! program d_coo_matgen use psb_sparse_mod !!$ use psb_prec_mod !!$ use psb_krylov_mod use psb_d_base_mat_mod use psb_d_csr_mat_mod implicit none ! input parameters character(len=20) :: kmethd, ptype character(len=5) :: afmt integer :: idim ! miscellaneous real(psb_dpk_), parameter :: one = 1.d0 real(psb_dpk_) :: t1, t2, tprec ! sparse matrix and preconditioner type(psb_d_sparse_mat) :: a !!$ type(psb_dprec_type) :: prec ! descriptor type(psb_desc_type) :: desc_a ! dense matrices real(psb_dpk_), allocatable :: b(:), x(:) ! blacs parameters integer :: ictxt, iam, np ! solver parameters integer :: iter, itmax,itrace, istopc, irst integer(psb_long_int_k_) :: amatsize, precsize, descsize real(psb_dpk_) :: err, eps ! other variables integer :: info, err_act character(len=20) :: name,ch_err info=psb_success_ call psb_init(ictxt) call psb_info(ictxt,iam,np) if (iam < 0) then ! This should not happen, but just in case call psb_exit(ictxt) stop endif if(psb_get_errstatus() /= 0) goto 9999 call psb_set_errverbosity(2) ! ! get parameters ! call get_parms(ictxt,idim) ! ! allocate and fill in the coefficient matrix, rhs and initial guess ! call psb_barrier(ictxt) t1 = psb_wtime() call create_matrix(idim,a,b,x,desc_a,ictxt,afmt,info) call psb_barrier(ictxt) t2 = psb_wtime() - t1 if(info /= psb_success_) then call psb_error(ictxt) end if call psb_exit(ictxt) stop 9999 continue call psb_erractionrestore(err_act) if (err_act == psb_act_abort_) then call psb_error(ictxt) end if stop contains ! ! get iteration parameters from standard input ! subroutine get_parms(ictxt,idim) integer :: ictxt integer :: idim integer :: np, iam integer :: intbuf(10), ip call psb_info(ictxt, iam, np) read(*,*) idim return end subroutine get_parms ! ! print an error message ! subroutine pr_usage(iout) integer :: iout write(iout,*)'incorrect parameter(s) found' write(iout,*)' usage: pde90 methd prec dim & &[istop itmax itrace]' write(iout,*)' where:' write(iout,*)' methd: cgstab cgs rgmres bicgstabl' write(iout,*)' prec : bjac diag none' write(iout,*)' dim number of points along each axis' write(iout,*)' the size of the resulting linear ' write(iout,*)' system is dim**3' write(iout,*)' istop stopping criterion 1, 2 ' write(iout,*)' itmax maximum number of iterations [500] ' write(iout,*)' itrace <=0 (no tracing, default) or ' write(iout,*)' >= 1 do tracing every itrace' write(iout,*)' iterations ' end subroutine pr_usage ! ! subroutine to allocate and fill in the coefficient matrix and ! the rhs. ! subroutine create_matrix(idim,a,b,xv,desc_a,ictxt,afmt,info) ! ! discretize the partial diferential equation ! ! b1 dd(u) b2 dd(u) b3 dd(u) a1 d(u) a2 d(u) a3 d(u) ! - ------ - ------ - ------ - ----- - ------ - ------ + a4 u ! dxdx dydy dzdz dx dy dz ! ! with Dirichlet boundary conditions, on the unit cube 0<=x,y,z<=1. ! ! Boundary conditions are set in a very simple way, by adding ! equations of the form ! ! u(x,y) = exp(-x^2-y^2-z^2) ! ! Note that if a1=a2=a3=a4=0., the PDE is the well-known Laplace equation. ! use psb_sparse_mod use psb_d_base_mat_mod use psb_d_csr_mat_mod implicit none integer :: idim integer, parameter :: nb=20 real(psb_dpk_), allocatable :: b(:),xv(:) type(psb_desc_type) :: desc_a integer :: ictxt, info character :: afmt*5 type(psb_d_sparse_mat) :: a real(psb_dpk_) :: zt(nb),glob_x,glob_y,glob_z integer :: m,n,nnz,glob_row,nlr,i,ii,ib,k integer :: x,y,z,ia,indx_owner integer :: np, iam, nr, nt,nz,isz integer :: element integer, allocatable :: irow(:),icol(:),myidx(:) real(psb_dpk_), allocatable :: val(:) type(psb_d_coo_sparse_mat) :: acoo type(psb_d_csr_sparse_mat) :: acsr ! deltah dimension of each grid cell ! deltat discretization time real(psb_dpk_) :: deltah real(psb_dpk_),parameter :: rhs=0.d0,one=1.d0,zero=0.d0 real(psb_dpk_) :: t0, t1, t2, t3, tasb, talc, ttot, tgen, tcpy, tmov real(psb_dpk_) :: a1, a2, a3, a4, b1, b2, b3 external :: a1, a2, a3, a4, b1, b2, b3 integer :: err_act character(len=20) :: name, ch_err, asbfmt info = psb_success_ name = 'create_matrix' call psb_erractionsave(err_act) call psb_info(ictxt, iam, np) deltah = 1.d0/(idim-1) ! initialize array descriptor and sparse matrix storage. provide an ! estimate of the number of non zeroes m = idim*idim*idim n = m nnz = ((n*9)/(np)) if(iam == psb_root_) write(0,'("Generating Matrix (size=",i0,")...")')n ! ! Using a simple BLOCK distribution. ! nt = (m+np-1)/np nr = max(0,min(nt,m-(iam*nt))) nt = nr call psb_sum(ictxt,nt) if (nt /= m) write(0,*) iam, 'Initialization error ',nr,nt,m write(0,*) iam, 'Initialization ',nr,nt,m nlr = nt call psb_barrier(ictxt) call acoo%set_null() t0 = psb_wtime() call acoo%allocate(nr,nr) talc = psb_wtime()-t0 !!