreduce(mpi_in_place,dat,size(dat),& & psb_mpi_c_dpk_,mpi_sum,icomm,info) else if(iam==root_) then call mpi_reduce(mpi_in_place,dat,size(dat),& & psb_mpi_c_dpk_,mpi_sum,root_,icomm,info) else call mpi_reduce(dat,dat,size(dat),& & psb_mpi_c_dpk_,mpi_sum,root_,icomm,info) end if end if else if (collective_start) then if (root_ == -1) then call mpi_iallreduce(mpi_in_place,dat,size(dat),& & psb_mpi_c_dpk_,mpi_sum,icomm,request,info) else if(iam==root_) then call mpi_ireduce(mpi_in_place,dat,size(dat),& & psb_mpi_c_dpk_,mpi_sum,root_, icomm,request,info) else call mpi_ireduce(dat,dat,size(dat),& & psb_mpi_c_dpk_,mpi_sum,root_, icomm,request,info) end if end if else if (collective_end) then call mpi_wait(request,status,info) endif end if #endif end subroutine psb_zsumm ! ! AMX: Maximum Absolute Value ! subroutine psb_zamxs(ctxt,dat,root,mode,request) #ifdef MPI_MOD use mpi #endif implicit none #ifdef MPI_H include 'mpif.h' #endif type(psb_ctxt_type), intent(in) :: ctxt complex(psb_dpk_), intent(inout) :: dat integer(psb_mpk_), intent(in), optional :: root integer(psb_ipk_), intent(in), optional :: mode integer(psb_mpk_), intent(inout), optional :: request integer(psb_mpk_) :: root_ integer(psb_mpk_) :: iam, np, info integer(psb_mpk_) :: icomm integer(psb_mpk_) :: status(mpi_status_size) logical :: collective_start, collective_end, collective_sync #if !defined(SERIAL_MPI) call psb_info(ctxt,iam,np) if (present(root)) then root_ = root else root_ = -1 endif icomm = psb_get_mpi_comm(ctxt) if (present(mode)) then collective_sync = .false. collective_start = iand(mode,psb_collective_start_) /= 0 collective_end = iand(mode,psb_collective_end_) /= 0 if (.not.present(request)) then collective_sync = .true. collective_start = .false. collective_end = .false. end if else collective_sync = .true. collective_start = .false. collective_end = .false. end if if (collective_sync) then if (root_ == -1) then call mpi_allreduce(mpi_in_place,dat,1,& & psb_mpi_c_dpk_,mpi_zamx_op,icomm,info) else if(iam==root_) then call mpi_reduce(mpi_in_place,dat,1,& & psb_mpi_c_dpk_,mpi_zamx_op,root_,icomm,info) else call mpi_reduce(dat,dat,1,& & psb_mpi_c_dpk_,mpi_zamx_op,root_,icomm,info) end if endif else if (collective_start) then if (root_ == -1) then call mpi_iallreduce(mpi_in_place,dat,1,& & psb_mpi_c_dpk_,mpi_zamx_op,icomm,request,info) else if(iam==root_) then call mpi_ireduce(mpi_in_place,dat,1,& & psb_mpi_c_dpk_,mpi_zamx_op,root_,icomm,request,info) else call mpi_ireduce(dat,dat,1,& & psb_mpi_c_dpk_,mpi_zamx_op,root_,icomm,request,info) end if end if else if (collective_end) then call mpi_wait(request,status,info) end if end if #endif end subroutine psb_zamxs subroutine psb_zamxv(ctxt,dat,root,mode,request) #ifdef MPI_MOD use mpi #endif implicit none #ifdef MPI_H include 'mpif.h' #endif type(psb_ctxt_type), intent(in) :: ctxt complex(psb_dpk_), intent(inout) :: dat(:) integer(psb_mpk_), intent(in), optional :: root integer(psb_ipk_), intent(in), optional :: mode integer(psb_mpk_), intent(inout), optional :: request integer(psb_mpk_) :: root_ integer(psb_mpk_) :: iam, np, info integer(psb_mpk_) :: icomm integer(psb_mpk_) :: status(mpi_status_size) logical :: collective_start, collective_end, collective_sync #if !defined(SERIAL_MPI) call psb_info(ctxt,iam,np) if (present(root)) then root_ = root else root_ = -1 endif icomm = psb_get_mpi_comm(ctxt) if (present(mode)) then collective_sync = .false. collective_start = iand(mode,psb_collective_start_) /= 0 collective_end = iand(mode,psb_collective_end_) /= 0 if (.not.present(request)) then collective_sync = .true. collective_start = .false. collective_end = .false. end if else collective_sync = .true. collective_start = .false. collective_end = .false. end if if (collective_sync) then if (root_ == -1) then call mpi_allreduce(mpi_in_place,dat,size(dat),& psb_mpi_c_dpk_,mpi_zamx_op,icomm,info) else if(iam==root_) then call mpi_reduce(mpi_in_place,dat,size(dat),& & psb_mpi_c_dpk_,mpi_zamx_op,root_,icomm,info) else call mpi_reduce(dat,dat,size(dat),& & psb_mpi_c_dpk_,mpi_zamx_op,root_,icomm,info) end if endif else if (collective_start) then if (root_ == -1) then call mpi_iallreduce(mpi_in_place,dat,size(dat),& & psb_mpi_c_dpk_,mpi_zamx_op,icomm,request,info) else if(iam==root_) then call mpi_ireduce(mpi_in_place,dat,size(dat),& & psb_mpi_c_dpk_,mpi_zamx_op,root_,icomm,request,info) else call mpi_ireduce(dat,dat,size(dat),& & psb_mpi_c_dpk_,mpi_zamx_op,root_,icomm,request,info) end if end if else if (collective_end) then call mpi_wait(request,status,info) end if end if #endif end subroutine psb_zamxv subroutine psb_zamxm(ctxt,dat,root,mode,request) #ifdef MPI_MOD use mpi #endif implicit none #ifdef MPI_H include 'mpif.h' #endif type(psb_ctxt_type), intent(in) :: ctxt complex(psb_dpk_), intent(inout) :: dat(:,:) integer(psb_mpk_), intent(in), optional :: root integer(psb_ipk_), intent(in), optional :: mode integer(psb_mpk_), intent(inout), optional :: request integer(psb_mpk_) :: root_ integer(psb_mpk_) :: iam, np, info integer(psb_mpk_) :: icomm integer(psb_mpk_) :: status(mpi_status_size) logical :: collective_start, collective_end, collective_sync #if !defined(SERIAL_MPI) call psb_info(ctxt,iam,np) if (present(root)) then root_ = root else root_ = -1 endif icomm = psb_get_mpi_comm(ctxt) if (present(mode)) then collective_sync = .false. collective_start = iand(mode,psb_collective_start_) /= 0 collective_end = iand(mode,psb_collective_end_) /= 0 if (.not.present(request)) then collective_sync = .true. collective_start = .false. collective_end = .false. end if else collective_sync = .true. collective_start = .false. collective_end = .false. end if if (collective_sync) then if (root_ == -1) then call mpi_allreduce(mpi_in_place,dat,size(dat),& & psb_mpi_c_dpk_,mpi_zamx_op,icomm,info) else if(iam==root_) then call mpi_reduce(mpi_in_place,dat,size(dat),& & psb_mpi_c_dpk_,mpi_zamx_op,root_,icomm,info) else call mpi_reduce(dat,dat,size(dat),& & psb_mpi_c_dpk_,mpi_zamx_op,root_,icomm,info) end if endif else if (collective_start) then if (root_ == -1) then call mpi_iallreduce(mpi_in_place,dat,size(dat),& & psb_mpi_c_dpk_,mpi_zamx_op,icomm,request,info) else if(iam==root_) then call mpi_ireduce(mpi_in_place,dat,size(dat),& & psb_mpi_c_dpk_,mpi_zamx_op,root_,icomm,request,info) else call mpi_ireduce(dat,dat,size(dat),& & psb_mpi_c_dpk_,mpi_zamx_op,root_,icomm,request,info) end if end if else if (collective_end) then call mpi_wait(request,status,info) end if end if #endif end subroutine psb_zamxm ! ! AMN: Minimum Absolute Value ! subroutine psb_zamns(ctxt,dat,root,mode,request) #ifdef MPI_MOD use mpi #endif implicit none #ifdef MPI_H include 