\section{Preconditioner routines} \label{sec:precs} % \section{Preconditioners} \label{sec:psprecs} The base PSBLAS library contains the implementation of two simple preconditioning techniques: \begin{itemize} \item Diagonal Scaling \item Block Jacobi with ILU(0) factorization %% \item Additive Schwarz with the Restricted Additive Schwarz and %% Additive Schwarz with Harmonic extensions; \end{itemize} The supporting data type and subroutine interfaces are defined in the module \verb|psb_prec_mod|. %% We also provide a companion package of multi-level Additive %% Schwarz preconditioners called MD2P4; this is actually a family of %% preconditioners since there is the possibility to choose between %% many variants, and is currently in an experimental stateIts %% documentation is planned to appear after stabilization of the %% package, which will characterize release 2.1 of our library. \subroutine{psb\_precset}{Sets the preconditioner type} \syntax{call psb\_precset}{prec, ptype, info} \begin{description} \item[\bf On Entry] \item[prec] Scope: {\bf local} \\ Type: {\bf required}\\ Specified as: a preconditioner data structure \precdata. \item[ptype] the type of preconditioner. Scope: {\bf global} \\ Type: {\bf required}\\ Specified as: a character string, see usage notes. %% \item[iv] integer parameters for the precondtioner. %% Scope: {\bf global} \\ %% Type: {\bf required}\\ %% Specified as: an integer array, see usage notes. %% \item[rs] %% Scope: {\bf global} \\ %% Type: {\bf optional}\\ %% Specified as: a long precision real number. \item[\bf On Exit] \item[info] Scope: {\bf global} \\ Type: {\bf required}\\ Error code: if no error, 0 is returned. \end{description} \subsection*{Usage Notes} %% The PSBLAS 2.0 contains a number of preconditioners, ranging from a %% simple diagonal scaling to 2-level domain decomposition. These %% preconditioners may use the SuperLU or the UMFPACK software, if %% installed; see~\cite{SUPERLU,UMFPACK}. Legal inputs to this subroutine are interpreted depending on the $ptype$ string as follows\footnote{The string is case-insensitive}: \begin{description} \item[NONE] No preconditioning, i.e. the preconditioner is just a copy operator. \item[DIAG] Diagonal scaling; each entry of the input vector is multiplied by the reciprocal of the sum of the absolute values of the coefficients in the corresponding row of matrix $A$; \item[BJAC] Precondition by a factorization of the block-diagonal of matrix $A$, where block boundaries are determined by the data allocation boundaries for each process; requires no communication. Only the incomplete factorization $ILU(0)$ is currently implemented. %% \item[AS] Additive Schwarz preconditioner (see~\cite{PARA04}); in this %% case the user may specify additional flags through the integer %% vector \verb|ir| as follows: %% \begin{description} %% \item[$iv(1)$] Number of overlap levels, an integer $novr>=0$, default %% $novr=1$. %% \item[$iv(2)$] Restriction operator, legal values: \verb|psb_halo_|, %% \verb|psb_none_|; default: \verb|psb_halo_| %% \item[$iv(3)$] Prolongation operator, legal values: \verb|psb_none_|, %% \verb|psb_sum_|, \verb|psb_avg_|, default: \verb|psb_none_| %% \item[$iv(4)$] Factorization type, legal values: \verb|f_ilu_n_|, %% \verb|f_slu_|, \verb|f_umf_|, default: \verb|f_ilu_n_|. %% \end{description} %% Note that the default corresponds to a Restricted Additive Schwarz %% preconditioner with $ILU(0)$ and 1 level of overlap. %% \item[2L] Second level of a multilevel preconditioner, see below %% \end{description} %% If a multilevel preconditioner is desired, the user should call %% \verb|psb_precset| twice, the first time choosing an AS variant, and %% a second time specifying %% $ptype=2L$ with the following optional parameters in $iv$ (see %% also~\cite{APNUM06,DD2}): %% \begin{description} %% \item[$iv(1)$] Type of multilevel correction, legal values: \verb|no_ml_|, %% \verb|add_ml_prec_|, \verb|mult_ml_prec_|, %% default: \verb|mult_ml_prec_|; %% \item[$iv(2)$] Aggregation algorithm, legal values: \verb|loc_aggr_|; %% \item[$iv(3)$] Smoother type, legal values: \verb|no_smth_|, %% \verb|smth_omg_|, default: \verb|smth_omg_|; %% \item[$iv(4)$] Coarse matrix allocation, legal values: %% \verb|mat_distr_|, \verb|mat_repl_|, default: \verb|mat_distr_| %% \item[$iv(5)$] Smoother position, legal values: \verb|pre_smooth_|, %% \verb|post_smooth_|, \verb|smooth_both_|, default: %% \verb|post_smooth_| %% \item[$iv(6)$] Factorization type (for coarse matrix), legal values: \verb|f_ilu_n_|, %% \verb|f_slu_|, \verb|f_umf_|, default: \verb|f_ilu_n_|; %% \item[$iv(7)$] Number of Jacobi sweeps for coarse system correction, %% default 1. %% \item[$rs$] Set the smoother parameter $\omega$ a user defined value; %% default: esitimate with the infinity norm of matrix $A$. \end{description} %% The 2-level preconditioners are based on the idea of building a %% coarse-space approximation $A_C$ of the matrix $A$; given a set $W_C$ %% of coarse vertices, with size $n_C$, and a suitable restriction %% operator $R_C \in \Re^{n_C \times n}$, $A_C$ is defined as %% \[ %% A_C=R_C A R_C^T . %% \] %% The prolongator $R_C^T$ is built with the smoothed aggregation technique, %% in which we start from a tentative prolongator that simply maps %% fine-level entries onto their aggregates $P_C$; if the user chooses %% \verb|no_smth_| this is the prolongator used, otherwise it is %% multiplied by a smoother \[ S = I - \omega D^{-1} A \], where $D$ is %% the diagonal of $A$ and $\omega$ may be imposed by the user or %% estimated internally. %% The coarse space correction may be added to the fine level solution %% \verb|add_ml_prec_| %% \[ %% M_{2L-A}^{-1} = M_{C}^{-1} + M_{1L}^{-1}. %% \] %% or it can be composed in a multiplicative framework %% (\verb|mult_ml_prec_|)as a pre-smoothed correction (\verb|pre_smooth_|) %% \[ %% M_{2L-H1}^{-1} = M_{C}^{-1} + \left( I - M_{C}^{-1}A \right) M_{1L}^{-1}, %% \] %% post-smoothed correction (\verb|post_smooth_|) %% \[ %% M_{2L-H2}^{-1} = M_{1L}^{-1} + \left( I - M_{1L}^{-1}A \right) M_{C}^{-1}. %% \] %% or two-sided for symmetric matrices (\verb|smooth_both_|). \subroutine{psb\_precbld}{Builds a preconditioner} \syntax{call psb\_precbld}{a, desc\_a, prec, info, upd} \begin{description} \item[\bf On Entry] \item[a] the system sparse matrix. Scope: {\bf local} \\ Type: {\bf required}\\ Specified as: a sparse matrix data structure \spdata. \item[desc\_a] the problem communication descriptor. Scope: {\bf local} \\ Type: {\bf required}\\ Specified as: a communication descriptor data structure \descdata. \item[upd] Scope: {\bf global} \\ Type: {\bf optional}\\ Specified as: a character. \end{description} \begin{description} \item[\bf On Return] \item[prec] the preconditioner.\\ Scope: {\bf local} \\ Type: {\bf required}\\ Specified as: a precondtioner data structure \precdata\\ \item[info] Error code.\\ Scope: {\bf local} \\ Type: {\bf required} \\ An integer value; 0 means no error has been detected. \end{description} \subroutine{psb\_precaply}{Preconditioner application routine} \syntax{call psb\_precaply}{prec,x,y,desc\_a,info,trans,work} \syntax*{call psb\_precaply}{prec,x,desc\_a,info,trans} \begin{description} \item[\bf On Entry] \item[prec] the preconditioner. Scope: {\bf local} \\ Type: {\bf required}\\ Specified as: a preconditioner data structure \precdata. \item[x] the source vector. Scope: {\bf local} \\ Type: {\bf require}\\ Specified as: a double precision array. \item[desc\_a] the problem communication descriptor. Scope: {\bf local} \\ Type: {\bf required}\\ Specified as: a communication data structure \descdata. \item[trans] Scope: {\bf } \\ Type: {\bf optional}\\ Specified as: a character. \item[work] an optional work space Scope: {\bf local} \\ Type: {\bf optional}\\ Specified as: a double precision array. \end{description} \begin{description} \item[\bf On Return] \item[y] the destination vector. Scope: {\bf local} \\ Type: {\bf required}\\ Specified as: a double precision array. \item[info] Error code.\\ Scope: {\bf local} \\ Type: {\bf required} \\ An integer value; 0 means no error has been detected. \end{description} \subroutine{psb\_prec\_descr}{Prints a description of current preconditioner} \syntax{call psb\_prec\_descr}{prec} \begin{description} \item[\bf On Entry] \item[prec] the preconditioner. Scope: {\bf local} \\ Type: {\bf required}\\ Specified as: a preconditioner data structure \precdata. \end{description} %%% Local Variables: %%% mode: latex %%% TeX-master: "userguide" %%% End: