C C Parallel Sparse BLAS version 2.2 C (C) Copyright 2006/2007/2008 C Salvatore Filippone University of Rome Tor Vergata C Alfredo Buttari University of Rome Tor Vergata C C Redistribution and use in source and binary forms, with or without C modification, are permitted provided that the following conditions C are met: C 1. Redistributions of source code must retain the above copyright C notice, this list of conditions and the following disclaimer. C 2. Redistributions in binary form must reproduce the above copyright C notice, this list of conditions, and the following disclaimer in the C documentation and/or other materials provided with the distribution. C 3. The name of the PSBLAS group or the names of its contributors may C not be used to endorse or promote products derived from this C software without specific written permission. C C THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS C ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED C TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR C PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE PSBLAS GROUP OR ITS CONTRIBUTORS C BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR C CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF C SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS C INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN C CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) C ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE C POSSIBILITY OF SUCH DAMAGE. C C *********************************************************************** * DSRMV modified for SPARKER * * * FUNCTION: Driver for routines performing one of the sparse * * matrix vector operations * * * * y = alpha*op(A)*x + beta*y * * * * where op(A) is one of: * * * * op(A) = A or op(A) = A' or * * op(A) = lower or upper part of A * * * * alpha and beta are scalars. * * The data structure of the matrix is related * * to the scalar computer. * * This is an internal routine called by: * * DSMMV * * * * ENTRY-POINT = DSRMV * * INPUT = * * * * * * SYMBOLIC NAME: TRANS * * POSITION: PARAMETER NO 1. * * ATTRIBUTES: CHARACTER*1 * * VALUES: 'N' 'T' 'L' 'U' * * DESCRIPTION: Specifies the form of op(A) to be used in the * * matrix vector multiplications as follows: * * * * TRANS = 'N' , op( A ) = A. * * * * TRANS = 'T' , op( A ) = A'. * * * * TRANS = 'L' or 'U', op( A ) = lower or * * upper part of A * * * * SYMBOLIC NAME: DIAG * * POSITION: PARAMETER NO 2. * * ATTRIBUTES: CHARACTER*1 * * VALUES: 'N' 'U' * * DESCRIPTION: * * Specifies whether or not the matrix A has * * unit diagonal as follows: * * * * DIAG = 'N' A is not assumed * * to have unit diagonal * * * * DIAG = 'U' A is assumed * * to have unit diagonal. * * * * WARNING: it is the caller's responsibility * * to ensure that if the matrix has unit * * diagonal, there are no elements of the * * diagonal are stored in the arrays AS and JA. * * * * SYMBOLIC NAME: M * * POSITION: PARAMETER NO 3. * * ATTRIBUTES: INTEGER*4. * * VALUES: M >= 0 * * DESCRIPTION: Number of rows of the matrix op(A). * * * * SYMBOLIC NAME: N * * POSITION: PARAMETER NO 4. * * ATTRIBUTES: INTEGER*4. * * VALUES: N >= 0 * * DESCRIPTION: Number of columns of the matrix op(A) * * * * SYMBOLIC NAME: ALPHA * * POSITION: PARAMETER NO 5. * * ATTRIBUTES: REAL*8. * * VALUES: any. * * DESCRIPTION: Specifies the scalar alpha. * * * * * * SYMBOLIC NAME: AS * * POSITION: PARAMETER NO 6. * * ATTRIBUTES: REAL*8: ARRAY(IA(M+1)-1) * * VALUES: ANY * * DESCRIPTION: Array containing the non zero coefficients of * * the sparse matrix op(A). * * * * SYMBOLIC NAME: JA * * POSITION: PARAMETER NO 7. * * ATTRIBUTES: INTEGER*4: ARRAY(IA(M+1)-1) * * VALUES: 0 < JA(I) <= M * * DESCRIPTION: Array containing the