$ write(*,*) 'Test get size:',d_coo_get_size(acoo) !!$ write(*,*) 'Test 2 get size:',acoo%get_size(),acoo%get_nzeros() if (info /= psb_success_) then info=psb_err_from_subroutine_ ch_err='allocation rout.' call psb_errpush(info,name,a_err=ch_err) goto 9999 end if ! we build an auxiliary matrix consisting of one row at a ! time; just a small matrix. might be extended to generate ! a bunch of rows per call. ! allocate(val(20*nb),irow(20*nb),& &icol(20*nb),myidx(nlr),stat=info) if (info /= psb_success_ ) then info=psb_err_alloc_dealloc_ call psb_errpush(info,name) goto 9999 endif ! loop over rows belonging to current process in a block ! distribution. call psb_barrier(ictxt) t1 = psb_wtime() do ii=1, nlr,nb ib = min(nb,nlr-ii+1) !!$ write(0,*) 'Row ',ii,ib element = 1 do k=1,ib i=ii+k-1 ! local matrix pointer glob_row=i ! compute gridpoint coordinates if (mod(glob_row,(idim*idim)) == 0) then x = glob_row/(idim*idim) else x = glob_row/(idim*idim)+1 endif if (mod((glob_row-(x-1)*idim*idim),idim) == 0) then y = (glob_row-(x-1)*idim*idim)/idim else y = (glob_row-(x-1)*idim*idim)/idim+1 endif z = glob_row-(x-1)*idim*idim-(y-1)*idim ! glob_x, glob_y, glob_x coordinates glob_x=x*deltah glob_y=y*deltah glob_z=z*deltah ! check on boundary points zt(k) = 0.d0 ! internal point: build discretization ! ! term depending on (x-1,y,z) ! if (x == 1) then val(element)=-b1(glob_x,glob_y,glob_z)& & -a1(glob_x,glob_y,glob_z) val(element) = val(element)/(deltah*& & deltah) zt(k) = exp(-glob_y**2-glob_z**2)*(-val(element)) else val(element)=-b1(glob_x,glob_y,glob_z)& & -a1(glob_x,glob_y,glob_z) val(element) = val(element)/(deltah*& & deltah) icol(element) = (x-2)*idim*idim+(y-1)*idim+(z) irow(element) = glob_row element = element+1 endif ! term depending on (x,y-1,z) if (y == 1) then val(element)=-b2(glob_x,glob_y,glob_z)& & -a2(glob_x,glob_y,glob_z) val(element) = val(element)/(deltah*& & deltah) zt(k) = exp(-glob_y**2-glob_z**2)*exp(-glob_x)*(-val(element)) else val(element)=-b2(glob_x,glob_y,glob_z)& & -a2(glob_x,glob_y,glob_z) val(element) = val(element)/(deltah*& & deltah) icol(element) = (x-1)*idim*idim+(y-2)*idim+(z) irow(element) = glob_row element = element+1 endif ! term depending on (x,y,z-1) if (z == 1) then val(element)=-b3(glob_x,glob_y,glob_z)& & -a3(glob_x,glob_y,glob_z) val(element) = val(element)/(deltah*& & deltah) zt(k) = exp(-glob_y**2-glob_z**2)*exp(-glob_x)*(-val(element)) else val(element)=-b3(glob_x,glob_y,glob_z)& & -a3(glob_x,glob_y,glob_z) val(element) = val(element)/(deltah*& & deltah) icol(element) = (x-1)*idim*idim+(y-1)*idim+(z-1) irow(element) = glob_row element = element+1 endif ! term depending on (x,y,z) val(element)=2*b1(glob_x,glob_y,glob_z)& & +2*b2(glob_x,glob_y,glob_z)& & +2*b3(glob_x,glob_y,glob_z)& & +a1(glob_x,glob_y,glob_z)& & +a2(glob_x,glob_y,glob_z)& & +a3(glob_x,glob_y,glob_z) val(element) = val(element)/(deltah*& & deltah) icol(element) = (x-1)*idim*idim+(y-1)*idim+(z) irow(element) = glob_row element = element+1 ! term depending on (x,y,z+1) if (z == idim) then val(element)=-b1(glob_x,glob_y,glob_z) val(element) = val(element)/(deltah*& & deltah) zt(k) = exp(-glob_y**2-glob_z**2)*exp(-glob_x)*(-val(element)) else val(element)=-b1(glob_x,glob_y,glob_z) val(element) = val(element)/(deltah*& & deltah) icol(element) = (x-1)*idim*idim+(y-1)*idim+(z+1) irow(element) = glob_row element = element+1 endif ! term depending on (x,y+1,z) if (y == idim) then val(element)=-b2(glob_x,glob_y,glob_z) val(element) = val(element)/(deltah*& & deltah) zt(k) = exp(-glob_y**2-glob_z**2)*exp(-glob_x)*(-val(element)) else val(element)=-b2(glob_x,glob_y,glob_z) val(element) = val(element)/(deltah*& & deltah) icol(element) = (x-1)*idim*idim+(y)*idim+(z) irow(element) = glob_row element = element+1 endif ! term depending on (x+1,y,z) if (x