'mpif.h' #endif type(psb_ctxt_type), intent(in) :: ctxt complex(psb_dpk_), intent(inout) :: dat integer(psb_mpk_), intent(in), optional :: root integer(psb_ipk_), intent(in), optional :: mode integer(psb_mpk_), intent(inout), optional :: request integer(psb_mpk_) :: root_ integer(psb_mpk_) :: iam, np, info integer(psb_mpk_) :: icomm integer(psb_mpk_) :: status(mpi_status_size) logical :: collective_start, collective_end, collective_sync #if !defined(SERIAL_MPI) call psb_info(ctxt,iam,np) if (present(root)) then root_ = root else root_ = -1 endif icomm = psb_get_mpi_comm(ctxt) if (present(mode)) then collective_sync = .false. collective_start = iand(mode,psb_collective_start_) /= 0 collective_end = iand(mode,psb_collective_end_) /= 0 if (.not.present(request)) then collective_sync = .true. collective_start = .false. collective_end = .false. end if else collective_sync = .true. collective_start = .false. collective_end = .false. end if if (collective_sync) then if (root_ == -1) then call mpi_allreduce(mpi_in_place,dat,1,& & psb_mpi_c_dpk_,mpi_zamn_op,icomm,info) else if(iam==root_) then call mpi_reduce(mpi_in_place,dat,1,& & psb_mpi_c_dpk_,mpi_zamn_op,root_,icomm,info) else call mpi_reduce(dat,dat,1,& & psb_mpi_c_dpk_,mpi_zamn_op,root_,icomm,info) end if endif else if (collective_start) then if (root_ == -1) then call mpi_iallreduce(mpi_in_place,dat,1,& & psb_mpi_c_dpk_,mpi_zamn_op,icomm,request,info) else if(iam==root_) then call mpi_ireduce(mpi_in_place,dat,1,& & psb_mpi_c_dpk_,mpi_zamn_op,root_,icomm,request,info) else call mpi_ireduce(dat,dat,1,& & psb_mpi_c_dpk_,mpi_zamn_op,root_,icomm,request,info) end if end if else if (collective_end) then call mpi_wait(request,status,info) end if end if #endif end subroutine psb_zamns subroutine psb_zamnv(ctxt,dat,root,mode,request) #ifdef MPI_MOD use mpi #endif implicit none #ifdef MPI_H include 'mpif.h' #endif type(psb_ctxt_type), intent(in) :: ctxt complex(psb_dpk_), intent(inout) :: dat(:) integer(psb_mpk_), intent(in), optional :: root integer(psb_ipk_), intent(in), optional :: mode integer(psb_mpk_), intent(inout), optional :: request integer(psb_mpk_) :: root_ integer(psb_mpk_) :: iam, np, info integer(psb_mpk_) :: icomm integer(psb_mpk_) :: status(mpi_status_size) logical :: collective_start, collective_end, collective_sync #if !defined(SERIAL_MPI) call psb_info(ctxt,iam,np) if (present(root)) then root_ = root else root_ = -1 endif icomm = psb_get_mpi_comm(ctxt) if (present(mode)) then collective_sync = .false. collective_start = iand(mode,psb_collective_start_) /= 0 collective_end = iand(mode,psb_collective_end_) /= 0 if (.not.present(request)) then collective_sync = .true. collective_start = .false. collective_end = .false. end if else collective_sync = .true. collective_start = .false. collective_end = .false. end if if (collective_sync) then if (root_ == -1) then call mpi_allreduce(mpi_in_place,dat,size(dat),& & psb_mpi_c_dpk_,mpi_zamn_op,icomm,info) else if(iam==root_) then call mpi_reduce(mpi_in_place,dat,size(dat),& & psb_mpi_c_dpk_,mpi_zamn_op,root_,icomm,info) else call mpi_reduce(dat,dat,size(dat),& & psb_mpi_c_dpk_,mpi_zamn_op,root_,icomm,info) end if endif else if (collective_start) then if (root_ == -1) then call mpi_iallreduce(mpi_in_place,dat,size(dat),& & psb_mpi_c_dpk_,mpi_zamn_op,icomm,request,info) else