column number of the * * nonzero coefficients stored in array AS. * * * * SYMBOLIC NAME: IA * * POSITION: PARAMETER NO 8. * * ATTRIBUTES: INTEGER*4: ARRAY(*) * * VALUES: IA(I) > 0 * * DESCRIPTION: Contains the pointers for the beginning of * * each rows. * * * * * * SYMBOLIC NAME: X * * POSITION: PARAMETER NO 9. * * ATTRIBUTES: REAL*8 ARRAY(N) (or ARRAY(M) when op(A) = A') * * VALUES: any. * * DESCRIPTION: Contains the values of the vector to be * * multiplied by the matrix A. * * * * SYMBOLIC NAME: BETA * * POSITION: PARAMETER NO 10. * * ATTRIBUTES: REAL*8. * * VALUES: any. * * DESCRIPTION: Specifies the scalar beta. * * * * SYMBOLIC NAME: Y * * POSITION: PARAMETER NO 11. * * ATTRIBUTES: REAL*8 ARRAY(M) (or ARRAY(N) when op(A) = A') * * VALUES: any. * * DESCRIPTION: Contains the values of the vector to be * * updated by the matrix-vector multiplication. * * * * SYMBOLIC NAME: WORK * * POSITION: PARAMETER NO 12. * * ATTRIBUTES: REAL*8 ARRAY(M) (or ARRAY(N) when op(A) = A') * * VALUES: any. * * DESCRIPTION: Work area available to the program. It is used * * only when TRANS = 'T'. * * * * OUTPUT = * * * * * * SYMBOLIC NAME: Y * * POSITION: PARAMETER NO 11. * * ATTRIBUTES: REAL*8 ARRAY(M) (or ARRAY(N) when op(A) = A') * * VALUES: any. * * DESCRIPTION: Contains the values of the vector * * updated by the matrix-vector multiplication. * * * * * *********************************************************************** SUBROUTINE DCSRMV4(TRANS,DIAG,M,N,ALPHA,AS,JA,IA,X,LDX, + BETA,Y,LDY, WORK,LWORK,IERROR) use psb_const_mod integer nb parameter (nb=4) C .. Parameters .. real(psb_dpk_) ONE, ZERO PARAMETER (ONE=1.0D0,ZERO=0.0D0) C .. Scalar Arguments .. real(psb_dpk_) ALPHA, BETA INTEGER M, N,LWORK,IERROR,ldx,ldy CHARACTER DIAG, TRANS C .. Array Arguments .. real(psb_dpk_) AS(*), WORK(*), X(LDX,NB), Y(LDY,NB) INTEGER IA(*), JA(*) C .. Local Scalars .. real(psb_dpk_) ACC(nb) INTEGER I, J, K, NCOLA, NROWA LOGICAL SYM, TRA, UNI C .. Executable Statements .. C IERROR = 0 UNI = (DIAG.EQ.'U') TRA = (TRANS.EQ.'T') C Symmetric matrix upper or lower SYM = ((TRANS.EQ.'L').OR.(TRANS.EQ.'U')) C if ( .not. tra) then nrowa = m ncola = n else if (tra) then nrowa = n ncola = m end if !(....tra) if (alpha.eq.zero) then if (beta.eq.zero) then do i = 1, m y(i,1:nb) = zero enddo else do 20 i = 1, m y(i,1:nb) = beta*y(i,1:nb) 20 continue endif return end if c if (sym) then if (uni) then c c ......Symmetric with unitary diagonal....... C ....OK!! C To be optimized if (beta.ne.zero) then do i = 1, m C C Product for diagonal elements c y(i,1:nb) = beta*y(i,1:nb) + alpha*x(i,1:nb) enddo else do i = 1, m y(i,1:nb) = alpha*x(i,1:nb) enddo endif C Product for other elements do 80 i = 1, m acc = zero do 60 j = ia(i), ia(i+1) - 1 k = ja(j) y(k,1:nb) = y(k,1:nb) + alpha*as(j)*x(i,1:nb) acc(1:nb) = acc(1:nb) + as(j)*x(k,1:nb) 60 continue y(i,1:nb) = y(i,1:nb) + alpha*acc(1:nb) 80 continue C else if ( .not. uni) then C C Check if matrix is lower or upper C if (trans.eq.'L') then C C LOWER CASE: diagonal element is the last element of row C ....OK! if (beta.ne.zero) then do 100 i = 1, m y(i,1:nb) = beta*y(i,1:nb) 100 continue else do i = 1, m y(i,1:nb) = zero enddo endif do 140 i = 1, m acc = zero do 120 j = ia(i), ia(i+1) - 1 ! it was -2 K = ja(j) C C To be optimized C if (k.ne.i) then !for symmetric element y(k,1:nb) = y(k,1:nb) + alpha*as(j)*x(i,1:nb) endif acc(1:nb) = acc(1:nb) + as(j)*x(k,1:nb) 120 continue y(i,1:nb) = y(i,1:nb) + alpha*acc(1:nb) 140 continue else ! ....Trans<>L C C UPPER CASE C ....OK!! C if (beta.ne.zero) then do 160 i = 1, m y(i,1:nb) = beta*y(i,1:nb) 160 continue else do i = 1, m y(i,1:nb) = zero enddo endif do 200 i = 1, m acc = zero do 180 j = ia(i) , ia(i+1) - 1 ! removed +1 k = ja(j) C C To be optimized C if (k.ne.i) then y(k,1:nb) = y(k,1:nb) + alpha*as(j)*x(i,1:nb) endif acc(1:nb) = acc(1:nb) + as(j)*x(k,1:nb) 180 continue y(i,1:nb) = y(i,1:nb) + alpha*acc(1:nb) 200 continue end if ! ......TRANS=='L' end if ! ......Not UNI c else if ( .not. tra) then !......NOT SYM if ( .not. uni) then C C .......General Not Unit, No Traspose C if (beta == zero) then if (alpha==one) then do i = 1, m acc = zero do j = ia(i), ia(i+1) - 1 acc = acc + as(j)*x(ja(j),1:nb) enddo y(i,1:nb) = acc enddo else if (alpha==-one) then do i = 1, m acc = zero do j = ia(i), ia(i+1) - 1 acc = acc - as(j)*x(ja(j),1:nb) enddo y(i,1:nb) = acc enddo else do i = 1, m acc = zero do j = ia(i), ia(i+1) - 1 acc = acc + as(j)*x(ja(j),1:nb) enddo y(i,1:nb) = alpha*acc enddo endif else if (beta==one) then if (alpha==one) then do i = 1, m acc = y(i,1:nb) do j = ia(i), ia(i+1) - 1 acc = acc + as(j)*x(ja(j),1:nb) enddo y(i,1:nb) = acc enddo else if (alpha==-one) then do i = 1, m acc = y(i,1:nb) do j = ia(i), ia(i+1) - 1 acc = acc - as(j)*x(ja(j),1:nb) enddo y(i,1:nb) = acc enddo else do i = 1, m acc = zero do j = ia(i), ia(i+1) - 1 acc = acc + as(j)*x(ja(j),1:nb) enddo y(i,1:nb) = alpha*acc + y(i,1:nb) enddo endif else if (beta==-one) then if (alpha==one) then do i = 1, m acc = -y(i,1:nb) do j = ia(i), ia(i+1) - 1 acc = acc + as(j)*x(ja(j),1:nb) enddo y(i,1:nb) = acc enddo else if (alpha==-one) then do i = 1, m acc = -y(i,1:nb) do j = ia(i), ia(i+1) - 1 acc = acc - as(j)*x(ja(j),1:nb) enddo y(i,1:nb) = acc enddo else do i = 1, m acc = zero do j = ia(i), ia(i+1) - 1 acc = acc + as(j)*x(ja(j),1:nb) enddo y(i,1:nb) = alpha*acc - y(i,1:nb) enddo endif else if (alpha==one) then do i = 1, m acc = zero do j = ia(i), ia(i+1) - 1 acc = acc + as(j)*x(ja(j),1:nb) enddo y(i,1:nb) = acc + beta*y(i,1:nb) enddo else if (alpha==-one) then do i = 1, m acc = zero do j = ia(i), ia(i+1) - 1 acc = acc - as(j)*x(ja(j),1:nb) enddo y(i,1:nb) = acc + beta*y(i,1:nb) enddo else do i = 1, m acc = zero do j = ia(i), ia(i+1) - 1 acc = acc + as(j)*x(ja(j),1:nb) enddo y(i,1:nb) = alpha*acc + beta*y(i,1:nb) enddo endif end if c else if (uni) then c if (beta.ne.zero) then do 280 i = 1, m acc(1:nb) = zero do 260 j = ia(i), ia(i+1) - 1 acc(1:nb) = acc(1:nb) + as(j)*x(ja(j),1:nb) 260 continue y(i,1:nb) = alpha*(acc(1:nb)+x(i,1:nb)) + beta*y(i,1:nb) 280 continue else !(beta.eq.zero) do i = 1, m acc(1:nb) = zero do j = ia(i), ia(i+1) - 1 acc(1:nb) = acc(1:nb) + as(j)*x(ja(j),1:nb) enddo y(i,1:nb) = alpha*(acc(1:nb)+x(i,1:nb)) enddo endif end if !....End Testing on UNI C else if (tra) then !....Else on SYM (swapped M and N) C if ( .not. uni) then c if (beta.ne.zero) then do 300 i = 1, m y(i,1:nb) = beta*y(i,1:nb) 300 continue else !(BETA.EQ.ZERO) do i = 1, m y(i,1:nb) = zero enddo endif c else if (uni) then c if (beta.ne.zero) then do 320 i = 1, m y(i,1:nb) = beta*y(i,1:nb) + alpha*x(i,1:nb) 320 continue else !(BETA.EQ.ZERO) do i = 1, m y(i,1:nb) = alpha*x(i,1:nb) enddo endif c end if !....UNI C if (alpha.eq.one) then c do 360 i = 1, n do 340 j = ia(i), ia(i+1) - 1 k = ja(j) y(k,1:nb) = y(k,1:nb) + as(j)*x(i,1:nb) 340 continue 360 continue c else if (alpha.eq.-one) then c do 400 i = 1, n do 380 j = ia(i), ia(i+1) - 1 k = ja(j) y(k,1:nb) = y(k,1:nb) - as(j)*x(i,1:nb) 380 continue 400 continue c else !.....Else on TRA C C This work array is used for efficiency C if (lwork.lt.n) then ierror = 60 work(1) = dble(n) return endif c$$$ do 420 i = 1, n c$$$ work(i) = alpha*x(i,1:4) c$$$ 420 continue c$$$C c$$$ DO 460 I = 1, n c$$$ DO 440 J = IA(I), IA(I+1) - 1 c$$$ K = JA(J) c$$$ Y(K) = Y(K) + AS(J)*WORK(I) c$$$ 440 CONTINUE c$$$ 460 CONTINUE c end if !.....end testing on alpha end if !.....end testing on sym c return c c end of dsrmv c end