if(iam==root_) then call mpi_ireduce(mpi_in_place,dat,size(dat),& & psb_mpi_c_dpk_,mpi_zamn_op,root_,icomm,request,info) else call mpi_ireduce(dat,dat,size(dat),& & psb_mpi_c_dpk_,mpi_zamn_op,root_,icomm,request,info) end if end if else if (collective_end) then call mpi_wait(request,status,info) end if end if #endif end subroutine psb_zamnv subroutine psb_zamnm(ctxt,dat,root,mode,request) #ifdef MPI_MOD use mpi #endif implicit none #ifdef MPI_H include 'mpif.h' #endif type(psb_ctxt_type), intent(in) :: ctxt complex(psb_dpk_), intent(inout) :: dat(:,:) integer(psb_mpk_), intent(in), optional :: root integer(psb_ipk_), intent(in), optional :: mode integer(psb_mpk_), intent(inout), optional :: request integer(psb_mpk_) :: root_ integer(psb_mpk_) :: iam, np, info integer(psb_mpk_) :: icomm integer(psb_mpk_) :: status(mpi_status_size) logical :: collective_start, collective_end, collective_sync #if !defined(SERIAL_MPI) call psb_info(ctxt,iam,np) if (present(root)) then root_ = root else root_ = -1 endif icomm = psb_get_mpi_comm(ctxt) if (present(mode)) then collective_sync = .false. collective_start = iand(mode,psb_collective_start_) /= 0 collective_end = iand(mode,psb_collective_end_) /= 0 if (.not.present(request)) then collective_sync = .true. collective_start = .false. collective_end = .false. end if else collective_sync = .true. collective_start = .false. collective_end = .false. end if if (collective_sync) then if (root_ == -1) then call mpi_allreduce(mpi_in_place,dat,size(dat),& & psb_mpi_c_dpk_,mpi_zamn_op,icomm,info) else if(iam==root_) then call mpi_reduce(mpi_in_place,dat,size(dat),& & psb_mpi_c_dpk_,mpi_zamn_op,root_,icomm,info) else call mpi_reduce(dat,dat,size(dat),& & psb_mpi_c_dpk_,mpi_zamn_op,root_,icomm,info) end if endif else if (collective_start) then if (root_ == -1) then call mpi_iallreduce(mpi_in_place,dat,size(dat),& & psb_mpi_c_dpk_,mpi_zamn_op,icomm,request,info) else if(iam==root_) then call mpi_ireduce(mpi_in_place,dat,size(dat),& & psb_mpi_c_dpk_,mpi_zamn_op,root_,icomm,request,info) else call mpi_ireduce(dat,dat,size(dat),& & psb_mpi_c_dpk_,mpi_zamn_op,root_,icomm,request,info) end if end if else if (collective_end) then call mpi_wait(request,status,info) end if end if #endif end subroutine psb_zamnm ! ! BCAST Broadcast ! subroutine psb_zbcasts(ctxt,dat,root,mode,request) #ifdef MPI_MOD use mpi #endif implicit none #ifdef MPI_H include 'mpif.h' #endif type(psb_ctxt_type), intent(in) :: ctxt complex(psb_dpk_), intent(inout) :: dat integer(psb_mpk_), intent(in), optional :: root integer(psb_ipk_), intent(in), optional :: mode integer(psb_mpk_), intent(inout), optional :: request integer(psb_mpk_) :: root_ integer(psb_mpk_) :: iam, np, info integer(psb_mpk_) :: icomm integer(psb_mpk_) :: status(mpi_status_size) logical :: collective_start, collective_end, collective_sync #if !defined(SERIAL_MPI) call psb_info(ctxt,iam,np) if (present(root)) then root_ = root else root_ = psb_root_ endif icomm = psb_get_mpi_comm(ctxt) if (present(mode)) then collective_sync = .false. collective_start = iand(mode,psb_collective_start_) /= 0 collective_end = iand(mode,psb_collective_end_) /= 0 if (.not.present(request)) then collective_sync = .true. collective_start = .false. collective_end = .false. end if else collective_sync = .true. collective_start = .false. collective_end = .false. end if if (collective_sync) then call mpi_bcast(dat,1,psb_mpi_c_dpk_,root_,icomm,info) else if (collective_start) then call mpi_ibcast(dat,1,psb_mpi_c_dpk_,root_,icomm,request,info) else if (collective_end) then call mpi_wait(request,status,info) end if end if #endif end subroutine psb_zbcasts subroutine psb_zbcastv(ctxt,dat,root,mode,request) #ifdef MPI_MOD use mpi #endif implicit none #ifdef MPI_H include 'mpif.h' #endif type(psb_ctxt_type), intent(in) :: ctxt complex(psb_dpk_), intent(inout) :: dat(:) integer(psb_mpk_), intent(in), optional :: root integer(psb_ipk_), intent(in), optional :: mode integer(psb_mpk_), intent(inout), optional :: request integer(psb_mpk_) :: root_ integer(psb_mpk_) :: iam, np, info integer(psb_mpk_) :: icomm integer(psb_mpk_) :: status(mpi_status_size) logical :: collective_start, collective_end, collective_sync #if !defined(SERIAL_MPI) call psb_info(ctxt,iam,np) if (present(root)) then root_ = root else root_ = psb_root_ endif icomm = psb_get_mpi_comm(ctxt) if (present(mode)) then collective_sync = .false. collective_start = iand(mode,psb_collective_start_) /= 0 collective_end = iand(mode,psb_collective_end_) /= 0 if (.not.present(request)) then collective_sync = .true. collective_start = .false. collective_end = .false. end if else collective_sync = .true. collective_start = .false. collective_end = .false. end if if (collective_sync) then call mpi_bcast(dat,size(dat),psb_mpi_c_dpk_,root_,icomm,info) else if (collective_start) then call mpi_ibcast(dat,size(dat),psb_mpi_c_dpk_,root_,icomm,request,info) else if (collective_end) then call mpi_wait(request,status,info) end if end if #endif end subroutine psb_zbcastv subroutine psb_zbcastm(ctxt,dat,root,mode,request) #ifdef MPI_MOD use mpi #endif implicit none #ifdef MPI_H include 'mpif.h' #endif type(psb_ctxt_type), intent(in) :: ctxt complex(psb_dpk_), intent(inout) :: dat(:,:) integer(psb_mpk_), intent(in), optional :: root integer(psb_ipk_), intent(in), optional :: mode integer(psb_mpk_), intent(inout), optional :: request integer(psb_mpk_) :: root_ integer(psb_mpk_) :: iam, np, info integer(psb_mpk_) :: icomm integer(psb_mpk_) :: status(mpi_status_size) logical :: collective_start, collective_end, collective_sync #if !defined(SERIAL_MPI) call psb_info(ctxt,iam,np) if (present(root)) then root_ = root else root_ = psb_root_ endif icomm = psb_get_mpi_comm(ctxt) if (present(mode)) then collective_sync = .false. collective_start = iand(mode,psb_collective_start_) /= 0 collective_end = iand(mode,psb_collective_end_) /= 0 if (.not.present(request)) then collective_sync = .true. collective_start = .false. collective_end = .false. end if else collective_sync = .true. collective_start = .false. collective_end = .false. end if if (collective_sync) then call mpi_bcast(dat,size(dat),psb_mpi_c_dpk_,root_,icomm,info) else if (collective_start) then call mpi_ibcast(dat,size(dat),psb_mpi_c_dpk_,root_,icomm,request,info) else if (collective_end) then call mpi_wait(request,status,info) end if end if #endif end subroutine psb_zbcastm ! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!! ! ! SCAN ! ! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!! subroutine psb_zscan_sums(ctxt,dat,mode,request) #ifdef MPI_MOD use mpi #endif implicit none #ifdef MPI_H include 'mpif.h' #endif type(psb_ctxt_type), intent(in) :: ctxt integer(psb_ipk_), intent(in), optional :: mode integer(psb_mpk_), intent(inout), optional :: request complex(psb_dpk_), intent(inout) :: dat complex(psb_dpk_) :: dat_ integer(psb_ipk_) :: iam, np, info integer(psb_mpk_) :: minfo integer(psb_mpk_) :: icomm integer(psb_mpk_) :: status(mpi_status_size) logical :: collective_start, collective_end, collective_sync #if !defined(SERIAL_MPI) call psb_info(ctxt,iam,np) icomm = psb_get_mpi_comm(ctxt) if (present(mode)) then collective_sync = .false. collective_start = iand(mode,psb_collective_start_) /= 0 collective_end = iand(mode,psb_collective_end_) /= 0 if (.not.present(request)) then collective_sync = .true. collective_start = .false. collective_end = .false. end if else collective_sync = .true. collective_start = .false. collective_end = .false. end if dat_ = dat if (collective_sync) then call mpi_scan(dat_,dat,1,& & psb_mpi_c_dpk_,mpi_sum,icomm,minfo) else if (collective_start) then call mpi_iscan(dat_,dat,1,& & psb_mpi_c_dpk_,mpi_sum,icomm,request,minfo) else if (collective_end) then call mpi_wait(request,status,minfo) end if end if #endif end subroutine psb_zscan_sums subroutine psb_zexscan_sums(ctxt,dat,mode,request) #ifdef MPI_MOD use mpi #endif implicit none #ifdef MPI_H include 'mpif.h' #endif type(psb_ctxt_type), intent(in) :: ctxt complex(psb_dpk_), intent(inout) :: dat integer(psb_ipk_), intent(in), optional :: mode integer(psb_mpk_), intent(inout), optional :: request complex(psb_dpk_) :: dat_ integer(psb_ipk_) :: iam, np, info integer(psb_mpk_) :: minfo integer(psb_mpk_) :: icomm integer(psb_mpk_) :: status(mpi_status_size) logical :: collective_start, collective_end, collective_sync #if !defined(SERIAL_MPI) call psb_info(ctxt,iam,np) icomm = psb_get_mpi_comm(ctxt) if (present(mode)) then collective_sync = .false. collective_start = iand(mode,psb_collective_start_) /= 0 collective_end = iand(mode,psb_collective_end_) /= 0 if (.not.present(request)) then collective_sync = .true. collective_start = .false. collective_end = .false. end if else collective_sync = .true. collective_start = .false. collective_end = .false. end if dat_ = dat if (collective_sync) then call mpi_exscan(dat_,dat,1,& & psb_mpi_c_dpk_,mpi_sum,icomm,minfo) else if (collective_start) then call mpi_iexscan(dat_,dat,1,& & psb_mpi_c_dpk_,mpi_sum,icomm,request,minfo) else if (collective_end) then call mpi_wait(request,status,minfo) end if end if #else dat = zzero #endif end subroutine psb_zexscan_sums subroutine psb_zscan_sumv(ctxt,dat,mode,request) #ifdef MPI_MOD use mpi #endif implicit none #ifdef MPI_H include 'mpif.h' #endif type(psb_ctxt_type), intent(in) :: ctxt complex(psb_dpk_), intent(inout) :: dat(:) integer(psb_ipk_), intent(in), optional :: mode integer(psb_mpk_), intent(inout), optional :: request integer(psb_ipk_) :: iam, np, info integer(psb_mpk_) :: minfo integer(psb_mpk_) :: icomm integer(psb_mpk_) :: status(mpi_status_size) logical :: collective_start, collective_end, collective_sync complex(psb_dpk_), allocatable :: dat_(:) #if !defined(SERIAL_MPI) call psb_info(ctxt,iam,np) icomm = psb_get_mpi_comm(ctxt) if (present(mode)) then collective_sync = .false. collective_start = iand(mode,psb_collective_start_) /= 0 collective_end = iand(mode,psb_collective_end_) /= 0 if (.not.present(request)) then collective_sync = .true. collective_start = .false. collective_end = .false. end if else collective_sync = .true. collective_start = .false. collective_end = .false. end if dat_ = dat if (collective_sync) then call mpi_scan(dat_,dat,size(dat),& & psb_mpi_c_dpk_,mpi_sum,icomm,minfo) else if (collective_start) then call mpi_iscan(dat_,dat,size(dat),& & psb_mpi_c_dpk_,mpi_sum,icomm,request,info) else if (collective_end) then call mpi_wait(request,status,info) end if end if #endif end subroutine psb_zscan_sumv subroutine psb_zexscan_sumv(ctxt,dat,mode,request) #ifdef MPI_MOD use mpi #endif implicit none #ifdef MPI_H include 'mpif.h' #endif type(psb_ctxt_type), intent(in) :: ctxt complex(psb_dpk_), intent(inout) :: dat(:) integer(psb_ipk_), intent(in), optional :: mode integer(psb_mpk_), intent(inout), optional :: request integer(psb_ipk_) :: iam, np, info integer(psb_mpk_) :: minfo integer(psb_mpk_) :: icomm integer(psb_mpk_) :: status(mpi_status_size) logical :: collective_start, collective_end, collective_sync complex(psb_dpk_), allocatable :: dat_(:) #if !defined(SERIAL_MPI) call psb_info(ctxt,iam,np) icomm = psb_get_mpi_comm(ctxt) if (present(mode)) then collective_sync = .false. collective_start = iand(mode,psb_collective_start_) /= 0 collective_end = iand(mode,psb_collective_end_) /= 0 if (.not.present(request)) then collective_sync = .true. collective_start = .false. collective_end = .false. end if else collective_sync = .true. collective_start = .false. collective_end = .false. end if dat_ = dat if (collective_sync) then call mpi_exscan(dat_,dat,size(dat),& & psb_mpi_c_dpk_,mpi_sum,icomm,minfo) else if (collective_start) then call mpi_iexscan(dat_,dat,size(dat),& & psb_mpi_c_dpk_,mpi_sum,icomm,request,info) else if (collective_end) then call mpi_wait(request,status,info) end if end if #else dat = zzero #endif end subroutine psb_zexscan_sumv subroutine psb_z_simple_a2av(valsnd,sdsz,bsdindx,& & valrcv,rvsz,brvindx,ctxt,info) use psi_z_p2p_mod implicit none complex(psb_dpk_), intent(in) :: valsnd(:) complex(psb_dpk_), intent(out) :: valrcv(:) integer(psb_mpk_), intent(in) :: bsdindx(:), brvindx(:), sdsz(:), rvsz(:) type(psb_ctxt_type), intent(in) :: ctxt integer(psb_ipk_), intent(out) :: info integer(psb_ipk_) :: iam, np, i,j,k, ip, ipx, idx, sz call psb_info(ctxt,iam,np) if (min(size(bsdindx),size(brvindx),size(sdsz),size(rvsz)) 0) then idx = bsdindx(ip+1) call psb_snd(ctxt,valsnd(idx+1:idx+sz),ip) end if end do do ip = 0, np-1 sz = rvsz(ip+1) if (sz > 0) then idx = brvindx(ip+1) call psb_rcv(ctxt,valrcv(idx+1:idx+sz),ip) end if end do end subroutine psb_z_simple_a2av subroutine psb_z_m_simple_triad_a2av(valsnd,iasnd,jasnd,sdsz,bsdindx,& & valrcv,iarcv,jarcv,rvsz,brvindx,ctxt,info) #ifdef MPI_MOD use mpi #endif implicit none #ifdef MPI_H include 'mpif.h' #endif complex(psb_dpk_), intent(in) :: valsnd(:) integer(psb_mpk_), intent(in) :: iasnd(:), jasnd(:) complex(psb_dpk_), intent(out) :: valrcv(:) integer(psb_mpk_), intent(out) :: iarcv(:), jarcv(:) integer(psb_mpk_), intent(in) :: bsdindx(:), brvindx(:), sdsz(:), rvsz(:) type(psb_ctxt_type), intent(in) :: ctxt integer(psb_ipk_), intent(out) :: info !Local variables integer(psb_ipk_) :: iam, np, i,j,k, ip, ipx, idx, sz, counter integer(psb_mpk_) :: proc_to_comm, p2ptag, p2pstat(mpi_status_size), iret, icomm integer(psb_mpk_), allocatable :: prcid(:), rvhd(:,:) call psb_info(ctxt,iam,np) icomm = psb_get_mpi_comm(ctxt) if (min(size(bsdindx),size(brvindx),size(sdsz),size(rvsz)) 0) then prcid(ip+1) = psb_get_mpi_rank(ctxt,ip) idx = brvindx(ip+1) p2ptag = psb_dcomplex_tag call mpi_irecv(valrcv(idx+1:idx+sz),sz,& & psb_mpi_c_dpk_,prcid(ip+1),& & p2ptag, icomm,rvhd(ip+1,1),iret) p2ptag = psb_int_swap_tag call mpi_irecv(iarcv(idx+1:idx+sz),sz,& & psb_mpi_mpk_,prcid(ip+1),& & p2ptag, icomm,rvhd(ip+1,2),iret) call mpi_irecv(jarcv(idx+1:idx+sz),sz,& & psb_mpi_mpk_,prcid(ip+1),& & p2ptag, icomm,rvhd(ip+1,3),iret) end if Enddo do ip = 0, np-1 sz = sdsz(ip+1) if (sz > 0) then if (prcid(ip+1)<0) prcid(ip+1) = psb_get_mpi_rank(ctxt,ip) idx = bsdindx(ip+1) p2ptag = psb_dcomplex_tag call mpi_send(valsnd(idx+1:idx+sz),sz,& & psb_mpi_c_dpk_,prcid(ip+1),& & p2ptag, icomm,iret) p2ptag = psb_int_swap_tag call mpi_send(iasnd(idx+1:idx+sz),sz,& & psb_mpi_mpk_,prcid(ip+1),& & p2ptag, icomm,iret) call mpi_send(jasnd(idx+1:idx+sz),sz,& & psb_mpi_mpk_,prcid(ip+1),& & p2ptag, icomm,iret) end if Enddo do ip = 0, np-1 sz = rvsz(ip+1) if (sz > 0) then call mpi_wait(rvhd(ip+1,1),p2pstat,iret) call mpi_wait(rvhd(ip+1,2),p2pstat,iret) call mpi_wait(rvhd(ip+1,3),p2pstat,iret) end if Enddo end subroutine psb_z_m_simple_triad_a2av subroutine psb_z_e_simple_triad_a2av(valsnd,iasnd,jasnd,sdsz,bsdindx,& & valrcv,iarcv,jarcv,rvsz,brvindx,ctxt,info) #ifdef MPI_MOD use mpi #endif implicit none #ifdef MPI_H include 'mpif.h' #endif complex(psb_dpk_), intent(in) :: valsnd(:) integer(psb_epk_), intent(in) :: iasnd(:), jasnd(:) complex(psb_dpk_), intent(out) :: valrcv(:) integer(psb_epk_), intent(out) :: iarcv(:), jarcv(:) integer(psb_mpk_), intent(in) :: bsdindx(:), brvindx(:), sdsz(:), rvsz(:) type(psb_ctxt_type), intent(in) :: ctxt integer(psb_ipk_), intent(out) :: info !Local variables integer(psb_ipk_) :: iam, np, i,j,k, ip, ipx, idx, sz, counter integer(psb_mpk_) :: proc_to_comm, p2ptag, p2pstat(mpi_status_size), iret, icomm integer(psb_mpk_), allocatable :: prcid(:), rvhd(:,:) call psb_info(ctxt,iam,np) icomm = psb_get_mpi_comm(ctxt) if (min(size(bsdindx),size(brvindx),size(sdsz),size(rvsz)) 0) then prcid(ip+1) = psb_get_mpi_rank(ctxt,ip) idx = brvindx(ip+1) p2ptag = psb_dcomplex_tag call mpi_irecv(valrcv(idx+1:idx+sz),sz,& & psb_mpi_c_dpk_,prcid(ip+1),& & p2ptag, icomm,rvhd(ip+1,1),iret) p2ptag = psb_int_swap_tag call mpi_irecv(iarcv(idx+1:idx+sz),sz,& & psb_mpi_epk_,prcid(ip+1),& & p2ptag, icomm,rvhd(ip+1,2),iret) call mpi_irecv(jarcv(idx+1:idx+sz),sz,& & psb_mpi_epk_,prcid(ip+1),& & p2ptag, icomm,rvhd(ip+1,3),iret) end if Enddo do ip = 0, np-1 sz = sdsz(ip+1) if (sz > 0) then if (prcid(ip+1)<0) prcid(ip+1) = psb_get_mpi_rank(ctxt,ip) idx = bsdindx(ip+1) p2ptag = psb_dcomplex_tag call mpi_send(valsnd(idx+1:idx+sz),sz,& & psb_mpi_c_dpk_,prcid(ip+1),& & p2ptag, icomm,iret) p2ptag = psb_int_swap_tag call mpi_send(iasnd(idx+1:idx+sz),sz,& & psb_mpi_epk_,prcid(ip+1),& & p2ptag, icomm,iret) call mpi_send(jasnd(idx+1:idx+sz),sz,& & psb_mpi_epk_,prcid(ip+1),& & p2ptag, icomm,iret) end if Enddo do ip = 0, np-1 sz = rvsz(ip+1) if (sz > 0) then call mpi_wait(rvhd(ip+1,1),p2pstat,iret) call mpi_wait(rvhd(ip+1,2),p2pstat,iret) call mpi_wait(rvhd(ip+1,3),p2pstat,iret) end if Enddo end subroutine psb_z_e_simple_triad_a2av end module psi_z_collective_mod